1
|
Young ES, Butler JD, Molesworth-Kenyon SJ, Kenyon WJ. Biofilm-Mediated Fragmentation and Degradation of Microcrystalline Cellulose by Cellulomonas flavigena KU (ATCC 53703). Curr Microbiol 2023; 80:200. [PMID: 37129770 DOI: 10.1007/s00284-023-03309-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Cellulomonas flavigena KU (ATCC 53703) produces an extracellular matrix involved in the degradation of microcrystalline cellulose. This extracellular material is primarily composed of the gel-forming, β-1,3-glucan known as curdlan and associated, cellulose-degrading enzymes. In this study, the effects of various forms of nutrient limitation on cellulose attachment, cellular aggregation, curdlan production, and biofilm formation were investigated throughout a 7-day incubation period by using phase-contrast microscopy. Compared to cultures grown in non-limiting media, nitrogen-limitation promoted early attachment of C. flavigena KU cells to the cellulose surface, and cellulose attachment was congruent with cellular aggregation and curdlan production. Over the course of the experiment, microcolonies of attached cells grew into curdlan-producing biofilms on the cellulose. By contrast, bacterial cells grown on cellulose in non-limiting media remained unattached and unaggregated throughout most of the incubation period. By 7 days of incubation, bacterial aggregation was ninefold greater in N-limited cultures compared to nutritionally complete cultures. In a similar way, phosphorus- and vitamin-limitation (i.e., yeast extract-limitation) also resulted in early cellulose attachment and biofilm formation. Furthermore, nutrient limitation promoted more rapid and efficient fragmentation and degradation of cellulose, with cellulose fragments in low-N media averaging half the size of those in high-N media after 7 days. Two modes of cellulose degradation are proposed for C. flavigena KU, a "planktonic mode" and a "biofilm mode". Similar observations have been reported for other curdlan-producing cellulomonads, and these differing cellulose degradation strategies may ultimately prove to reflect sequential stages of a multifaceted biofilm cycle important in the bioconversion of this abundant and renewable natural resource.
Collapse
Affiliation(s)
- Emma S Young
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA
| | - John D Butler
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA
| | - Sara J Molesworth-Kenyon
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA
| | - William J Kenyon
- Biology Program, Department of Natural Sciences, University of West Georgia, Carrollton, GA, 30118, USA.
| |
Collapse
|
2
|
John J A, Samuel MS, Govarthanan M, Selvarajan E. A comprehensive review on strategic study of cellulase producing marine actinobacteria for biofuel applications. ENVIRONMENTAL RESEARCH 2022; 214:114018. [PMID: 35961544 DOI: 10.1016/j.envres.2022.114018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Every year, 180 billion tonnes of cellulose are produced by plants as waste biomass after the cultivation of the desired product. One of the smart and effective ways to utilize this biomass rather than burn it is to utilize the biomass to adequately meet the energy needs with the help of microbial cellulase that can catalytically convert the cellulose into simple sugar units. Marine actinobacteria is one of the plentiful gram-positive bacteria known for its industrial application as it can produce multienzyme cellulase with high thermal tolerance, pH stability and high resistant towards metal ions and salt concentration, along with other antimicrobial properties. Highly stable cellulase obtained from marine actinobacteria will convert the cellulose biomass into glucose, which is the precursor for biofuel production. This review will provide a comprehensive outlook of various strategic applications of cellulase from marine actinobacteria which can facilitate the breakdown of lignocellulosic biomass to bioenergy with respect to its characteristics based on the location/environment that the organism was collected and its screening strategies followed by adopted methodologies to mine the novel cellulase genome and enhance the production, thereby increasing the activity of cellulase continued by effective immobilization on novel substrates for the multiple usage of cellulase along with the industrial applications.
Collapse
Affiliation(s)
- Ashwini John J
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603 203, Tamil Nadu, India
| | - Melvin S Samuel
- Department of Material Science and Engineering, University of Winsconsin-Milwaukee, Milwaukee, WI, USA
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, South Korea; Departrment of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India
| | - Ethiraj Selvarajan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, 603 203, Tamil Nadu, India.
| |
Collapse
|
3
|
Zhang G, Yang J, Lai XH, Jin D, Lu S, Liu L, Cheng Y, Pu J, Yang C, Liu Y, Ye L, Xu J. Cellulomonas dongxiuzhuiae sp. nov., Cellulomonas wangleii sp. nov. and Cellulomonas fengjieae sp. nov., isolated from the intestinal contents of Marmota himalayana. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Six Gram-stain-positive, aerobic or facultative anaerobic, catalase-positive, urease- and oxidase-negative, rod-shaped bacteria (zg-ZUI157T/zg-ZUI40, zg-ZUI222T/zg-ZUI199 and zg-ZUI188T/ zg-ZUI168) were characterized by a polyphasic approach. Optimal growth of the six strains was observed at pH 7.0 and 28 °C. Phylogenetic analyses based on the 16S rRNA gene and 247 core genes revealed that they belong to genus
Cellulomonas
. The three type strains have low digital DNA-DNA hybridization (19.3–30.1%) and average nucleotide identity values (78.0-85.5%) with all available genomes in the genus
Cellulomonas
, and a DNA G+C content range of 73.0-74.6 mol%. The major fatty acids detected in strain pairs zg-ZUI157T/zg-ZUI40 and zg-ZUI 222T/zg-ZUI199 were C16:0, anteiso-C15:0 and anteiso A-C15:1, and C16:0, anteiso-C15:0, anteiso A-C15:1 and anteiso-C17:0 in strain pair zg-ZUI188T/zg-ZUI168. Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylinositol mannosides were the major polar lipids detected in the three novel species. MK-9(H4) was the predominant quinone detected in strains zg-ZUI222T (87.4 %) and zg-ZUI188T (91.4 %), and MK-9(H4) (49.1 %) and MK-8 (43.4 %) in strain zg-ZUI157T. The cell-wall sugars detected in the three novel species mainly contained rhamnose. The cell-wall peptidoglycan type of the three novel species was A4β, with an inferred l-Orn–d-Asp interpeptide bridge for strains zg-ZUI157T and zg-ZUI222T, and l-Orn–d-Glu for strain zg-ZUI188T. Based on the results of the phenotypic, phylogenetic, genomic hybridization, average nucleotide identity and chemotaxonomic analyses, the six strains should be classified as belonging to three novel
Cellulomonas
species, for which the names Cellulomonas dongxiuzhuiae sp. nov. (zg-ZUI157T=GDMCC 1.2559T=KCTC 49678T), Cellulomonas wangleii sp. nov. (zg-ZUI222T=GDMCC 1.2501T=KCTC 49675T) and Cellulomonas fengjieae sp. nov. (zg-ZUI188T=GDMCC 1.2563T=KCTC 49674T) are proposed.
