1
|
Bertrand C, Martins R, Nunes F, Brandão P, Nascimento FX. Genomic insights into indole-3-acetic acid catabolism in the marine algae-associated bacterium, Marinomonas sp. NFXS50. Access Microbiol 2024; 6:000856.v3. [PMID: 39239567 PMCID: PMC11373566 DOI: 10.1099/acmi.0.000856.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024] Open
Abstract
Auxins, mainly in the form of indole-3-acetic acid (IAA), regulate several aspects of plant and algal growth and development. Consequently, plant and algae-associated bacteria developed the ability to modulate IAA levels, including IAA catabolism. In this work, we present and analyse the genome sequence of the IAA-degrading and marine algae-associated bacterium, Marinomonas sp. NFXS50, analyse its IAA catabolism gene cluster and study the prevalence of IAA catabolism genes in other Marinomonas genomes. Our findings revealed the presence of homologs of the Pseudomonas iac gene cluster, implicated in IAA catabolism, in the genome of strain NFXS50; however, differences were observed in the content and organization of the Marinomonas iac gene cluster when compared to that of the model iac-containing Pseudomonas putida 1290. These variations suggest potential adaptations in the IAA catabolism pathway, possibly influenced by substrate availability and evolutionary factors. The prevalence of iac genes across several Marinomonas species underscores the significance of IAA catabolism in marine environments, potentially influencing plant/algae-bacteria interactions. This study provides novel insights into the IAA catabolism in Marinomonas, laying the groundwork for future investigations into the role of iac genes in Marinomonas physiology and the regulation of marine plant/algae-bacteria interactions.
Collapse
Affiliation(s)
- Constança Bertrand
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Rodrigo Martins
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Francisco Nunes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Pedro Brandão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Francisco X Nascimento
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
2
|
Wainwright BJ, Millar T, Bowen L, Semon L, Hickman KJE, Lee JN, Yeo ZY, Zahn G. The core mangrove microbiome reveals shared taxa potentially involved in nutrient cycling and promoting host survival. ENVIRONMENTAL MICROBIOME 2023; 18:47. [PMID: 37264467 DOI: 10.1186/s40793-023-00499-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/01/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Microbes have fundamental roles underpinning the functioning of our planet, they are involved in global carbon and nutrient cycling, and support the existence of multicellular life. The mangrove ecosystem is nutrient limited and if not for microbial cycling of nutrients, life in this harsh environment would likely not exist. The mangroves of Southeast Asia are the oldest and most biodiverse on the planet, and serve vital roles helping to prevent shoreline erosion, act as nursery grounds for many marine species and sequester carbon. Despite these recognised benefits and the importance of microbes in these ecosystems, studies examining the mangrove microbiome in Southeast Asia are scarce.cxs RESULTS: Here we examine the microbiome of Avicenia alba and Sonneratia alba and identify a core microbiome of 81 taxa. A further eight taxa (Pleurocapsa, Tunicatimonas, Halomonas, Marinomonas, Rubrivirga, Altererythrobacte, Lewinella, and Erythrobacter) were found to be significantly enriched in mangrove tree compartments suggesting key roles in this microbiome. The majority of those identified are involved in nutrient cycling or have roles in the production of compounds that promote host survival. CONCLUSION The identification of a core microbiome furthers our understanding of mangrove microbial biodiversity, particularly in Southeast Asia where studies such as this are rare. The identification of significantly different microbial communities between sampling sites suggests environmental filtering is occurring, with hosts selecting for a microbial consortia most suitable for survival in their immediate environment. As climate change advances, many of these microbial communities are predicted to change, however, without knowing what is currently there, it is impossible to determine the magnitude of any deviations. This work provides an important baseline against which change in microbial community can be measured.
Collapse
Affiliation(s)
- Benjamin J Wainwright
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore.
