1
|
Zelco A, Joshi A. Single-Cell Analysis of Sex and Gender Differences in the Human Brain During Development and Disease. Cell Mol Neurobiol 2025; 45:20. [PMID: 40016536 PMCID: PMC11868228 DOI: 10.1007/s10571-025-01536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
Sex and gender (SG) differences in the human brain are of interest to society and science as numerous processes are impacted by them, including brain development, behavior, and diseases. By collecting publicly available single-cell data from the in-utero to elderly age in healthy, Alzheimer's disease and multiple sclerosis samples, we identified and characterized SG-biased genes in ten brain cell types across 9 age and disease groups. Sex and gender differences in the transcriptome were present throughout the lifespan and across all cell types. Although there was limited overlap among SG-biased genes across different age and disease groups, we observed significant functional overlap. Female-biased genes are consistently enriched for brain-related processes, while male-biased genes are enriched for metabolic pathways. Additionally, mitochondrial genes showed a consistent female bias across cell types. We also found that androgen response elements (not estrogen) were significantly enriched in both male- and female-biased genes, and thymosin hormone targets being consistently enriched only in male-biased genes. We systematically characterised SG differences in brain development and brain-related disorders at a single-cell level, by analysing a total of publicly available 419,885 single nuclei from 161 human brain samples (72 females, 89 males). The significant enrichment of androgen (not estrogen) response elements in both male- and female-biased genes suggests that androgens are important regulators likely establishing these SG differences. Finally, we provide full characterization of SG-biased genes at different thresholds for the scientific community as a web resource.
Collapse
Affiliation(s)
- Aura Zelco
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
| | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, Bergen, Norway.
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, India.
| |
Collapse
|
2
|
Weber CM, Moiz B, Clyne AM. Brain microvascular endothelial cell metabolism and its ties to barrier function. VITAMINS AND HORMONES 2024; 126:25-75. [PMID: 39029976 PMCID: PMC11756814 DOI: 10.1016/bs.vh.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
Brain microvascular endothelial cells, which lie at the interface between blood and brain, are critical to brain energetics. These cells must precisely balance metabolizing nutrients for their own demands with transporting nutrients into the brain to sustain parenchymal cells. It is essential to understand this integrated metabolism and transport so that we can develop better diagnostics and therapeutics for neurodegenerative diseases such as Alzheimer's disease, multiple sclerosis, and traumatic brain injury. In this chapter, we first describe brain microvascular endothelial cell metabolism and how these cells regulate both blood flow and nutrient transport. We then explain the impact of brain microvascular endothelial cell metabolism on the integrity of the blood-brain barrier, as well as how metabolites produced by the endothelial cells impact other brain cells. We detail some ways that cell metabolism is typically measured experimentally and modeled computationally. Finally, we describe changes in brain microvascular endothelial cell metabolism in aging and neurodegenerative diseases. At the end of the chapter, we highlight areas for future research in brain microvascular endothelial cell metabolism. The goal of this chapter is to underscore the importance of nutrient metabolism and transport at the brain endothelium for cerebral health and neurovascular disease treatment.
Collapse
Affiliation(s)
- Callie M Weber
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Bilal Moiz
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Alisa Morss Clyne
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States.
