1
|
Lawson LP, Parameswaran S, Panganiban RA, Constantine GM, Weirauch MT, Kottyan LC. Update on the genetics of allergic diseases. J Allergy Clin Immunol 2025; 155:1738-1752. [PMID: 40139464 PMCID: PMC12145254 DOI: 10.1016/j.jaci.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/24/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
The field of genetic etiology of allergic diseases has advanced significantly in recent years. Shared risk loci reflect the contribution of genetic factors to the sequential development of allergic conditions across the atopic march, while unique risk loci provide opportunities to understand tissue specific manifestations of allergic disease. Most identified risk variants are noncoding, indicating that they likely influence gene expression through gene regulatory mechanisms. Despite recent advances, challenges persist, particularly regarding the need for increased ancestral diversity in research populations. Further, while polygenic risk scores show promise for identifying individuals at higher genetic risk for allergic diseases, their predictive accuracy varies across different ancestries and can be difficult to translate to an individual's absolute risk of developing a disease. Methodologies, including "nearest gene," 3D chromatin interaction analysis, expression quantitative trait locus analysis, experimental screens, and integrative bioinformatic models, have established connections between genetic variants and their regulatory targets, enhancing our understanding of disease risk and phenotypic variability. In this review, we focus on the state of knowledge of allergic sensitization and 5 allergic diseases: asthma, atopic dermatitis, allergic rhinitis, food allergy, and eosinophilic esophagitis. We summarize recent progress and highlight opportunities for advancing our understanding of their genetic etiology.
Collapse
Affiliation(s)
- Lucinda P Lawson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ronald A Panganiban
- Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Gregory M Constantine
- Human Eosinophil Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda, Md
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
2
|
Kuśnierczyk P, Mintoff D, Niepiekło-Miniewska W. Immunologic and genetic differences and similarities between skin diseases. Hum Immunol 2025; 86:111274. [PMID: 40090202 DOI: 10.1016/j.humimm.2025.111274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Affiliation(s)
- Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland.
| | - Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta; Department of Pathology, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wrocław, Poland
| |
Collapse
|
3
|
Agnello L, Masucci A, Tamburello M, Vassallo R, Massa D, Giglio RV, Midiri M, Gambino CM, Ciaccio M. The Role of Killer Ig-like Receptors in Diseases from A to Z. Int J Mol Sci 2025; 26:3242. [PMID: 40244151 PMCID: PMC11989319 DOI: 10.3390/ijms26073242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/26/2025] [Accepted: 03/29/2025] [Indexed: 04/18/2025] Open
Abstract
Killer Ig-like Receptors (KIRs) regulate immune responses, maintaining the balance between activation and inhibition of the immune system. KIRs are expressed on natural killer cells and some CD8 T cells and interact with HLA class I molecules, influencing various physiological and pathological processes. KIRs' polymorphism creates a variability in immune responses among individuals. KIRs are involved in autoimmune disorders, cancer, infections, neurological diseases, and other diseases. Specific combinations of KIRs and HLA are linked to several diseases' susceptibility, progression, and outcomes. In particular, the balance between inhibitory and activating KIRs can determine how the immune system responds to pathogens and tumors. An imbalance can lead to an excessive response, contributing to autoimmune diseases, or an inadequate response, allowing immune evasion by pathogens or cancer cells. The increasing number of studies on KIRs highlights their essential role as diagnostic and prognostic biomarkers and potential therapeutic targets. This review provides a comprehensive overview of the role of KIRs in all clinical conditions and diseases, listed alphabetically, where they are analyzed.