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Trevor Millar
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Lacee Bowen
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Lauren Semon
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - K J E Hickman
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| | - Jen Nie Lee
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Malaysia
| | - Zhi Yi Yeo
- Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore
| | - Geoffrey Zahn
- Biology Department, Utah Valley University, 800 W University Parkway, Orem, UT, 84058, USA
| |
Collapse
|
3
|
Lu P, Wang W, Zhang G, Li W, Jiang A, Cao M, Zhang X, Xing K, Peng X, Yuan B, Feng Z. Isolation and characterization marine bacteria capable of degrading lignin-derived compounds. PLoS One 2020; 15:e0240187. [PMID: 33027312 PMCID: PMC7540876 DOI: 10.1371/journal.pone.0240187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 09/22/2020] [Indexed: 11/30/2022] Open
Abstract
Lignin, a characteristic component of terrestrial plants. Rivers transport large amounts of vascular plant organic matter into the oceans where lignin can degrade over time; however, microorganisms involved in this degradation have not been identified. In this study, several bacterial strains were isolated from marine samples using the lignin-derived compound vanillic acid (4-hydroxy-3-methoxybenzoic acid) as the sole carbon and energy source. The optimum growth temperature for all isolates ranged from 30 to 35°C. All isolates grew well in a wide NaCl concentration range of 0 to over 50 g/L, with an optimum concentration of 22.8 g/L, which is the same as natural seawater. Phylogenetic analysis indicates that these strains are the members of Halomonas, Arthrobacter, Pseudoalteromonas, Marinomonas, and Thalassospira. These isolates are also able to use other lignin-derived compounds, such as 4-hydroxybenzoic acid, ferulic acid, syringic acid, and benzoic acid. Vanillic acid was detected in all culture media when isolates were grown on ferulic acid as the sole carbon source; however, no 4-hydroxy-3-methoxystyrene was detected, indicating that ferulic acid metabolism by these strains occurs via the elimination of two side chain carbons. Furthermore, the isolates exhibit 3,4-dioxygenase or 4,5-dioxygenase activity for protocatechuic acid ring-cleavage, which is consistent with the genetic sequences of related genera. This study was conducted to isolate and characterize marine bacteria of degrading lignin-derived compounds, thereby revealing the degradation of aromatic compounds in the marine environment and opening up new avenues for the development and utilization of marine biological resources.
Collapse
Affiliation(s)
- Peng Lu
- College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Weinan Wang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Guangxi Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Wen Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Anjie Jiang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xiaoyan Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Ke Xing
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Xue Peng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Bo Yuan
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Zhaozhong Feng
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
4
|
Tarquinio F, Hyndes GA, Laverock B, Koenders A, Säwström C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol Lett 2020; 366:5382495. [PMID: 30883643 DOI: 10.1093/femsle/fnz057] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/16/2019] [Indexed: 12/27/2022] Open
Abstract
This review shows that the presence of seagrass microbial community is critical for the development of seagrasses; from seed germination, through to phytohormone production and enhanced nutrient availability, and defence against pathogens and saprophytes. The tight seagrass-bacterial relationship highlighted in this review supports the existence of a seagrass holobiont and adds to the growing evidence for the importance of marine eukaryotic microorganisms in sustaining vital ecosystems. Incorporating a micro-scale view on seagrass ecosystems substantially expands our understanding of ecosystem functioning and may have significant implications for future seagrass management and mitigation against human disturbance.
Collapse
Affiliation(s)
- Flavia Tarquinio
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia.,Commonwealth Scientific and Industrial Research Organization, Crawley, 6009, Western Australia, Australia
| | - Glenn A Hyndes
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Bonnie Laverock
- Plant Functional Biology and Climate Change Cluster, University of Technology Sydney, Sydney, 2007, Australia.,School of Science, Auckland University of Technology, Auckland, 1010, New Zealand
| | - Annette Koenders
- Centre for Ecosystem Management, Edith Cowan University, Joondalup, 6027, Western Australia, Australia
| | - Christin Säwström
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
5
|
Draft genome of Marinomonas sp. BSi20584 from Arctic sea ice. Mar Genomics 2015; 23:23-5. [PMID: 25861733 DOI: 10.1016/j.margen.2015.03.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 03/31/2015] [Accepted: 03/31/2015] [Indexed: 11/24/2022]
Abstract
Life surviving in extremely cold frozen environments has been largely uninvestigated. Here we described the draft genome of Marinomonas sp. BSi20584, isolated from Arctic sea ice in the Canada Basin. The assembled genome comprised 4.85Mb, with the G+C content of 42.6%. Single copy of rRNA operon was detected, which may increase fitness in cold and nutrient-limited environment. In addition, BSi20584 may also use universal strategies for cold adaptation as indicated by the genome. Abundant genes responsible for decomposition of aromatic hydrocarbons were detected, which suggested potential biotechnological applications. The first genomic analysis of Marinomonas in Arctic sea ice provided primary genetic information and encouraged further research on comparative genomics and biotechnological applications.
Collapse
|
6
|
Draft Genome Sequence of Marinomonas sp. Strain D104, a Polycyclic Aromatic Hydrocarbon-Degrading Bacterium from the Deep-Sea Sediment of the Arctic Ocean. GENOME ANNOUNCEMENTS 2014; 2:2/1/e01211-13. [PMID: 24459272 PMCID: PMC3900904 DOI: 10.1128/genomea.01211-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Marinomonas sp. strain D104 was isolated from a polycyclic aromatic hydrocarbon-degrading consortium enriched from deep-sea sediment from the Arctic Ocean. The draft genome sequence of D104 (approximately 3.83 Mbp) contains 62 contigs and 3,576 protein-encoding genes, with a G+C content of 44.8%.
Collapse
|