1
|
Besednova NN, Zaporozhets TS, Andryukov BG, Kryzhanovsky SP, Ermakova SP, Kuznetsova TA, Voronova AN, Shchelkanov MY. Antiparasitic Effects of Sulfated Polysaccharides from Marine Hydrobionts. Mar Drugs 2021; 19:637. [PMID: 34822508 PMCID: PMC8624348 DOI: 10.3390/md19110637] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 12/15/2022] Open
Abstract
This review presents materials characterizing sulfated polysaccharides (SPS) of marine hydrobionts (algae and invertebrates) as potential means for the prevention and treatment of protozoa and helminthiasis. The authors have summarized the literature on the pathogenetic targets of protozoa on the host cells and on the antiparasitic potential of polysaccharides from red, brown and green algae as well as certain marine invertebrates. Information about the mechanisms of action of these unique compounds in diseases caused by protozoa has also been summarized. SPS is distinguished by high antiparasitic activity, good solubility and an almost complete absence of toxicity. In the long term, this allows for the consideration of these compounds as effective and attractive candidates on which to base drugs, biologically active food additives and functional food products with antiparasitic activity.
Collapse
Affiliation(s)
- Natalya N. Besednova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Tatyana S. Zaporozhets
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Boris G. Andryukov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
| | - Sergey P. Kryzhanovsky
- Medical Association of the Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Svetlana P. Ermakova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia;
| | - Tatyana A. Kuznetsova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Anastasia N. Voronova
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
| | - Mikhail Y. Shchelkanov
- G.P. Somov Research Institute of Epidemiology and Microbiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, 690087 Vladivostok, Russia; (T.S.Z.); (B.G.A.); (T.A.K.); (A.N.V.); (M.Y.S.)
- School of Biomedicine, Far Eastern Federal University (FEFU), 690091 Vladivostok, Russia
- National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok, Russia
| |
Collapse
|
2
|
Panditrao G, Ganguli P, Sarkar RR. Delineating infection strategies of Leishmania donovani secretory proteins in Human through host-pathogen protein Interactome prediction. Pathog Dis 2021; 79:6408463. [PMID: 34677584 DOI: 10.1093/femspd/ftab051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/20/2021] [Indexed: 12/11/2022] Open
Abstract
Interactions of Leishmania donovani secretory virulence factors with the host proteins and their interplay during the infection process in humans is poorly studied in Visceral Leishmaniasis. Lack of a holistic study of pathway level de-regulations caused due to these virulence factors leads to a poor understanding of the parasite strategies to subvert the host immune responses, secure its survival inside the host and further the spread of infection to the visceral organs. In this study, we propose a computational workflow to predict host-pathogen protein interactome of L.donovani secretory virulence factors with human proteins combining sequence-based Interolog mapping and structure-based Domain Interaction mapping techniques. We further employ graph theoretical approaches and shortest path methods to analyze the interactome. Our study deciphers the infection paths involving some unique and understudied disease-associated signaling pathways influencing the cellular phenotypic responses in the host. Our statistical analysis based in silico knockout study unveils for the first time UBC, 1433Z and HS90A mediator proteins as potential immunomodulatory candidates through which the virulence factors employ the infection paths. These identified pathways and novel mediator proteins can be effectively used as possible targets to control and modulate the infection process further aiding in the treatment of Visceral Leishmaniasis.
Collapse
Affiliation(s)
- Gauri Panditrao
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
3
|
Kar A, Charan Raja MR, Jayaraman A, Srinivasan S, Debnath J, Kar Mahapatra S. Oral combination of eugenol oleate and miltefosine induce immune response during experimental visceral leishmaniasis through nitric oxide generation with advanced cytokine demand. Cytokine 2021; 146:155623. [PMID: 34144446 DOI: 10.1016/j.cyto.2021.155623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
Conventional therapy of visceral leishmaniasis (VL) remains challenging with the pitfall of toxicity, drug resistance, and expensive. Hence, urgent need for an alternative approach is essential. In this study, we evaluated the potential of combination therapy with eugenol oleate and miltefosine in Leishmania donovani infected macrophages and in the BALB/c mouse model. The interactions between eugenol oleate and miltefosine were found to be additive against promastigotes and amastigotes with xΣFIC 1.13 and 0.68, respectively. Significantly (p < 0.001) decreased arginase activity, increased nitrite generation, improved pro-inflammatory cytokines, and phosphorylated p38MAPK were observed after combination therapy with eugenol oleate and miltefosine. >80% parasite clearance in splenic and hepatic tissue with concomitant nitrite generation, and anti-VL cytokines productions were observed after orally administered miltefosine (5 mg/kg body weight) and eugenol oleate (15 mg/kg body weight) in L. donovani-infected BALB/c mice. Altogether, this study suggested the possibility of an oral combination of miltefosine with eugenol oleate against visceral leishmaniasis.