Collapse
Affiliation(s)
- Gui Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xin-He Lai
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Chemo/Biosensing and Early Diagnosis of Major Diseases, Shangqiu Normal University, Shangqiu 476000, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liyun Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yanpeng Cheng
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Yue Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Lin Ye
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jianguo Xu
- Institute of Public Health, Nankai University, Tianjin 300071, PR China
- Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| |
Collapse
|
4
|
Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Cellulomonas Species. Appl Environ Microbiol 2022; 88:e0096822. [PMID: 35862679 PMCID: PMC9361826 DOI: 10.1128/aem.00968-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cellulomonas flavigena is a saprotrophic bacterium that encodes, within its genome, four predicted lytic polysaccharide monooxygenases (LPMOs) from Auxiliary Activity family 10 (AA10). We showed previously that three of these cleave the plant polysaccharide cellulose by oxidation at carbon-1 (J. Li, L. Solhi, E.D. Goddard-Borger, Y. Mattieu et al., Biotechnol Biofuels 14:29, 2021, https://doi.org/10.1186/s13068-020-01860-3). Here, we present the biochemical characterization of the fourth C. flavigena AA10 member (CflaLPMO10D) as a chitin-active LPMO. Both the full-length CflaLPMO10D-Carbohydrate-Binding Module family 2 (CBM2) and catalytic module-only proteins were produced in Escherichia coli using the native general secretory (Sec) signal peptide. To quantify chitinolytic activity, we developed a high-performance anion-exchange chromatography-pulsed amperometric detection (HPAEC-PAD) method as an alternative to the established hydrophilic interaction liquid ion chromatography coupled with UV detection (HILIC-UV) method for separation and detection of released oxidized chito-oligosaccharides. Using this method, we demonstrated that CflaLPMO10D is strictly active on the β-allomorph of chitin, with optimal activity at pH 5 to 6 and a preference for ascorbic acid as the reducing agent. We also demonstrated the importance of the CBM2 member for both mediating enzyme localization to substrates and prolonging LPMO activity. Together with previous work, the present study defines the distinct substrate specificities of the suite of C. flavigena AA10 members. Notably, a cross-genome survey of AA10 members indicated that chitinolytic LPMOs are, in fact, rare among Cellulomonas bacteria. IMPORTANCE Species from the genus Cellulomonas have a long history of study due to their roles in biomass recycling in nature and corresponding potential as sources of enzymes for biotechnological applications. Although Cellulomonas species are more commonly associated with the cleavage and utilization of plant cell wall polysaccharides, here, we show that C. flavigena produces a unique lytic polysaccharide monooxygenase with activity on β-chitin, which is found, for example, in arthropods. The limited distribution of orthologous chitinolytic LPMOs suggests adaptation of individual cellulomonads to specific nutrient niches present in soil ecosystems. This research provides new insight into the biochemical specificity of LPMOs in Cellulomonas species and related bacteria, and it raises new questions about the physiological function of these enzymes.
Collapse
|
5
|
Struckmann Poulsen J, de Jonge N, Vieira Macêdo W, Rask Dalby F, Feilberg A, Lund Nielsen J. Characterisation of cellulose-degrading organisms in an anaerobic digester. BIORESOURCE TECHNOLOGY 2022; 351:126933. [PMID: 35247567 DOI: 10.1016/j.biortech.2022.126933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
The recalcitrant nature of lignocellulosic biomass hinders efficient exploitation of this fraction for energy production. A better understanding of the microorganisms able to convert plant-based feedstocks is needed to improve anaerobic digestion of lignocellulosic biomass. In this study, active thermophilic cellulose-degrading microorganisms were identified from a full-scale anaerobic digester fed with maize by using metagenome-resolved protein stable isotope probing (protein-SIP). 13C-cellulose was converted into 13C-methane with a 13/12C isotope ratio of 0.127 after two days of incubation. Metagenomic analysis revealed 238 different genes coding for carbohydrate-active enzymes (CAZymes), six of which were directly associated with cellulose degradation. The protein-SIP analysis identified twenty heavily labelled peptides deriving from microorganisms actively assimilating labelled carbon from the degradation of 13C-cellulose, highlighting several members of the order Clostridiales. Corynebacterium was identified through CAZyme screening, amplicon analysis, and in the metagenome giving a strong identification of being a cellulose degrader.