| |
Collapse
|
3
|
Norman JE, Nuthikattu S, Milenkovic D, Villablanca AC. Sex Modifies the Impact of Type 2 Diabetes Mellitus on the Murine Whole Brain Metabolome. Metabolites 2023; 13:1012. [PMID: 37755291 PMCID: PMC10536706 DOI: 10.3390/metabo13091012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) leads to the development of cardiovascular diseases, cognitive impairment, and dementia. There are sex differences in the presentation of T2DM and its associated complications. We sought to determine the impact of sex and T2DM on the brain metabolome to gain insights into the underlying mechanisms of T2DM-associated cognitive complications. Untargeted metabolomic analysis was performed, using liquid chromatography-mass spectrometry, on whole brain tissue from adult male and female db/db mice (a T2DM model) compared to wild-type (WT) C57Bl6/J mice. Regardless of sex, T2DM increased free fatty acids and decreased acylcarnitines in the brain. Sex impacted the number (103 versus 65 in males and females, respectively), and types of metabolites shifted by T2DM. Many choline-containing phospholipids were decreased by T2DM in males. Female-specific T2DM effects included changes in neuromodulatory metabolites (γ-aminobutyric acid, 2-linoleoyl glycerol, N-methylaspartic acid, and taurine). Further, there were more significantly different metabolites between sexes in the T2DM condition as compared to the WT controls (54 vs. 15 in T2DM and WT, respectively). T2DM alters the murine brain metabolome in both sex-independent and sex-dependent manners. This work extends our understanding of brain metabolic sex differences in T2DM, cognitive implications, and potential sex-specific metabolic therapeutic targets.
Collapse
Affiliation(s)
- Jennifer E. Norman
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA; (S.N.); (A.C.V.)
| | - Saivageethi Nuthikattu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA; (S.N.); (A.C.V.)
| | - Dragan Milenkovic
- Department of Nutrition, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA;
| | - Amparo C. Villablanca
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis. 1 Shields Ave, Davis, CA 95616, USA; (S.N.); (A.C.V.)
| |
Collapse
|
4
|
Zelco A, Wapeesittipan P, Joshi A. Insights into Sex and Gender Differences in Brain and Psychopathologies Using Big Data. Life (Basel) 2023; 13:1676. [PMID: 37629533 PMCID: PMC10455614 DOI: 10.3390/life13081676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/27/2023] Open
Abstract
The societal implication of sex and gender (SG) differences in brain are profound, as they influence brain development, behavior, and importantly, the presentation, prevalence, and therapeutic response to diseases. Technological advances have enabled speed up identification and characterization of SG differences during development and in psychopathologies. The main aim of this review is to elaborate on new technological advancements, such as genomics, imaging, and emerging biobanks, coupled with bioinformatics analyses of data generated from these technologies have facilitated the identification and characterization of SG differences in the human brain through development and psychopathologies. First, a brief explanation of SG concepts is provided, along with a developmental and evolutionary context. We then describe physiological SG differences in brain activity and function, and in psychopathologies identified through imaging techniques. We further provide an overview of insights into SG differences using genomics, specifically taking advantage of large cohorts and biobanks. We finally emphasize how bioinformatics analyses of big data generated by emerging technologies provides new opportunities to reduce SG disparities in health outcomes, including major challenges.
Collapse
Affiliation(s)
| | | | - Anagha Joshi
- Department of Clinical Science, Computational Biology Unit, University of Bergen, 5020 Bergen, Norway; (A.Z.); (P.W.)
| |
Collapse
|
5
|
Lin YC, Zhang M, Chang YJ, Kuo TH. Comparisons of lifespan and stress resistance between sexes in Drosophila melanogaster. Heliyon 2023; 9:e18178. [PMID: 37576293 PMCID: PMC10415617 DOI: 10.1016/j.heliyon.2023.e18178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
Animals exhibit different extents of sexual dimorphism in a variety of phenotypes. Sex differences in longevity, one of the most complex life history traits, have also been reported. Although lifespan regulation has been studied extensively in the fruit fly, Drosophila melanogaster, the sex differences in lifespan have not been consistent in previous studies. To explore this issue, we revisited this question by examining the lifespan and stress resistance of both sexes among 15 inbred strains. We first found positive correlations between males and females from the same strain in terms of lifespan and resistance to starvation and desiccation stress. Although the lifespan difference between male and female flies varied greatly depending on the strain, males across all strains collectively had a longer lifespan. In contrast, females showed better resistance to starvation and desiccation stress. We also observed greater variation in lifespan and resistance to starvation and desiccation stress in females. Unexpectedly, there was no notable correlation observed between lifespan and the three types of stress resistance in either males or females. Overall, our study provides new data regarding sexual dimorphism in fly lifespan and stress resistance; this information may promote the investigation of mechanisms underlying longevity in future research.