Collapse
Affiliation(s)
- Amrita Kar
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Mamilla R Charan Raja
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| | - Adithyan Jayaraman
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Sujatha Srinivasan
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Joy Debnath
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Santanu Kar Mahapatra
- Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Midnapore 721129, West Bengal, India.
| |
Collapse
|
4
|
Zutshi S, Sarode AY, Ghosh SK, Jha MK, Sudan R, Kumar S, Sadhale LP, Roy S, Saha B. LmjF.36.3850, a novel hypothetical Leishmania major protein, contributes to the infection. Immunology 2021; 163:460-477. [PMID: 33764520 DOI: 10.1111/imm.13331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/16/2022] Open
Abstract
Leishmania is a protozoan parasite that resides in mammalian macrophages and inflicts the disease known as leishmaniasis. Although prevalent in 88 countries, an anti-leishmanial vaccine remains elusive. While comparing the virulent and avirulent L. major transcriptomes by microarray, PCR and functional analyses for identifying a novel virulence-associated gene, we identified LmjF.36.3850, a hypothetical protein significantly less expressed in the avirulent parasite and without any known function. Motif search revealed that LmjF.36.3850 protein shared phosphorylation sites and other structural features with sucrose non-fermenting protein (Snf7) that shuttles virulence factors. LmjF.36.3850 was predicted to bind diacylglycerol (DAG) with energy value similar to PKCα and PKCβ, to which DAG is a cofactor. Indeed, 1-oleoyl-2-acetyl-sn-glycerol (OAG), a DAG analogue, enhanced the phosphorylation of PKCα and PKCβI. We cloned LmjF.36.3850 gene in a mammalian expression vector and primed susceptible BALB/c mice followed by challenge infection. We observed a higher parasite load, comparable antibody response and higher anti-inflammatory cytokines such as IL-4 and IL-10, while expression of major anti-leishmanial cytokine, IFN-γ, remained unchanged in LmjF.36.3850-vaccinated mice. CSA restimulated LN cells from vaccinated mice after challenge infection secreted comparable IL-4 and IL-10 but reduced IFN-γ, as compared to controls. These observations suggest a skewed Th2 response, diminished IFN-γ secreting Th1-TEM cells and increased central and effector memory subtype of Th2, Th17 and Treg cells in the vaccinated mice. These data indicate that LmjF.36.3850 is a plausible virulence factor that enhances disease-promoting response, possibly by interfering with PKC activation and by eliciting disease-promoting T cells.
Collapse
Affiliation(s)
| | | | | | | | - Raki Sudan
- National Centre for Cell Science, Pune, India
| | - Sunil Kumar
- National Centre for Cell Science, Pune, India
| | | | - Somenath Roy
- Department of Human Physiology, Vidyasagar University, Midnapore, India
| | - Bhaskar Saha
- National Centre for Cell Science, Pune, India.,Trident Academy of Creative Technology, Chandrasekharpur, India
| |
Collapse
|
5
|
Das S, Mukherjee S, Ali N. Super enhancer-mediated transcription of miR146a-5p drives M2 polarization during Leishmania donovani infection. PLoS Pathog 2021; 17:e1009343. [PMID: 33630975 PMCID: PMC7943006 DOI: 10.1371/journal.ppat.1009343] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/09/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
The outcome of Leishmania donovani infection depends upon the dynamic interchanges between M1 and M2 macrophages. Information of the involvement of microRNAs (miRNAs) and epigenetic modifiers in regulating macrophage plasticity during L. donovani infection is still elusive. Differential expression analysis of polarization-regulating miRNAs, revealed significant enrichment of miR146a-5p during Leishmania donovani infection. A sustained enrichment of miR146a-5p was observed in both infected bone marrow derived macrophages (BMDMs) and BALB/c mice organs. We found involvement of miR146a-5p in phagocytosis and survivability of parasites. Moreover, miR146a-5pgot enriched in interleukin 4- stimulated BMDMs, indicating its possible involvement in M2 polarization. Upon transfecting BMDMs with miRVANA anti-146a oligos, M2 markers (CCR7, YM-1, FIZZ-1, arginase-1, IL10 and IL4) and transcription factors (p-STAT6 and c/EBPβ) got depleted with