Collapse
Affiliation(s)
- Jan Struckmann Poulsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Nadieh de Jonge
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Williane Vieira Macêdo
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark
| | - Frederik Rask Dalby
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Anders Feilberg
- Department of Biological and Chemical Engineering, Aarhus University, Finlandsgade 12, 8200 Aarhus N, Denmark
| | - Jeppe Lund Nielsen
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg E, Denmark.
| |
Collapse
|
6
|
Leonel TF, Pepe ESG, Castellane TCL, Vantini JDS, Funnicelli MIG, Lemos EGDM. Bagasse minority pathway expression: Real time study of GH2 β-mannosidases from bacteroidetes. PLoS One 2021; 16:e0247822. [PMID: 33730062 PMCID: PMC7968711 DOI: 10.1371/journal.pone.0247822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/15/2021] [Indexed: 12/13/2022] Open
Abstract
After being isolated from a sugarcane pile, the bacterium Chitinophaga sp. CB10 demonstrated to be a rich source of carbohydrases, with 350 predicted CAZyme domains. CB10 was able to grow on carbohydrates of different structural complexities: glucose, carboxymethylcellulose, corn starch, galactomannan, Aloe vera gum and sugarcane bagasse. The sugarcane bagasse is a rich source of complex polymers, and the diversity of metabolites released by its enzymatic hydrolysis has an important role for green chemistry, including minority pathways such as the degradation of mannan conjugates. In this sense, CB10 demonstrated considerable levels of gene expression for mannanases, and was stable for a period of 96-144 hours in the presence of sugarcane bagasse as sole carbon source. The bacterium showed respectively 4.8x and 5.6x expression levels for two genes predicted for GH2 β-mannosidase: one located within a gene cluster identified as "polysaccharide utilization loci" (PUL), and another a classic β-mannosidase. These enzymes shared less than 45% of identity with enzymes characterized from the genus Chitinophaga belonging to the phylum Bacteroidetes. The degree of novelty-as demonstrated by the low identity with previously characterized enzymes; the remarkable capability to grow in different substrates; mannanase activity, evidenced by the release of residual oligosaccharides in the cultivation with galactomannan (HPLC-RID, 12.3 mMol); associated to the ability of mannanases expression in a low concentration of inductor conditions (sugarcane bagasse, 0.2%) indicate the high potential for the application of CB10 as a source of enzymes in the production of oligosaccharides from biomass. This capacity might prove to be very valuable for the biorefinery process of pre-biotic precursors and other functional oligosaccharides focused on the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Tatiane Fernanda Leonel
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Technology, Laboratory of Biochemistry and Plant Microorganisms, Jaboticabal, São Paulo, Brazil
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Elisângela Soares Gomes Pepe
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Technology, Laboratory of Biochemistry and Plant Microorganisms, Jaboticabal, São Paulo, Brazil
| | - Tereza Cristina Luque Castellane
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Technology, Laboratory of Biochemistry and Plant Microorganisms, Jaboticabal, São Paulo, Brazil
| | - Juliana da Silva Vantini
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Technology, Laboratory of Biochemistry and Plant Microorganisms, Jaboticabal, São Paulo, Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Technology, Laboratory of Biochemistry and Plant Microorganisms, Jaboticabal, São Paulo, Brazil
- Graduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
| | - Eliana Gertrudes de Macedo Lemos
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, SP, Brazil
- Department of Technology, Laboratory of Biochemistry and Plant Microorganisms, Jaboticabal, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Li J, Solhi L, Goddard-Borger ED, Mathieu Y, Wakarchuk WW, Withers SG, Brumer H. Four cellulose-active lytic polysaccharide monooxygenases from Cellulomonas species. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:29. [PMID: 33485381 PMCID: PMC7828015 DOI: 10.1186/s13068-020-01860-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/13/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The discovery of lytic polysaccharide monooxygenases (LPMOs) has fundamentally changed our understanding of microbial lignocellulose degradation. Cellulomonas bacteria have a rich history of study due to their ability to degrade recalcitrant cellulose, yet little is known about the predicted LPMOs that they encode from Auxiliary Activity Family 10 (AA10). RESULTS Here, we present the comprehensive biochemical characterization of three AA10 LPMOs from Cellulomonas flavigena (CflaLPMO10A, CflaLPMO10B, and CflaLPMO10C) and one LPMO from Cellulomonas fimi (CfiLPMO10). We demonstrate that these four enzymes oxidize insoluble cellulose with C1 regioselectivity and show a preference for substrates with high surface area. In addition, CflaLPMO10B, CflaLPMO10C, and CfiLPMO10 exhibit limited capacity to perform mixed C1/C4 regioselective oxidative cleavage. Thermostability analysis indicates that these LPMOs can refold spontaneously following denaturation dependent on the presence of copper coordination. Scanning and transmission electron microscopy revealed substrate-specific surface and structural morphological changes following LPMO action on Avicel and phosphoric acid-swollen cellulose (PASC). Further, we demonstrate that the LPMOs encoded by Cellulomonas flavigena exhibit synergy in cellulose degradation, which is due in part to decreased autoinactivation. CONCLUSIONS Together, these results advance understanding of the cellulose utilization machinery of historically important Cellulomonas species beyond hydrolytic enzymes to include lytic cleavage. This work also contributes to the broader mapping of enzyme activity in Auxiliary Activity Family 10 and provides new biocatalysts for potential applications in biomass modification.
