1
|
Li Z, Zhang J, Xu T, Hao Z, Li Y. Mechanism of histone demethylase KDM5A in osteoporotic fracture healing through epigenetic regulation of the miR-495/SKP2/Runx2 axis. Mol Med 2025; 31:65. [PMID: 39972431 PMCID: PMC11837617 DOI: 10.1186/s10020-025-01098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/20/2025] [Indexed: 02/21/2025] Open
Abstract
BACKGROUND Osteoporosis represents a salient metabolic bone disorder. Histone demethylase plays a vital role in bone development and homeostasis. This study explored the mechanism of histone demethylase KDM5A affecting osteoporotic fracture healing via the miR-495/SKP2/Runx2 axis. METHODS The murine model of osteoporotic fracture was established. The bone mineral density, maximum elastic stress, and maximum load were tested. The relative trabecular bone volume, bone trabecular thickness, and trabecular number at the proximal end of tibia were detected. The histopathological changes of femur tissues and bone microstructure were observed. Expressions of KDM5A and osteogenic factors were detected. The cell proliferation, alkaline phosphatase activity, and calcified nodules were measured. The binding relationships between KDM5A and miR-495 promoter, and miR-495 and SKP2 were verified. The interaction between SKP2 and Runx2 was detected. The ubiquitination level of Runx2 and the stability of Runx2 protein were detected. RESULTS KDM5A was highly expressed in the murine model of osteoporotic fracture. Interference of KDM5A expression facilitated fracture healing in osteoporotic mice. KDM5A downregulated miR-495 expression by promoting the H3K4me3 methylation of the miR-495 promoter. Inhibition of miR-495 reversed the effect of KDM5A silencing on osteoblast proliferation, differentiation, and mineralization. miR-495 facilitated osteoblast proliferation, differentiation, and mineralization by targeting SKP2. SKP2 suppressed Runx2 expression through ubiquitination degradation. Inhibition of Runx2 reversed the promoting effect of SKP2 silencing on osteogenic differentiation. CONCLUSION KDM5A attenuated the inhibition of miR-495 on SKP2 and promoted the ubiquitination degradation of Runx2 protein by SKP2, thereby repressing osteoblast differentiation and retarding osteoporotic fracture healing.
Collapse
Affiliation(s)
- Zhuoran Li
- School of Medicine, University of Nottingham, Nottingham, NG7 2NR, UK
| | - Junyan Zhang
- Department of Affiliated Cancer Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Tingting Xu
- Department of Pharmacy, Shanxi Medical University, Taiyuan, 030001, China
| | - Zhiying Hao
- Department of Pharmacy, Shanxi Hospital Affiliated to Cancer Hospital, Shanxi Province Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, No. 3, ZhiGong New Street, Xinghualing District, Taiyuan, Shanxi Province, 030013, China.
| | - Yadong Li
- Department of Emergency, The Second Hospital of Shanxi Medical University, No. 382 Wuyi Road, Xinghualing District, Taiyuan, Shanxi Province, 030001, China.
| |
Collapse
|
2
|
Toth Z, Ward A, Tang SY, McBride-Gagyi S. Sexual differences in bone porosity, osteocyte density, and extracellular matrix organization due to osteoblastic-specific Bmp2 deficiency in mice. Bone 2021; 150:116002. [PMID: 33971313 PMCID: PMC8217247 DOI: 10.1016/j.bone.2021.116002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 12/01/2022]
Abstract
Clinical studies have come to conflicting conclusions regarding BMP2 deficiency's link to regulating bone mass and increasing fracture risk. This may be due to the signaling protein having sex- or age-dependent effects. Previous pre-clinical studies have supported a role, but have not adequately determined the physical mechanism causing altered bulk material properties. This study investigated the physical effects of Bmp2 ablation from osteogenic lineage cells (Osx-Cre; Bmp2fl/fl) in 10- and 15-week-old male and female mice. Bones collected post-mortem were subjected to fracture toughness testing, reference point indentation testing, microCT, and histological analysis to determine the multi-scale relationships between mechanical/material behavior and collagen production, collagen organization, and bone architecture. BMP2-deficient bones were smaller, more brittle, and contained more lacunae-scale voids and cortical pores. The cellular density was significantly increased and there were material-level differences measured by reference point indentation, independently of collagen fiber alignment or organization. The disparities in bone size and in bone fracture toughness between genotypes were especially striking in males at 15-weeks-old. Together, this study suggests that there are sex- and age-dependent effects of BMP2 deficiency. The results from both sexes also warrant further investigation into BMP2 deficiency's role in osteoblasts' transition to osteocytes and overall bone porosity.