Collapse
Affiliation(s)
- Luisa Agnello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Anna Masucci
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Martina Tamburello
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Roberta Vassallo
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Davide Massa
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
| | - Rosaria Vincenza Giglio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Mauro Midiri
- Institute of Legal Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90133 Palermo, Italy;
| | - Caterina Maria Gambino
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Marcello Ciaccio
- Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90133 Palermo, Italy; (L.A.); (A.M.); (M.T.); (R.V.); (D.M.); (R.V.G.); (C.M.G.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
4
|
Niepiekło-Miniewska W, Matusiak Ł, Narbutt J, Lesiak A, Kuna P, Szepietowski JC, Kuśnierczyk P. The association of HLA-DRB1 allele group but not HLA-B or ERAP1-rs7063 gene polymorphisms with atopic dermatitis. Hum Immunol 2025; 86:111231. [PMID: 39808847 DOI: 10.1016/j.humimm.2025.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 12/01/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Atopic dermatitis (AD) is one of the most common dermatoses. According to current data 2.6 % of the world's population suffer from AD. Atopic dermatitis is a multifactorial disease. The immune genes polymorphism is also associated with an increased risk of AD. The human leukocyte antigen (HLA) system is a group of genes that plays a crucial role in the immune response. The endoplasmic reticulum aminopeptidases ERAP (1 and 2) are trimming longer peptides to an optimal length for binding to HLA-I molecules. HLA class I (HLA-B) and class II (HLA-DRB1) typing and ERAP1-rs7063 genotyping were performed for 152 patients suffering from AD and 187 control subjects. Frequencies of HLA-B allele group and majority of HLA-DRB1 allele group did not differ between patients and controls. The exception was HLA-DRB1*07 allele group (OR = 0.34; 95 % CI = 0.20;0.61, p = 0.0039) whose frequency was lower in patients than in controls. ERAP1 19-exon to 20-exon ratio, governed by rs7063, did not seem to affect the susceptibility to AD.
Collapse
Affiliation(s)
- Wanda Niepiekło-Miniewska
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Łukasz Matusiak
- Department of Dermato-Venereology, 4th Military Hospital, Wroclaw, Poland; Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Joanna Narbutt
- Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, Poland
| | - Aleksandra Lesiak
- Laboratory of Autoinflammatory, Genetic and Rare Skin Disorders, Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, Poland; Department of Dermatology, Pediatric Dermatology and Oncology, Medical University of Lodz, Poland
| | - Piotr Kuna
- Department of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Jacek C Szepietowski
- Department of Dermato-Venereology, 4th Military Hospital, Wroclaw, Poland; Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
5
|
Gambino CM, Agnello L, Vidali M, Lo Sasso B, Mansueto P, Seidita A, Giuliano A, Scazzone C, Massa D, Masucci A, Tamburello M, Vassallo R, Ciaccio AM, Candore G, Carroccio A, Ciaccio M. The role of Killer immunoglobulin-like receptors (KIRs) in the genetic susceptibility to non-celiac wheat sensitivity (NCWS). Clin Chem Lab Med 2024; 62:1814-1823. [PMID: 38639193 DOI: 10.1515/cclm-2024-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024]
Abstract
OBJECTIVES Non-celiac wheat sensitivity (NCWS) is an emerging clinical condition characterized by gastrointestinal and extraintestinal symptoms following the ingestion of gluten-containing foods in patients without celiac disease (CD) or wheat allergy. Despite the great interest for NCWS, the genetic risk factors still need to be fully clarified. In this study, we first assessed the possible contribution of KIR genes and KIR haplotypes on the genetic predisposition to NCWS. METHODS Fifty patients with NCWS, 50 patients with CD, and 50 healthy controls (HC) were included in this study. KIR genes and KIR genotyping were investigated in all subjects by polymerase chain reaction with the sequence oligonucleotide probe (PCR-SSOP) method using Luminex technology. RESULTS We found a statistically different distribution of some KIR genes among NCWS, CD, and HC. Specifically, NCWS showed a decreased frequency of KIR2DL1, -2DL3, -2DL5, -2DS2, -2DS3, -2DS4, -2DS5, and -3DS1 genes, and an increased frequency of -3DL1 gene respect to both CD and HC. No difference was detected in the KIR haplotype expression. At the multivariate analysis, KIR2DL5, -2DS4, and -2DS5 were independent predictors of NCWS. CONCLUSIONS Our findings suggest a role of KIR genes in NCWS susceptibility, with KIR2DL5, -2DS4, and -2DS5 having a protective effect. Further large-scale multicentric studies are required to validate these preliminary findings.