Collapse
Affiliation(s)
- James Li
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Laleh Solhi
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ethan D Goddard-Borger
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Warren W Wakarchuk
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Stephen G Withers
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- Department of Botany, University of British Columbia, 3200 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
8
|
Tian Z, Lu S, Jin D, Yang J, Pu J, Lai XH, Ren ZH, Wu XM, Li J, Wang S, Xu J. Cellulomonas shaoxiangyii sp. nov., isolated from faeces of Tibetan antelope ( Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2020; 70:2204-2210. [PMID: 32038002 DOI: 10.1099/ijsem.0.003939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two Gram-stain-positive, catalase-positive and oxidase-negative, aerobic, non-motile, cellobiose-utilizing, short-rod-shaped strains (Z28T and Z29) were isolated from faeces of Tibetan antelope (Pantholops hodgsonii) collected on the Qinghai-Tibet Plateau. Strain Z28T shared 98.1, 98.0, 97.8 and 97.4 % 16S rRNA gene similarity, 24.1, 22.8, 23.2 and 26.3 % digital DNA-DNA hybridization relatedness and 80.8, 80.0, 80.7 and 80.9 % average nucleotide identity values with Cellulomonas oligotrophica DSM 24482T, Cellulomonas flavigena DSM 20109T, Cellulomonas iranensis DSM 14785T and Cellulomonas terrae JCM 14899T, respectively. Results from further phylogenetic analyses based on the 16S rRNA gene and 148 core genes indicated that strains Z28T and Z29 were closest to C. oligotrophica DSM 24482T and C. flavigena DSM 20109T, but clearly separated from the currently recognized species of the genus Cellulomonas. The genomic DNA G+C content of strain Z28T was 75.3 mol%. The major cellular fatty acids were anteiso-C15 : 0, anteiso-C15 : 1 A, C16 : 0 and anteiso-C17 : 0. Ribose and mannose were detected as the whole-cell sugars. The major respiratory quinone was MK-9(H4) and ornithine was the diamino acid of the cell wall. The polar lipids present in strain Z28T were phosphatidylethanolamine, five phospholipids, two aminophospholipids, aminolipid and three unidentified lipids. Comparison of phenotypic and phylogenetic features between the two strains and the related organisms revealed that Z28T and Z29 represent a novel species of the genus Cellulomonas, for which the name Cellulomonas shaoxiangyii sp. nov. is proposed. The type strain is Z28T (=CGMCC 1.16477T=DSM 106200T).
Collapse
Affiliation(s)
- Zhi Tian
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Shan Lu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Dong Jin
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Jing Yang
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Ji Pu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xin-He Lai
- School of Biology and Food Sciences, Shangqiu Normal University, Shangqiu, Henan 476000, PR China
| | - Zhi-Hong Ren
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| | - Xiao-Min Wu
- Shaanxi Institute of Zoology, Xi'an, Shanxi 710032, PR China
| | - Junqin Li
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Suping Wang
- Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China
| | - Jianguo Xu
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing, PR China.,Department of Epidemiology, Shanxi Medical University School of Public Health, Taiyuan, Shanxi 030001, PR China.,Shanghai Institute for Emerging and Re-emerging Infectious Diseases, Shanghai Public Health Clinical Center, Shanghai 201508, PR China.,State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing 102206, PR China
| |
Collapse
|
9
|
Yamamura H, Hayashi T, Hamada M, Kohda T, Serisawa Y, Matsuyama-Serisawa K, Nakagawa Y, Otoguro M, Yanagida F, Tamura T, Hayakawa M. Cellulomonas algicola sp. nov., an actinobacterium isolated from a freshwater alga. Int J Syst Evol Microbiol 2019; 69:2723-2728. [PMID: 31232683 DOI: 10.1099/ijsem.0.003549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An actinomycete strain, TKZ-21T, was isolated from a freshwater alga (Chetophoraceae) collected from the Takizawa River, Yamanashi, Japan, and examined using a polyphasic taxonomic approach. Cells were Gram-stain positive, aerobic, non-sporulating, motile, and coccoid or short rod-shaped. The strain grew in the presence of 0-4 % (w/v) NaCl, between pH 6-9.4, and over a temperature range of 15-40 °C, with optimum growth at 30 °C. The peptidoglycan type of strain TKZ-21T was A4β, containing l-ornithine as diagnostic diamino acid and d-glutamic acid as the interpeptide bridge. The predominant menaquinone was MK-9(H4). The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, ninhydrin-positive glycolipid, and unidentified phospholipids. The major cellular fatty acids were anteiso-C15 : 0 and anteiso-C17 : 0, and the DNA G+C content was 75.6 mol%. On the basis of 16S rRNA gene sequence analysis, strain TKZ-21T was closely related to Cellulomonas fimi (98.5 % sequence similarity) and Cellulomonas biazotea (98.3 %). The genome orthoANI value between strain TKZ-21T and C. biazotea and C. fimi were 84.7 and 84.2 %, respectively. On the basis of fatty acid and MALDI-TOF MS profile analysis, phylogenetic analyses, genomic analysis, and phenotypic data, it is proposed that the isolate be classified as a representative of a novel species of the genus Cellulomonas, with the name Cellulomonas algicola sp. nov. The type strain is TKZ-21T (=NBRC 112905T=TBRC 8129T).