Collapse
Affiliation(s)
- Zacharie Toth
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, United States of America
| | - Ashley Ward
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, United States of America
| | - Simon Y Tang
- Department of Orthopaedics, Washington University in St. Louis, St. Louis, MO, United States of America
| | - Sarah McBride-Gagyi
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, MO, United States of America.
| |
Collapse
|
3
|
Raje MM, Ashma R. Epigenetic regulation of BMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep 2019; 46:1667-1674. [PMID: 30788762 DOI: 10.1007/s11033-019-04615-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/18/2019] [Indexed: 12/27/2022]
Abstract
Osteoporosis is a multifactorial disease in which genetic factors and epigenetic modifications play a major role. DNA methylation is known for gene silencing and its effect on BMP2 promoter has been studied here to understand its regulatory activity in osteoporosis pathogenicity. CpG methylation in the BMP2 promoter was analyzed by performing bisulfite specific PCR on the gDNA samples extracted from whole blood of osteoporotic (n = 24) and healthy (n = 24) individuals. Disproportionate allele frequency of CpG sites was calculated statistically. Differential BMP2 expression was estimated using quantitative RT-PCR technique. Luciferase reporter assay was performed to determine and confirm differential transcriptional activity of BMP2 promoter due to methylation. Total of 14 CpG sites were reporter in the BMP2 promoter of which, CpG site at - 267th position upstream to TSS was found to have disproportionate allele frequency among osteoporotic and healthy individuals and was found to be significantly associated with osteoporosis condition. Functional and gene expression analysis of this methylated site using luciferase reporter vector and Real Time PCR approach, suggested reduced transcriptional activity of BMP2 promoter as well as decreased gene expression in disease condition. BMP2 is being a central signaling molecule, aberrant methylation in the promoter region may result into down regulation of osteoblast markers involved in bone formation.
Collapse
Affiliation(s)
- Mehrunnisa M Raje
- Center for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India
| | - Richa Ashma
- Center for Advanced Studies, Department of Zoology, Savitribai Phule Pune University, Pune, 411007, India.
| |
Collapse
|
4
|
Syddall HE, Simmonds SJ, Carter SA, Robinson SM, Dennison EM, Cooper C. The Hertfordshire Cohort Study: an overview. F1000Res 2019; 8:82. [PMID: 30828442 PMCID: PMC6381804 DOI: 10.12688/f1000research.17457.1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The Hertfordshire Cohort Study is a nationally unique study of men and women born in the English county of Hertfordshire in the early part of the 20
th century. Records that detail their health in infancy and childhood have been preserved, their sociodemographic, lifestyle, medical and biological attributes have been characterised in later life, and routinely collected data on their hospital use and mortality have been acquired. This paper provides an overview of the study since its inception in the 1980s, including its methods, findings, and plans for its future.
Collapse
Affiliation(s)
- Holly E Syddall
- MRC Lifecourse Epidemiology Unit, Southampton, Hampshire, SO16 6YD, UK
| | | | - Sarah A Carter
- MRC Lifecourse Epidemiology Unit, Southampton, Hampshire, SO16 6YD, UK
| | - Sian M Robinson
- MRC Lifecourse Epidemiology Unit, Southampton, Hampshire, SO16 6YD, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, Hampshire, SO16 6YD, UK
| | - Elaine M Dennison
- MRC Lifecourse Epidemiology Unit, Southampton, Hampshire, SO16 6YD, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, Southampton, Hampshire, SO16 6YD, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton, Southampton, Hampshire, SO16 6YD, UK.,NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, Oxfordshire, OX3 7LD, UK
| | | |
Collapse
|
5
|
Liu DB, Sui C, Wu TT, Wu LZ, Zhu YY, Ren ZH. Association of Bone Morphogenetic Protein (BMP)/Smad Signaling Pathway with Fracture Healing and Osteogenic Ability in Senile Osteoporotic Fracture in Humans and Rats. Med Sci Monit 2018; 24:4363-4371. [PMID: 29938690 PMCID: PMC6050999 DOI: 10.12659/msm.905958] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background To investigate the effect of the BMP/Smad signaling pathway on fracture healing and osteogenic ability in senile osteoporotic fracture on humans and rats. Material/Methods Sixty-two patients and well-matched normal controls were enrolled for clinical observation. A rat model of senile osteoporotic fracture was established. Serum BMP2 and Smad4 levels, as well as alkaline phosphatase (ALP) activity, were detected by ELISA. Fracture healing was observed by X-ray radiography and bone formation was analyzed by micro-CT. Results Serum BMP2 and Smad4 levels in patients with senile osteoporotic fracture were significantly lower than those in normal controls (all P<0.01). BMP2 was highly positively correlated with Smad4 in patients with senile osteoporotic fracture (r=0.738). Compared with patients with low serum BMP2 and Smad4 levels, visual analog scale scores decreased, bone mineral density (BMD) increased, and duration of fracture healing was shortened in patients with high levels (all P<0.05). Compared with the Model group, serum BMP2 and Smad4 levels increased, fracture healing was improved, BMD, trabecular bone volume (TBV), tissue volume (TV), bone volume fraction (BV/TV), mean trabecular thickness (Tb. Th), and mean number of trabecular bone (Tb. N) were increased, and ALP activity increased in the BMP2 overexpression group (all P<0.05), while each index in the NC group showed no statistical difference relative to rats in the Model group (all P>0.05). Conclusions BMP2 overexpression can promote fracture healing and osteogenic ability in senile osteoporotic fractures through activating the BMP/Smad signaling pathway.