concomitant augmentation of M1-polarizing transcription factors (p-STAT1, AP1 and IRF-1), miR146a target genes (TRAF6 and IRAK1), M1 cytokines (IL12 and TNFα), iNOS, nitric oxide, and nuclear translocation of phospho p-65 subunit. Neutralization of intracellular mature miR146a-5p pool in infected BALB/c mice lower organ parasite burden and expressions of M2 markers and IL10 with enrichment of M1 markers like iNOS and IL12. Additionally, we explored the novel role of super enhancer (SE), a cis-acting regulatory component, to enrich miR146a-5p expression during infection. Enhanced expression and nuclear retention of SE components like BET bromodomain 4 (BRD4) and p300 were found in infected BMDMs. Upon silencing BRD4, expressions of miR146a-5p and M2 markers were down regulated and TRAF6, IRAK1 and iNOS levels increased. STRING V.11 based predication and immune precipitation confirmed the strong interaction amongst BRD4, p300 and RNA pol II (RpbI). Chromatin immune precipitation studies suggested the recruitment of BRD4 at the enhancer loci of miR146a-5p gene during infection. Altogether, our findings revealed a novel role of BRD4/p300-depdendent super-enhancer in regulating miR146a expression during L. donovani infection which in turn mediates M2 polarization and immune-suppression. Visceral leishmaniasis (VL), caused by protozoan parasites Leishmania donovani, is the most severe form of leishmaniasis and is highly lethal if left untreated. Major obstacle for successful therapy of VL originates from the life-long immune-suppression triggered in the post kala-azar dermal leishmaniasis (PKDL) patients during infection. Identification of molecular principles behind such immune-suppression will add success in VL therapeutics. L. donovani hijacks the host macrophages and converts them from pro-inflammatory M1 to immune-suppressive M2 type, which allows successful infection establishment. Herein, we explored the indispensable role of miRNA-146a-5p in conversion of M1 to M2 type during infection. Both in vitro and in vivo miRNA silencing established miR146a-5p as an imperative negative regulator ofM1 polarization. Computational analysis as well as immune precipitation based experiments authenticated that L. donovani induces super enhancer complex mediated transcriptional upregulation of miR146a-5p. BET bromodomain protein 4 (BRD4) forms this SE complex along with p300 histone acetyl transferase and RNA pol II. Silencing of BRD4 significantly abrogated miR146a-5p mediated M2 polarization. In short, our current findings established a previously unrecognized role of BRD4-depdendent super enhancers in orchestrating persistent transcription of macrophage miR146a-5p which in turn promotes M2 polarization during L. donovani infection.
Collapse
Affiliation(s)
- Sonali Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sohitri Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- * E-mail:
| |
Collapse
|
6
|
Soares MF, Melo LM, Bragato JP, Furlan ADO, Scaramele NF, Lopes FL, Lima VMFD. Differential expression of miRNAs in canine peripheral blood mononuclear cells (PBMC) exposed to Leishmania infantum in vitro. Res Vet Sci 2020; 134:58-63. [PMID: 33302213 DOI: 10.1016/j.rvsc.2020.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 11/27/2022]
Abstract
Visceral Leishmaniasis (VL) is a neglected tropical disease, caused by L. infantum in the New World, where dogs are the main reservoir. These parasites can regulate host immune response through miRNA differential expression in the early stages of infection; however such early response has not yet been investigated in the canine model. PBMC from healthy dogs were exposed to L. infantum in vitro and microarray analysis showed an upregulation of miR-206, miR-302d, miR-433, miR-214, miR-493, miR-514, miR-1835, miR-210, miR-539, miR-432, miR-188, miR-345 and downregulation of miR-489 and miR-503 in comparison to non-exposed control cells, at 24 h post-exposure. In silico target prediction showed that the upregulated miRNAs target 1541 genes, which can modulate important pathways involved in the early immune responses, like the "MAPK signaling pathway", one of the most relevant pathways to Leishmania survival inside host cells. These findings shed light on parasite modulation of host immunity following Leishmania infection, which in turn can be explored for drug development.