Collapse
Affiliation(s)
- Hideki Yamamura
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | - Takuma Hayashi
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | - Moriyuki Hamada
- NITE Biological Resource Center, National Institute of Technology and Evaluation, Kazusakamatari 2-5-8, Kisarazu, Chiba 292-0818, Japan
| | - Takashi Kohda
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | - Yukihiko Serisawa
- Graduate School of Education, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | | | - Youji Nakagawa
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | - Misa Otoguro
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | - Fujitoshi Yanagida
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| | - Tomohiko Tamura
- NITE Biological Resource Center, National Institute of Technology and Evaluation, Kazusakamatari 2-5-8, Kisarazu, Chiba 292-0818, Japan
| | - Masayuki Hayakawa
- Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Takeda-4-3-11, Kofu 400-8511, Japan
| |
Collapse
|
10
|
Takenaka M, Lee JM, Kahar P, Ogino C, Kondo A. Efficient and Supplementary Enzyme Cocktail from Actinobacteria and Plant Biomass Induction. Biotechnol J 2018; 14:e1700744. [PMID: 29981210 DOI: 10.1002/biot.201700744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/28/2018] [Indexed: 11/08/2022]
Abstract
Actinobacteria plays a key role in the cycling of organic matter in soils. They secret biomass-degrading enzymes that allow it to produce the unique metabolites that originate in plant biomass. Although past studies have focused on these unique metabolites, a large-scale screening of Actinobacteria is yet to be reported to focus on their biomass-degrading ability. In the present study, a rapid and simple method is constructed for a large-scale screening, and the novel resources that form the plant biomass-degrading enzyme cocktail are identified from 850 isolates of Actinobacteria. As a result, Nonomuraea fastidiosa secretes a biomass degrading enzyme cocktail with the highest enzyme titer, although cellulase activities are lower than a commercially available enzyme. So the rich accessory enzymes are suggested to contribute to the high enzyme titer for a pretreated bagasse with a synergistic effect. Additionally, an optimized cultivation method of biomass induction caused to produce the improved enzyme cocktail indicated strong enzyme titers and a strong synergistic effect. Therefore, the novel enzyme cocktails are selected via the optimized method for large-scale screening, and then the enzyme cocktail can be improved via the optimized production with biomass-induction.
Collapse
Affiliation(s)
- Musashi Takenaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Jae M Lee
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Rokkodaicho 1-1, 657-8501 Kobe, Japan
| |
Collapse
|
11
|
Characterisation of novel biomass degradation enzymes from the genome of Cellulomonas fimi. Enzyme Microb Technol 2018; 113:9-17. [PMID: 29602392 PMCID: PMC5892457 DOI: 10.1016/j.enzmictec.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/11/2017] [Accepted: 02/12/2018] [Indexed: 01/06/2023]
Abstract
Identified over 90 putative polysaccharide degrading ORFs in C. fimi genome. Cloned 14 putative cellulolytic ORFs as BioBricks, screened them for activity. Partially purified AfsB, BxyF, BxyH and XynF and characterised them further. BxyH proved highly temperature and alkaline pH tolerant. BioBricks are an easy method for screening genes for specific activities.
Recent analyses of genome sequences belonging to cellulolytic bacteria have revealed many genes potentially coding for cellulosic biomass degradation enzymes. Annotation of these genes however, is based on few biochemically characterised examples. Here we present a simple strategy based on BioBricks for the rapid screening of candidate genes expressed in Escherichia coli. As proof of principle we identified over 70 putative biomass degrading genes from bacterium Cellulomonas fimi, expressing a subset of these in BioBrick format. Six novel genes showed activity in E. coli. Four interesting enzymes were characterised further. α-l-arabinofuranosidase AfsB, β-xylosidases BxyF and BxyH and multi-functional β-cellobiosidase/xylosidase XynF were partially purified to determine their optimum pH, temperature and kinetic parameters. One of these enzymes, BxyH, was unexpectedly found to be highly active at strong alkaline pH and at temperatures as high as 100 °C. This report demonstrates a simple method of quickly screening and characterising putative genes as BioBricks.
Collapse
|
12
|
Cloning and characterization of two novel β-glucosidase genes encoding isoenzymes of the cellobiase complex from Cellulomonas biazotea. Gene 2018; 642:367-375. [DOI: 10.1016/j.gene.2017.11.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/31/2017] [Accepted: 11/15/2017] [Indexed: 11/21/2022]
|
13
|
Lisov AV, Belova OV, Lisova ZA, Vinokurova NG, Nagel AS, Andreeva-Kovalevskaya ZI, Budarina ZI, Nagornykh MO, Zakharova MV, Shadrin AM, Solonin AS, Leontievsky AA. Xylanases of Cellulomonas flavigena: expression, biochemical characterization, and biotechnological potential. AMB Express 2017; 7:5. [PMID: 28050845 PMCID: PMC5209306 DOI: 10.1186/s13568-016-0308-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/10/2022] Open
Abstract
Four xylanases of Cellulomonas flavigena were cloned, expressed in Escherichia coli and purified. Three enzymes (CFXyl1, CFXyl2, and CFXyl4) were from the GH10 family, while CFXyl3 was from the GH11 family. The enzymes possessed moderate temperature stability and a neutral pH optimum. The enzymes were more stable at alkaline pH values. CFXyl1 and CFXyl2 hydrolyzed xylan to form xylobiose, xylotriose, xylohexaose, xylopentaose, and xylose, which is typical for GH10. CFXyl3 (GH11) and CFXyl4 (GH10) formed the same xylooligosaccharides, but xylose was formed in small amounts. The xylanases made efficient saccharification of rye, wheat and oat, common components of animal feed, which indicates their high biotechnological potential.
Collapse
|
14
|
Saxena H, Hsu B, de Asis M, Zierke M, Sim L, Withers SG, Wakarchuk W. Characterization of a thermostable endoglucanase from Cellulomonas fimi ATCC484. Biochem Cell Biol 2017; 96:68-76. [PMID: 28982013 DOI: 10.1139/bcb-2017-0150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Bacteria in the genus Cellulomonas are well known as secretors of a variety of mesophilic carbohydrate degrading enzymes (e.g., cellulases and hemicellulases), active against plant cell wall polysaccharides. Recent proteomic analysis of the mesophilic bacterium Cellulomonas fimi ATCC484 revealed uncharacterized enzymes for the hydrolysis of plant cell wall biomass. Celf_1230 (CfCel6C), a secreted protein of Cellulomonas fimi ATCC484, is a novel member of the GH6 family of cellulases that could be successfully expressed in Escherichia coli. This enzyme displayed very little enzymatic/hydrolytic activity at 30 °C, but showed an optimal activity around 65 °C, and exhibited a thermal denaturation temperature of 74 °C. In addition, it also strongly bound to filter paper despite having no recognizable carbohydrate binding module. Our experiments show that CfCel6C is a thermostable endoglucanase with activity on a variety of β-glucans produced by an organism that struggles to grow above 30 °C.