Collapse
Affiliation(s)
- Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Matteo Vidali
- Clinical Pathology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| | - Pasquale Mansueto
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine, and Medical Specialties (PROMISE), Unit of Internal Medicine, 18998 University of Palermo , Palermo, Italy
| | - Aurelio Seidita
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy
| | - Alessandra Giuliano
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Davide Massa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Anna Masucci
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Martina Tamburello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Roberta Vassallo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
| | - Anna Maria Ciaccio
- Department of Health Promotion, Maternal and Child Health, Internal Medicine, and Specialty Excellence "G. D'Alessandro" (PROMISE), Internal Medicine and Stroke Care Ward, University of Palermo, Palermo, Italy
| | - Giuseppina Candore
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Laboratory of Immunopathology and Immunosenescence, University of Palermo , Palermo, Italy
| | - Antonio Carroccio
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine, and Medical Specialties (PROMISE), Unit of Internal Medicine, 18998 University of Palermo , Palermo, Italy
- Unit of Internal Medicine, "V. Cervello" Hospital, Ospedali Riuniti "Villa Sofia-Cervello", Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, 18998 Institute of Clinical Biochemistry, Clinical Molecular Medicine, and Clinical Laboratory Medicine, University of Palermo , Palermo, Italy
- Department of Laboratory Medicine, University Hospital "P. Giaccone", Palermo, Italy
| |
Collapse
|
6
|
Fuxench ZCC, Mitra N, Hoffstad OJ, Phillips EJ, Margolis DJ. Association between atopic dermatitis, autoimmune illnesses, Epstein-Barr virus, and cytomegalovirus. Arch Dermatol Res 2023; 315:2689-2692. [PMID: 37233764 DOI: 10.1007/s00403-023-02648-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 05/27/2023]
Abstract
Atopic dermatitis (AD) is a Th2-driven inflammatory skin disease that has been associated with other autoimmune illnesses (AI) and has a well-known predisposition to infection with herpes simplex virus infection. Yet, few studies have evaluated the association between atopic dermatitis, autoimmune illness, and other human herpes virus (HHV) infections such as cytomegalovirus (CMV) and Epstein-Barr virus (EBV). We aimed to evaluate the association between AD, specific AIs, CMV, and EBV in a random sample of the Optum Clinformatics Data Mart database, a US administrative claims database. AD was defined based on ICD diagnostic codes. Patients with AD were exact matched to those without AD on sex, age at enrollment, time observed in the dataset and census division. Our outcomes of interest were rheumatoid arthritis (RA), Crohn's disease (CD), ulcerative colitis (UC), multiple sclerosis (MS), CMV, and EBV infection as defined by specific ICD codes. Logistic regression models were used to examine the association between AD and our outcomes of interest [odds ratio (95% confidence intervals)]. Our full cohort included 40,141,017 patients. In total, 601,783 patients with AD were included. As expected, patients with AD had a higher prevalence of asthma and seasonal allergies versus controls. Individuals with AD have an increased risk of EBV, CMV, RA, CD, UC, and MS. While we cannot demonstrate a causal association, the observed associations between AD and AI may be in part mediated by these types of HHV (i.e., CMV and EBV), a finding that merits further study.
Collapse
Affiliation(s)
- Zelma C Chiesa Fuxench
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 901 Blockley, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Ole J Hoffstad
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - David J Margolis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, 901 Blockley, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Chimbetete T, Buck C, Choshi P, Selim R, Pedretti S, Divito SJ, Phillips EJ, Lehloenya R, Peter J. HIV-Associated Immune Dysregulation in the Skin: A Crucible for Exaggerated Inflammation and Hypersensitivity. J Invest Dermatol 2023; 143:362-373. [PMID: 36549954 PMCID: PMC9974923 DOI: 10.1016/j.jid.2022.07.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022]
Abstract
Skin diseases are hallmarks of progressive HIV-related immunosuppression, with severe noninfectious inflammatory and hypersensitivity conditions as common as opportunistic infections. Conditions such as papular pruritic eruption are AIDS defining, whereas delayed immune-mediated adverse reactions, mostly cutaneous, occur up to 100-fold more during HIV infection. The skin, constantly in contact with the external environment, has a complex immunity. A dense, tightly junctioned barrier with basal keratinocytes and epidermal Langerhans cells with antimicrobial, innate-activating, and antigen-presenting functions form the frontline. Resident dermal dendritic, mast, macrophage, and innate lymphoid cells play pivotal roles in directing and polarizing appropriate adaptive immune responses and directing effector immune cell trafficking. Sustained viral replication leads to progressive declines in CD4 T cells, whereas Langerhans and dermal dendritic cells serve as viral reservoirs and points of first viral contact in the mucosa. Cutaneous cytokine responses and diminished lymphoid populations create a crucible for exaggerated inflammation and hypersensitivity. However, beyond histopathological description, these manifestations are poorly characterized. This review details normal skin immunology, changes associated with progressive HIV-related immunosuppression, and the characteristic conditions of immune dysregulation increased with HIV. We highlight the main research gaps and several novel tissue-directed strategies to define mechanisms that will provide targeted approaches to prevention or treatment.