Collapse
Affiliation(s)
- Matheus Fujimura Soares
- Department of Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Larissa Martins Melo
- Department of Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Jaqueline Poleto Bragato
- Department of Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Amanda de Oliveira Furlan
- Department of Support, Production and Animal Health, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Natália Francisco Scaramele
- Department of Support, Production and Animal Health, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Flávia Lombardi Lopes
- Department of Support, Production and Animal Health, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil
| | - Valéria Marçal Felix de Lima
- Department of Surgery and Animal Reproduction, São Paulo State University (UNESP), School of Veterinary Medicine, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
7
|
Naqvi N, Srivastava R, Selvapandiyan A, Puri N. Host Mast Cells in Leishmaniasis: Friend or Foe? Trends Parasitol 2020; 36:952-956. [PMID: 33060062 DOI: 10.1016/j.pt.2020.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 11/27/2022]
Abstract
Mast cells (MCs) are skin-resident immune cells whose role in leishmaniasis has been recently explored. Researchers report varying inferences, that is, mast cells promote, eliminate, or have no role in leishmaniasis. This article discusses this heterogeneity in mast cell roles to facilitate potential therapeutic and vaccine interventions for these diseases.
Collapse
Affiliation(s)
- Nilofer Naqvi
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Present address: ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi 110029, India
| | - Rahul Srivastava
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India. @mail.jnu.ac.in
| |
Collapse
|
8
|
Moslehi M, Namdar F, Esmaeilifallah M, Hejazi SH, Sokhanvari F, Siadat AH, Hosseini SM, Iraji F. Evaluation of Different Concentrations of Imatinib on the Viability of Leishmania major: An In Vitro Study. Adv Biomed Res 2019; 8:61. [PMID: 31737578 PMCID: PMC6839269 DOI: 10.4103/abr.abr_58_19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Leishmaniasis is an infectious disease caused by an intracellular parasite of Leishmania and is transmitted through the female sandflies bite and may lead to severe skin lesions. Although drugs such as antimony compounds are available, their side effects such as toxicity, low efficacy, and emergence of resistance have raised the importance of effective replacement. Imatinib, as an inhibitor of tyrosine kinase (TK) of Leishmania, stops abnormal function of TK such as Bcr-Abl through assembling into transmembrane pores in a sterol-dependent manner. Hence, the evaluation of killing effects of different concentrations of imatinib against Leishmania major amastigotes and promastigotes in vitro were the objectives of the present study. MATERIALS AND METHODS The killing effects of different concentrations of imatinib (25, 50, and 100 μg) and 25 μg amphotericin B (as positive control) were evaluated against RPMI 1640-cultured promastigotes and the amastigote/macrophage model by MTS cell proliferation assay kit (ab197010) and Giemsa staining method during 24, 48, and 72 h. RESULTS The results showed anti-Leishmania effect of imatinib in concentration and time-dependent manner. The lowest number of live promastigotes and amastigotes were obtained due to treat with 100 μg/ml imatinib at 72 h. Furthermore, 100 μg concentration of imatinib had the same effect as 25 μg amphotericin B on both L. major promastigotes and amastigotes (P < 0.001). CONCLUSION The anti-Leishmania effect of imatinib was confirmed by MTS and direct microscopy. Further study is recommended for evaluating possible therapeutic effects of imatinib on leishmaniasis in vivo.
Collapse
Affiliation(s)
- Mohsen Moslehi
- From the Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Namdar
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Esmaeilifallah
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- From the Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Sokhanvari
- From the Skin Diseases and Leishmaniasis Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Hossein Siadat
- Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Hosseini
- Department of Biostatistics and Epidemiology, School of Public Health, Isfahan University of Medical Sciences Isfahan, Iran
| | - Fariba Iraji
- Department of Dermatology, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
9
|
Ghalehnoei H, Bagheri A, Fakhar M, Mishan MA. Circulatory microRNAs: promising non-invasive prognostic and diagnostic biomarkers for parasitic infections. Eur J Clin Microbiol Infect Dis 2019; 39:395-402. [PMID: 31617024 DOI: 10.1007/s10096-019-03715-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/16/2019] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are a non-coding subclass of endogenous small regulatory RNAs, with about 18-25 nucleotides length which play a critical role in the regulation of gene expression at the post-transcriptional level in eukaryotes. Aberrant expression of miRNAs has the potential to become powerful non-invasive biomarkers in pathological diagnosis and prognosis of different disorders including infectious diseases. Parasite's life cycle may require the ability to respond to environmental and developmental signals through miRNA-mediated gene expressions. Over the last years, thousands of miRNAs have been identified in the helminthic and protozoan parasites and many pieces of evidence have demonstrated the functional role of miRNAs in the parasites' life cycle. Detection of these miRNAs in biofluids of infected hosts as prognostic and diagnostic biomarkers in infectious diseases is growing rapidly. In this review, we have highlighted altered expressions of host miRNAs, detected parasitic miRNAs in the infected hosts, and suggested some perspectives for future studies.