Collapse
Affiliation(s)
- Hirak Saxena
- a Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Bryan Hsu
- a Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Marc de Asis
- a Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - Mirko Zierke
- b Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Lyann Sim
- b Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Stephen G Withers
- b Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Warren Wakarchuk
- a Department of Chemistry and Biology, Ryerson University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
15
|
Aravind P, Subramanyan V, Ferro S, Gopalakrishnan R. Eco-friendly and facile integrated biological-cum-photo assisted electrooxidation process for degradation of textile wastewater. WATER RESEARCH 2016; 93:230-241. [PMID: 26921849 DOI: 10.1016/j.watres.2016.02.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/11/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
The present article reports an integrated treatment method viz biodegradation followed by photo-assisted electrooxidation, as a new approach, for the abatement of textile wastewater. In the first stage of the integrated treatment scheme, the chemical oxygen demand (COD) of the real textile effluent was reduced by a biodegradation process using hydrogels of cellulose-degrading Bacillus cereus. The bio-treated effluent was then subjected to the second stage of the integrated scheme viz indirect electrooxidation (InDEO) as well as photo-assisted indirect electro oxidation (P-InDEO) process using Ti/IrO2-RuO2-TiO2 and Ti as electrodes and applying a current density of 20 mA cm(-2). The influence of cellulose in InDEO has been reported here, for the first time. UV-Visible light of 280-800 nm has been irradiated toward the anode/electrolyte interface in P-InDEO. The effectiveness of this combined treatment process in textile effluent degradation has been probed by chemical oxygen demand (COD) measurements and (1)H - nuclear magnetic resonance spectroscopy (NMR). The obtained results indicate that the biological treatment allows obtaining a 93% of cellulose degradation and 47% of COD removal, increasing the efficiency of the subsequent InDEO by a 33%. In silico molecular docking analysis ascertained that cellulose fibers affect the InDEO process by interacting with the dyes that are responsible of the COD. On the other hand, P-InDEO resulted in both 95% of decolorization and 68% of COD removal, as a result of radical mediators. Free radicals generated during P-InDEO were characterized as oxychloride (OCl) by electron paramagnetic resonance spectroscopy (EPR). This form of coupled approach is especially suggested for the treatment of textile wastewater containing cellulose.
Collapse
Affiliation(s)
- Priyadharshini Aravind
- Corrosion and Material Protection Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India.
| | - Vasudevan Subramanyan
- Electro-inorganic Chemicals Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India
| | - Sergio Ferro
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Rajagopal Gopalakrishnan
- Chlor-alkali Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi 630 003, India
| |
Collapse
|
16
|
Zhuang W, Zhang S, Xia X, Wang G. Draft genome sequence of Cellulomonas carbonis T26(T) and comparative analysis of six Cellulomonas genomes. Stand Genomic Sci 2015; 10:104. [PMID: 26587181 PMCID: PMC4652355 DOI: 10.1186/s40793-015-0096-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 11/09/2015] [Indexed: 11/28/2022] Open
Abstract
Most Cellulomonas strains are cellulolytic and this feature may be applied in straw degradation and bioremediation. In this study, Cellulomonas carbonis T26T, Cellulomonas bogoriensis DSM 16987T and Cellulomonas cellasea 20108T were sequenced. Here we described the draft genomic information of C. carbonis T26T and compared it to the related Cellulomonas genomes. Strain T26T has a 3,990,666 bp genome size with a G + C content of 73.4 %, containing 3418 protein-coding genes and 59 RNA genes. The results showed good correlation between the genotypes and the physiological phenotypes. The information are useful for the better application of the Cellulomonas strains.
Collapse
Affiliation(s)
- Weiping Zhuang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Shengzhe Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| |
Collapse
|
17
|
Yang Y, Zhang L, Guo M, Sun J, Matsukawa S, Xie J, Wei D. Novel α-L-arabinofuranosidase from Cellulomonas fimi ATCC 484 and its substrate-specificity analysis with the aid of computer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:3725-33. [PMID: 25797391 DOI: 10.1021/jf5059683] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In the process of gene mining for novel α-L-arabinofuranosidases (AFs), the gene Celf_3321 from Cellulomonas fimi ATCC 484 encodes an AF, termed as AbfCelf, with potent activity, 19.4 U/mg under the optimum condition, pH 6.0 and 40 °C. AbfCelf can hydrolyze α-1,5-linked oligosaccharides, sugar beet arabinan, linear 1,5-α-arabinan, and wheat flour arabinoxylan, which is partly different from some previously well-characterized GH 51 AFs. The traditional substrate-specificity analysis for AFs is labor-consuming and money costing, because the substrates include over 30 kinds of various 4-nitrophenol (PNP)-glycosides, oligosaccharides, and polysaccharides. Hence, a preliminary structure and mechanism based method was applied for substrate-specificity analysis. The binding energy (ΔG, kcal/mol) obtained by docking suggested the reaction possibility and coincided with the experimental results. AbfA crystal 1QW9 was used to test the rationality of docking method in simulating the interaction between enzyme and substrate, as well the credibility of the substrate-specificity analysis method in silico.