Collapse
Affiliation(s)
- Tafadzwa Chimbetete
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Chloe Buck
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Phuti Choshi
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Rose Selim
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa
| | - Sherrie Jill Divito
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Rannakoe Lehloenya
- Division of Dermatology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa
| | - Jonny Peter
- Division of Allergology and Clinical Immunology, Department of Medicine, Groote Schuur Hospital, University of Cape Town, Cape Town, South Africa; Allergy and Immunology Unit, University of Cape Town Lung Institute, Cape Town, South Africa; Combined Drug Allergy Clinic, Groote Schuur Hospital, Cape Town, South Africa.
| |
Collapse
|
8
|
Margolis DJ, Mitra N, Hoffstad OJ, Berna R, Kim BS, Chopra A, Phillips EJ. Association of KIR2DL5, KIR2DS5, and KIR2DS1 allelic variation and atopic dermatitis. Sci Rep 2023; 13:1730. [PMID: 36720995 PMCID: PMC9889380 DOI: 10.1038/s41598-023-28847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Natural killer cells (NK) have been associated with the pathophysiology of atopic dermatitis (AD). NK function is regulated by killer cell Ig-like receptor family (KIR) receptors that interact with HLA ligands. The study goal was to focus on allelic variation in genes KIR2DL5, KIR2DS5, and KIR2DS1 with respect to AD. This was a case-control study of individuals with (n = 313) and without (n = 176) AD. Associations were estimated using logistic regression. The prevalence of KIR2DL5 was 52.5% (95% CI 48.0,57.0), KIR2DS5 was 33.0% (28.8,37.3), and KIR2DS1 was 33.6% (29.4,38.0). The presence of the KIR2DL5*001:01 increased the odds of having AD by about 86% (odds ratio (OR): 1.86(1.23,2.82) p = 0.003). The risk for individuals homozygous for KIR2DL5*001:01 was even greater (OR: 2.16 (95% CI 1.31,3.53) p = 0.0023). The odds of having AD with KIR2DL5*001:01 was similar in Whites and Blacks. Allelic variation in KIR2DS5 and KIR2DS1 was not associated with AD. There is no known HLA binding ligand for KIR2DL5. The effect of KIR2DL5*001:01 increased in the presence of HLA-B*-21TT leader sequence (2.46(1.37,4.41) p = 0.0025) and the HLA-C2 ligand (2.07 (1.37,4.41, p = 0.000002). Our study shows an independent association of the KIR2DL5*001:01 with AD and is the first study to associate AD with KIR allelic variation.
Collapse
Affiliation(s)
- David J Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA. .,Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 901 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA.
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ole J Hoffstad
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 901 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Ronald Berna
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, 901 Blockley Hall, 423 Guardian Drive, Philadelphia, PA, 19104, USA
| | - Brian S Kim
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia.,Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
9
|
Margolis DJ, Mitra N, Hoffstad OJ, Chopra A, Phillips EJ. KIR Allelic Variation and the Remission of Atopic Dermatitis Over Time. Immunohorizons 2023; 7:30-40. [PMID: 36637513 PMCID: PMC10329861 DOI: 10.4049/immunohorizons.2200095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 01/14/2023] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin disease. Although generally thought to be a disease of T-cell dysregulation, recent studies have suggested that immune dysregulation of NK cells is also important. Killer cell Ig-like receptors (KIRs) are involved with NK cell regulation. The Pediatric Eczema Elective Registry is a U.S. nationwide longitudinal cohort with up to 10 y of follow-up in which 655 children had DNA available for full allelic KIR sequencing. Every 6 mo, AD activity was reported by Pediatric Eczema Elective Registry children. Using generalized estimating equations, we evaluated the association of KIR allelic variation in concert with known HLA binding ligands and whether the child reported AD in "remission" (no skin lesions and not using AD medication). KIR2DS4*001:01 (odds ratio 0.53, 95% CI [0.32, 0.88]) and KIR2DL4*001:02 (0.54, [0.33, 0.89]) in the presence of C*04:01 had the largest effect on decreasing the likelihood of AD remission. The haplotype KIR 2DL4*001:02 ∼ 2DS4*001:01 ∼ 3DL2*002:01 (0.77, [0.60, 0.99]) was also associated with a decreased likelihood of AD remission. Our findings add to the general body of evidence of a growing literature on the importance of NK cells with respect to the immunopathogenesis and natural history of AD.