Collapse
Affiliation(s)
- Yu-Chiao Lin
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | - MingYang Zhang
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
| | | | - Tsung-Han Kuo
- Institute of Systems Neuroscience, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
6
|
Xiang J, Guo RY, Wang T, Zhang N, Chen XR, Li EC, Zhang JL. Brain metabolite profiles provide insight into mechanisms for behavior sexual dimorphisms in zebrafish (Danio rerio). Physiol Behav 2023; 263:114132. [PMID: 36801416 DOI: 10.1016/j.physbeh.2023.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/27/2022] [Accepted: 02/16/2023] [Indexed: 02/19/2023]
Abstract
The zebrafish (Danio rerio) has historically been a useful model for research in genetics, ecology, biology, toxicology, and neurobehavior. Zebrafish have been demonstrated to have brain sexual dimorphism. However, the sexual dimorphism of zebrafish behavior demands our attention, particularly. To evaluate the behavior and brain sexual dimorphisms in zebrafish, this study assessed sex differences in adult D. rerio in four behavioral domains, including aggression, fear, anxiety, and shoaling, and further compared with metabolites in the brain tissue of females and males. Our findings showed that aggression, fear, anxiety and shoaling behaviors were significantly sexually dimorphic. Interestingly, we also show through a novel data analysis method, that the female zebrafish exhibited significantly increased shoaling behavior when shoaled with male zebrafish groups and, for the first time, we offer evidence that male shoals are beneficial in dramatically alleviating anxiety in zebrafish. In addition, there were significant changes in metabolites in zebrafish brain tissue between the sexes. Furthermore, zebrafish behavioral sexual dimorphism may be associated with brain sexual dimorphism, with significant differences in brain metabolites. Therefore, to prevent the influence or even bias of behavioral sex differences on results, it is suggested that behavioral studies or behavioral-based other relevant investigations consider sexual dimorphism of behavior and brain.
Collapse
Affiliation(s)
- Jing Xiang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Rui-Ying Guo
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Ting Wang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Nan Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Xian-Rui Chen
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China
| | - Er-Chao Li
- College of Marine Sciences, Hainan University, Haikou, Hainan, China
| | - Ji-Liang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, Hainan, China.
| |
Collapse
|
7
|
Zurek G, Lenart D, Lachowicz M, Zebrowski K, Jamro D. Factors Influencing the Executive Functions of Male and Female Cadets. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17043. [PMID: 36554935 PMCID: PMC9779467 DOI: 10.3390/ijerph192417043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Executive functions (EFs) are related to human abilities that allow individuals to achieve planned goals, contribute to creativity and the analysis of new ideas, and allow for adaptation to new situations in daily life. Thorough analyses of the factors affecting EFs can aid in the development of appropriate training programs for various social and professional groups, including the military. The purpose of this study was to determine the factors affecting the EFs of cadets (18 women and 108 men) studying at a military academy in Poland after the first and second terms of military training, and to investigate gender differences in the level of EFs, shooting performance (SP), and components of physical fitness (PF). The Neuropsychological Color Trails Test (CTT-2) was used to determine some of the EFs of the test subjects. Meanwhile, the level of SP was represented by the score achieved during marksmanship training implemented during military training. Assessment of the subjects' PF was guided by the principles of the Health-Related Fitness assessment concept, i.e., health-related fitness. Differences between men and women in specific variables were calculated using the Mann-Whitney U test for independent samples, whilst the relationship between variables was analyzed using the best subset regression method. The results revealed that cadets' EFs were influenced by their SP and their level of strength. However, there were no significant differences between male and female cadets in the levels of EFs or SP.