Collapse
Affiliation(s)
- Ying Yang
- †State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Lujia Zhang
- †State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Mingrong Guo
- †State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Jiaqi Sun
- †State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Shingo Matsukawa
- §Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Jingli Xie
- †State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- ‡Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, People's Republic of China
| | - Dongzhi Wei
- †State Key Laboratory of Bioreactor Engineering, Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- ‡Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, People's Republic of China
| |
Collapse
|
18
|
Li Y, Chen F, Dong K, Wang G. Actinotalea
ferrariae sp. nov., isolated from an iron mine, and emended description of the genus
Actinotalea. Int J Syst Evol Microbiol 2013; 63:3398-3403. [DOI: 10.1099/ijs.0.048512-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-positive, aerobic, non-motile, rod-shaped bacterium, designated strain CF5-4T, was isolated from iron mining powder. 16S rRNA gene sequence analysis grouped strain CF5-4T in a single cluster with
Actinotalea fermentans
DSM 3133T (97.6 % similarity). The major fatty acids (>5 %) of strain CF5-4T were anteiso-C15 : 0, anteiso-C15 : 1 A, C16 : 0, iso-C16 : 0, iso-C15 : 0 and anteiso-C17 : 0. The predominant respiratory quinone was MK-10(H4) and the genomic DNA G+C content was 74.7 mol%. The major polar lipids were diphosphatidylglycerol and one unidentified phosphoglycolipid. The peptidoglycan type of strain CF5-4T was A4β, containing l-Orn–d-Ser–d-Asp. The cell-wall sugars were rhamnose, fucose, mannose and galactose. The results of DNA–DNA hybridization in combination with the comparison of phenotypic and phylogenetic characteristics among strain CF5-4T and related micro-organisms revealed that the isolate represents a novel species of the genus
Actinotalea
, for which the name
Actinotalea
ferrariae sp. nov. is proposed. The type strain is CF5-4T ( = KCTC 29134T = CCTCC AB2012198T).
Collapse
Affiliation(s)
- Yanzhi Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Fang Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Kun Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| |
Collapse
|
19
|
The genome sequences of Cellulomonas fimi and "Cellvibrio gilvus" reveal the cellulolytic strategies of two facultative anaerobes, transfer of "Cellvibrio gilvus" to the genus Cellulomonas, and proposal of Cellulomonas gilvus sp. nov. PLoS One 2013; 8:e53954. [PMID: 23342046 PMCID: PMC3544764 DOI: 10.1371/journal.pone.0053954] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 12/04/2012] [Indexed: 11/19/2022] Open
Abstract
Actinobacteria in the genus Cellulomonas are the only known and reported cellulolytic facultative anaerobes. To better understand the cellulolytic strategy employed by these bacteria, we sequenced the genome of the Cellulomonas fimi ATCC 484(T). For comparative purposes, we also sequenced the genome of the aerobic cellulolytic "Cellvibrio gilvus" ATCC 13127(T). An initial analysis of these genomes using phylogenetic and whole-genome comparison revealed that "Cellvibrio gilvus" belongs to the genus Cellulomonas. We thus propose to assign "Cellvibrio gilvus" to the genus Cellulomonas. A comparative genomics analysis between these two Cellulomonas genome sequences and the recently completed genome for Cellulomonas flavigena ATCC 482(T) showed that these cellulomonads do not encode cellulosomes but appear to degrade cellulose by secreting multi-domain glycoside hydrolases. Despite the minimal number of carbohydrate-active enzymes encoded by these genomes, as compared to other known cellulolytic organisms, these bacteria were found to be proficient at degrading and utilizing a diverse set of carbohydrates, including crystalline cellulose. Moreover, they also encode for proteins required for the fermentation of hexose and xylose sugars into products such as ethanol. Finally, we found relatively few significant differences between the predicted carbohydrate-active enzymes encoded by these Cellulomonas genomes, in contrast to previous studies reporting differences in physiological approaches for carbohydrate degradation. Our sequencing and analysis of these genomes sheds light onto the mechanism through which these facultative anaerobes degrade cellulose, suggesting that the sequenced cellulomonads use secreted, multidomain enzymes to degrade cellulose in a way that is distinct from known anaerobic cellulolytic strategies.
Collapse
|
20
|
Lagier JC, Ramasamy D, Rivet R, Raoult D, Fournier PE. Non contiguous-finished genome sequence and description of Cellulomonas massiliensis sp. nov. Stand Genomic Sci 2012; 7:258-70. [PMID: 23408774 PMCID: PMC3569388 DOI: 10.4056/sigs.3316719] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cellulomonas massiliensis strain JC225T sp. nov. is the type strain of Cellulomonas massiliensis sp., a new species within the genus Cellulomonas. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. C. massiliensis is an aerobic rod-shaped bacterium. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,407,283 bp long genome contains 3,083 protein-coding and 48 RNA genes.
Collapse
|
21
|
Anderson I, Abt B, Lykidis A, Klenk HP, Kyrpides N, Ivanova N. Genomics of aerobic cellulose utilization systems in actinobacteria. PLoS One 2012; 7:e39331. [PMID: 22723998 PMCID: PMC3377646 DOI: 10.1371/journal.pone.0039331] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/23/2012] [Indexed: 11/22/2022] Open
Abstract
Cellulose degrading enzymes have important functions in the biotechnology industry, including the production of biofuels from lignocellulosic biomass. Anaerobes including Clostridium species organize cellulases and other glycosyl hydrolases into large complexes known as cellulosomes. In contrast, aerobic actinobacteria utilize systems comprised of independently acting enzymes, often with carbohydrate binding domains. Numerous actinobacterial genomes have become available through the Genomic Encyclopedia of Bacteria and Archaea (GEBA) project. We identified putative cellulose-degrading enzymes belonging to families GH5, GH6, GH8, GH9, GH12, GH48, and GH51 in the genomes of eleven members of the actinobacteria. The eleven organisms were tested in several assays for cellulose degradation, and eight of the organisms showed evidence of cellulase activity. The three with the highest cellulase activity were Actinosynnema mirum, Cellulomonas flavigena, and Xylanimonas cellulosilytica. Cellobiose is known to induce cellulolytic enzymes in the model organism Thermobifida fusca, but only Nocardiopsis dassonvillei showed higher cellulolytic activity in the presence of cellobiose. In T. fusca, cellulases and a putative cellobiose ABC transporter are regulated by the transcriptional regulator CelR. Nine organisms appear to use the CelR site or a closely related binding site to regulate an ABC transporter. In some, CelR also regulates cellulases, while cellulases are controlled by different regulatory sites in three organisms. Mining of genome data for cellulose degradative enzymes followed by experimental verification successfully identified several actinobacteria species which were not previously known to degrade cellulose as cellulolytic organisms.