Collapse
Affiliation(s)
- David J. Margolis
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Nandita Mitra
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ole J. Hoffstad
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; and
| | - Elizabeth J. Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Australia; and
- Department of Medicine Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
10
|
Pollock NR, Harrison GF, Norman PJ. Immunogenomics of Killer Cell Immunoglobulin-Like Receptor (KIR) and HLA Class I: Coevolution and Consequences for Human Health. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1763-1775. [PMID: 35561968 PMCID: PMC10038757 DOI: 10.1016/j.jaip.2022.04.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Interactions of killer cell immunoglobin-like receptors (KIR) with human leukocyte antigens (HLA) class I regulate effector functions of key cytotoxic cells of innate and adaptive immunity. The extreme diversity of this interaction is genetically determined, having evolved in the ever-changing environment of pathogen exposure. Diversity of KIR and HLA genes is further facilitated by their independent segregation on separate chromosomes. That fetal implantation relies on many of the same types of immune cells as infection control places certain constraints on the evolution of KIR interactions with HLA. Consequently, specific inherited combinations of receptors and ligands may predispose to specific immune-mediated diseases, including autoimmunity. Combinatorial diversity of KIR and HLA class I can also differentiate success rates of immunotherapy directed to these diseases. Progress toward both etiopathology and predicting response to therapy is being achieved through detailed characterization of the extent and consequences of the combinatorial diversity of KIR and HLA. Achieving these goals is more tractable with the development of integrated analyses of molecular evolution, function, and pathology that will establish guidelines for understanding and managing risks. Here, we present what is known about the coevolution of KIR with HLA class I and the impact of their complexity on immune function and homeostasis.
Collapse
Affiliation(s)
- Nicholas R Pollock
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine and Department of Immunology and Microbiology, Anschutz Medical Campus, University of Colorado, Aurora, Colo.
| |
Collapse
|
11
|
Vaseghi-Shanjani M, Snow AL, Margolis DJ, Latrous M, Milner JD, Turvey SE, Biggs CM. Atopy as Immune Dysregulation: Offender Genes and Targets. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1737-1756. [PMID: 35680527 DOI: 10.1016/j.jaip.2022.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/15/2023]
Abstract
Allergic diseases are a heterogeneous group of disorders resulting from exaggerated type 2 inflammation. Although typically viewed as polygenic multifactorial disorders caused by the interaction of several genes with the environment, we have come to appreciate that allergic diseases can also be caused by monogenic variants affecting the immune system and the skin epithelial barrier. Through a myriad of genetic association studies and high-throughput sequencing tools, many monogenic and polygenic culprits of allergic diseases have been described. Identifying the genetic causes of atopy has shaped our understanding of how these conditions occur and how they may be treated and even prevented. Precision diagnostic tools and therapies that address the specific molecular pathways implicated in allergic inflammation provide exciting opportunities to improve our care for patients across the field of allergy and immunology. Here, we highlight offender genes implicated in polygenic and monogenic allergic diseases and list targeted therapeutic approaches that address these disrupted pathways.
Collapse
Affiliation(s)
- Maryam Vaseghi-Shanjani
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, Md
| | - David J Margolis
- Department of Dermatology and Dermatologic Surgery, University of Pennsylvania Medical Center, Philadelphia, Pa; Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Medical Center, Philadelphia, Pa
| | - Meriem Latrous
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joshua D Milner
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; Experimental Medicine Program, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, British Columbia, Canada; St Paul's Hospital, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Krantz MS, Kerchberger VE, Wei WQ. Novel Analysis Methods to Mine Immune-Mediated Phenotypes and Find Genetic Variation Within the Electronic Health Record (Roadmap for Phenotype to Genotype: Immunogenomics). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1757-1762. [PMID: 35487368 PMCID: PMC9624141 DOI: 10.1016/j.jaip.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The field of immunogenomics has the opportunity for accelerated genetic discovery aided by the maturation of electronic health records (EHRs) linked to DNA biobanks. Novel analysis methods in deep phenotyping of EHR data allow the full realization of the paired and increasingly dense genetic/phenotypic information available. This enables researchers to uncover genetic risk factors for the prevention and optimal treatment of immune-mediated diseases and immune-mediated adverse drug reactions. This article reviews the background of EHRs linked to DNA biobanks, potential applications to immunogenomic discovery, and current and emerging techniques in EHR-based deep phenotyping.
Collapse
Affiliation(s)
- Matthew S Krantz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| | - V Eric Kerchberger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
13
|
|