Collapse
Affiliation(s)
- Grzegorz Zurek
- Department of Biostructure, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Dariusz Lenart
- Department of Physical Education and Sport, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland
| | - Maciej Lachowicz
- Department of Biostructure, Wroclaw University of Health and Sport Sciences, 51-612 Wroclaw, Poland
| | - Krzysztof Zebrowski
- Department of Physical Education and Sport, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland
| | - Dariusz Jamro
- Department of Physical Education and Sport, General Tadeusz Kosciuszko Military University of Land Forces, 51-147 Wroclaw, Poland
| |
Collapse
|
8
|
Hadley JB, Kelher MR, Coleman JR, Kelly KK, Dumont LJ, Esparza O, Banerjee A, Cohen MJ, Jones K, Silliman CC. Hormones, age, and sex affect platelet responsiveness in vitro. Transfusion 2022; 62:1882-1893. [PMID: 35929193 PMCID: PMC9464702 DOI: 10.1111/trf.17054] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Female sex confers a survival advantage following severe injury in the setting of trauma-induced coagulopathy, with female platelets having heightened responsiveness likely due to estrogen. The effects of testosterone on platelet biology are unknown, and platelets express both estradiol and androgen receptors on the plasma membrane. We hypothesize testosterone decreases platelet responses in vitro, and there are baseline differences in platelet function and metabolism stratified by sex/age. STUDY DESIGN AND METHODS Apheresis platelets were collected from: older males (OM) ≥45 years, younger males (YM) <45 years, older females (OF) ≥54 years, and younger females (YF) <54 years, and testosterone and estradiol were measured. Platelets were incubated with testosterone (5.31 ng/ml), estradiol (105 pg/ml) or vehicle and stimulated with buffer, adenosine diphosphate (20 μM), platelet activating factor (2 μM), or thrombin (0.3 U/ml). Aggregation, CD62P surface expression, fibrinogen receptor surface expression, and platelet mitochondrial metabolism were measured. RESULTS Testosterone significantly inhibited aggregation in OF and OM (p < .05), inhibited CD41a expression in YF, YM, and OM (p < .05), and affected a few of the baseline amounts of CD62P surface expression but not platelet activation to platelet-activating factor and adenosine diphosphate, and variably changed platelet metabolism. DISCUSSION Platelets have sex- and age-specific aggregation, receptor expression, and metabolism. Testosterone decreases platelet function dependent on the stimulus, age, and sex. Similarly, platelet metabolism has varying responses to sex hormones with baseline metabolic differences dependent upon sex and age.
Collapse
Affiliation(s)
- Jamie B Hadley
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Marguerite R Kelher
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Julia R Coleman
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | | | - Larry J Dumont
- Vitalant Research Institute, Denver, Colorado, USA
- The Department of Pathology School of Medicine, University of Colorado Denver, Aurora, Colorado, USA
| | - Orlando Esparza
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| | - Anirban Banerjee
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Mitchell J Cohen
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
| | - Kenneth Jones
- Department of Biostatistics, University of Oklahoma School of Medicine, Oklahoma City, Oklahoma, USA
| | - Christopher C Silliman
- The Department of Surgery, University of Colorado Denver, Aurora, Colorado, USA
- The Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
- Vitalant Research Institute, Denver, Colorado, USA
| |
Collapse
|
9
|
Herbert D, Salinas I, Oltz EM. The Importance of Diversity in Immunology. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:191-193. [PMID: 35017206 DOI: 10.4049/jimmunol.2190025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
|
10
|
Wasén C, Simonsen E, Ekwudo MN, Profant MR, Cox LM. The emerging role of the microbiome in Alzheimer's disease. MICROBIOME IN NEUROLOGICAL DISEASE 2022; 167:101-139. [PMID: 36427953 PMCID: PMC10170863 DOI: 10.1016/bs.irn.2022.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia and can be influenced by genetic and environmental factors. Recent studies suggest that the intestinal microbiota is altered in AD patients when compared to healthy individuals and may play a role in disease onset and progression. Aging is the greatest risk factor for AD, and age-related changes in the microbiota can affect processes that contribute to cognitive decline. The microbiota may affect AD by modulating peripheral and central immunity or by secreting factors that influence neurogenesis or neuronal cell death. Finally, probiotic and dietary interventions that target the microbiome may have therapeutic potential to prevent or treat AD.
Collapse
|