Collapse
Affiliation(s)
- Iain Anderson
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, California, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Gao B, Gupta RS. Phylogenetic framework and molecular signatures for the main clades of the phylum Actinobacteria. Microbiol Mol Biol Rev 2012; 76:66-112. [PMID: 22390973 PMCID: PMC3294427 DOI: 10.1128/mmbr.05011-11] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The phylum Actinobacteria harbors many important human pathogens and also provides one of the richest sources of natural products, including numerous antibiotics and other compounds of biotechnological interest. Thus, a reliable phylogeny of this large phylum and the means to accurately identify its different constituent groups are of much interest. Detailed phylogenetic and comparative analyses of >150 actinobacterial genomes reported here form the basis for achieving these objectives. In phylogenetic trees based upon 35 conserved proteins, most of the main groups of Actinobacteria as well as a number of their superageneric clades are resolved. We also describe large numbers of molecular markers consisting of conserved signature indels in protein sequences and whole proteins that are specific for either all Actinobacteria or their different clades (viz., orders, families, genera, and subgenera) at various taxonomic levels. These signatures independently support the existence of different phylogenetic clades, and based upon them, it is now possible to delimit the phylum Actinobacteria (excluding Coriobacteriia) and most of its major groups in clear molecular terms. The species distribution patterns of these markers also provide important information regarding the interrelationships among different main orders of Actinobacteria. The identified molecular markers, in addition to enabling the development of a stable and reliable phylogenetic framework for this phylum, also provide novel and powerful means for the identification of different groups of Actinobacteria in diverse environments. Genetic and biochemical studies on these Actinobacteria-specific markers should lead to the discovery of novel biochemical and/or other properties that are unique to different groups of Actinobacteria.
Collapse
Affiliation(s)
- Beile Gao
- Department of Biochemistry and Biomedical Science, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
23
|
Young JM, Leschine SB, Reguera G. Reversible control of biofilm formation by Cellulomonas spp. in response to nitrogen availability. Environ Microbiol 2011; 14:594-604. [PMID: 21951594 DOI: 10.1111/j.1462-2920.2011.02596.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jenna M Young
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
24
|
Factors affecting accumulation and degradation of curdlan, trehalose and glycogen in cultures of Cellulomonas flavigena strain KU (ATCC 53703). Antonie van Leeuwenhoek 2010; 99:681-95. [PMID: 21190083 DOI: 10.1007/s10482-010-9544-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 12/10/2010] [Indexed: 10/18/2022]
Abstract
Cellulomonas flavigena strain KU (ATCC 53703) is a cellulolytic, Gram-positive bacterium which produces large quantities of an insoluble exopolysaccharide (EPS) when grown in minimal media with a high carbon-to-nitrogen (C/N) ratio. Earlier studies proved the EPS is structurally identical to the linear β-1,3-glucan known as curdlan and provided evidence that the EPS functions as a carbon and energy reserve compound. We now report that C. flavigena KU also accumulates two intracellular, glucose-storage carbohydrates under conditions of carbon and energy excess. These carbohydrates were partially purified and identified as the disaccharide trehalose and a glycogen/amylopectin-type polysaccharide. A novel method is described for the sequential fractionation and quantitative determination of all three carbohydrates from culture samples. This fractionation protocol was used to examine the effects of C/N ratio and osmolarity on the accumulation of cellular carbohydrates in batch culture. Increasing the C/N of the growth medium caused a significant accumulation of curdlan and glycogen but had a relatively minor effect on accumulation of trehalose. In contrast, trehalose levels increased in response to increasing osmolarity, while curdlan levels declined and glycogen levels were generally unaffected. During starvation for an exogenous source of carbon and energy, only curdlan and glycogen showed substantial degradation within the first 24 h. These results support the conclusion that extracellular curdlan and intracellular glycogen can both serve as short-term reserve compounds for C. flavigena KU and that trehalose appears to accumulate as a compatible solute in response to osmotic stress.
Collapse
|
25
|
Curdlan-like exopolysaccharide production by Cellulomonas flavigena UNP3 during growth on hydrocarbon substrates. World J Microbiol Biotechnol 2010; 27:1415-22. [PMID: 25187141 DOI: 10.1007/s11274-010-0593-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 10/05/2010] [Indexed: 10/18/2022]
Abstract
Cellulomonas flavigena UNP3, a natural isolate from vegetable oil contaminated soil sample has been studied for growth associated exopolysaccharide (EPS) production during growth on glucose, groundnut oil and naphthalene. The EPS showed matrix formation surrounding the cells during scanning electron microscopy. Cell surface hydrophobicity and emulsifying activity studies confirmed the role of EPS as bioemulsifier. Emulsifying activity was found to increase with time (0.2 U/mg for 10 min to 0.27 U/mg for 30 min). Emulsification index, E24 value increased with the increase in EPS concentration. Degradation of polyaromatic hydrocarbons was confirmed using gas chromatography analysis. FTIR analysis showed presence of characteristic absorbance at 895.10 cm(-1) for β-configuration of glucan. NMR studies also revealed EPS produced by C. flavigena UNP3 as a linear β-1, 3-D-glucan, and a curdlan like polysaccharide.
Collapse
|