Collapse
Affiliation(s)
- De-Bao Liu
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Cong Sui
- Department of Orthopedics, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Ting-Ting Wu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Lian-Zhong Wu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - You-Yu Zhu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China (mainland)
| | - Zhen-Hua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui, China (mainland).,Cell Therapy Center, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
6
|
Nakamura T, Naruse M, Chiba Y, Komori T, Sasaki K, Iwamoto M, Fukumoto S. Novel hedgehog agonists promote osteoblast differentiation in mesenchymal stem cells. J Cell Physiol 2015; 230:922-9. [PMID: 25215620 DOI: 10.1002/jcp.24823] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/05/2014] [Indexed: 12/21/2022]
Abstract
Hedgehog (Hh) family members are involved in multiple cellular processes including proliferation, migration, differentiation, and cell fate determination. Recently, the novel Hh agonists Hh-Ag 1.3 and 1.7 were identified in a high-throughput screening of small molecule compounds that activate the expression of Gli1, a target of Hh signaling. This study demonstrates that Hh-Ag 1.3 and 1.7 strongly activate the expression of endogenous Gli1 and promote osteoblast differentiation in the mesenchymal stem cell line C3H10T1/2. Both compounds stimulated alkaline phosphatase activity in a dose-dependent manner, and induced osteoblast marker gene expression in C3H10T1/2 cells, which indicated that they had acquired an osteoblast identity. Of the markers, the expression of osterix/Sp7, a downstream target of runt-related transcription factor (Runx)2, was induced by Hh-Ag 1.7, which also rescued the osteoblast differentiation defect of RD-127, a mesenchymal cell line from Runx2-deficient mice. Hh-Ags also activated canonical Wnt signaling and synergized with low doses of BMP-2 to enhance osteoblastic potential. Thus, Hh-Ag 1.7 could be useful for bone healing in individuals with abnormalities in osteogenesis, such as osteoporosis patients and the elderly, and can contribute to the development of novel therapeutics for the treatment of bone fractures and defects.
Collapse
Affiliation(s)
- Takashi Nakamura
- Division of Pediatric Dentistry, Department of Oral Health and Development Sciences, Sendai, Japan; Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
McBride SH, McKenzie JA, Bedrick BS, Kuhlmann P, Pasteris JD, Rosen V, Silva MJ. Long bone structure and strength depend on BMP2 from osteoblasts and osteocytes, but not vascular endothelial cells. PLoS One 2014; 9:e96862. [PMID: 24837969 PMCID: PMC4024030 DOI: 10.1371/journal.pone.0096862] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 04/13/2014] [Indexed: 11/19/2022] Open
Abstract
The importance of bone morphogenetic protein 2 (BMP2) in the skeleton is well known. BMP2 is expressed in a variety of tissues during development, growth and healing. In this study we sought to better identify the role of tissue-specific BMP2 during post-natal growth and to determine if BMP2 knockout affects the ability of terminally differentiated cells to create high quality bone material. We targeted BMP2 knockout to two differentiated cell types known to express BMP2 during growth and healing, early-stage osteoblasts and their progeny (osterix promoted Cre) and vascular endothelial cells (vascular-endothelial-cadherin promoted Cre). Our objectives were to assess post-natal bone growth, structure and strength. We hypothesized that removal of BMP2 from osteogenic and vascular cells (separately) would result in smaller skeletons with inferior bone material properties. At 12 and 24 weeks of age the osteoblast knockout of BMP2 reduced body weight by 20%, but the vascular knockout had no effect. Analysis of bone in the tibia revealed reductions in cortical and cancellous bone size and volume in the osteoblast knockout, but not in the vascular endothelial knockout. Furthermore, forelimb strength testing revealed a 30% reduction in ultimate force at both 12 and 24 weeks in the osteoblast knockout of BMP2, but no change in the vascular endothelial knockout. Moreover, mechanical strength testing of femurs from osteoblast knockout mice demonstrated an increased Young's modulus (greater than 35%) but decreased post-yield displacement (greater than 50%) at both 12 and 24 weeks of age. In summary, the osteoblast knockout of BMP2 reduced bone size and altered mechanical properties at the whole-bone and material levels. Osteoblast-derived BMP2 has an important role in post-natal skeletal growth, structure and strength, while vascular endothelial-derived BMP2 does not.
Collapse
Affiliation(s)
- Sarah H. McBride
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
- Department of Orthopaedic Surgery, Saint Louis University, St. Louis, Missouri, United States of America
| | - Jennifer A. McKenzie
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Bronwyn S. Bedrick
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Paige Kuhlmann
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jill D. Pasteris
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Matthew J. Silva
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|