Collapse
Affiliation(s)
- Hossein Ghalehnoei
- Department of Medical Biotechnology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Department of Clinical Biochemistry-Biophysics and Genetics, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mahdi Fakhar
- Department of Parasitology, Toxoplasmosis Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Mohammad Amir Mishan
- Ocular Tissue Engineering Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Shadab M, Das S, Banerjee A, Sinha R, Asad M, Kamran M, Maji M, Jha B, Deepthi M, Kumar M, Tripathi A, Kumar B, Chakrabarti S, Ali N. RNA-Seq Revealed Expression of Many Novel Genes Associated With Leishmania donovani Persistence and Clearance in the Host Macrophage. Front Cell Infect Microbiol 2019; 9:17. [PMID: 30805314 PMCID: PMC6370631 DOI: 10.3389/fcimb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Host- as well as parasite-specific factors are equally crucial in allowing either the Leishmania parasites to dominate, or host macrophages to resist infection. To identify such factors, we infected murine peritoneal macrophages with either the virulent (vAG83) or the non-virulent (nvAG83) parasites of L. donovani. Then, through dual RNA-seq, we simultaneously elucidated the transcriptomic changes occurring both in the host and the parasites. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed (DE) genes, we showed that the vAG83-infected macrophages exhibit biased anti-inflammatory responses compared to the macrophages infected with the nvAG83. Moreover, the vAG83-infected macrophages displayed suppression of many important cellular processes, including protein synthesis. Further, through protein-protein interaction study, we showed significant downregulation in the expression of many hubs and hub-bottleneck genes in macrophages infected with vAG83 as compared to nvAG83. Cell signaling study showed that these two parasites activated the MAPK and PI3K-AKT signaling pathways differentially in the host cells. Through gene ontology analyses of the parasite-specific genes, we discovered that the genes for virulent factors and parasite survival were significantly upregulated in the intracellular amastigotes of vAG83. In contrast, genes involved in the immune stimulations, and those involved in negative regulation of the cell cycle and transcriptional regulation, were upregulated in the nvAG83. Collectively, these results depicted a differential regulation in the host and the parasite-specific molecules during in vitro persistence and clearance of the parasites.
Collapse
Affiliation(s)
- Mohammad Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Anindyajit Banerjee
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Roma Sinha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mithun Maji
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Bipin Kumar
- Nucleome Informatics Pvt. Ltd., Hyderabad, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
11
|
Immunotherapeutic potential of Codonopsis clematidea and naringenin against visceral leishmaniasis. Biomed Pharmacother 2018; 108:1048-1061. [DOI: 10.1016/j.biopha.2018.09.104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022] Open
|
12
|
Edwardsiella piscicida Type III Secretion System Effector EseK Inhibits Mitogen-Activated Protein Kinase Phosphorylation and Promotes Bacterial Colonization in Zebrafish Larvae. Infect Immun 2018; 86:IAI.00233-18. [PMID: 29986890 DOI: 10.1128/iai.00233-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/01/2018] [Indexed: 12/21/2022] Open
Abstract
Bacteria utilize type III secretion systems (T3SS) to deliver effectors directly into host cells. Hence, it is very important to identify the functions of bacterial (T3SS) effectors to understand host-pathogen interactions. Edwardsiella piscicida encodes a functional T3SS effector, EseK, which can be translocated into host cells and affect bacterial loads. Here, it was demonstrated that an eseK mutant (the ΔeseK mutant) significantly increased the phosphorylation levels of p38α, c-Jun NH2-terminal kinases (JNK), and extracellular signal-regulated protein kinases 1/2 (ERK1/2) in HeLa cells. Overexpression of EseK directly inhibited mitogen-activated protein kinase (MAPK) signaling pathways in HEK293T cells. The ΔeseK mutant consistently promoted the phosphorylation of MAPKs in zebrafish larva infection models. Further, it was shown that the ΔeseK mutant increased the expression of tumor necrosis factor alpha (TNF-α) in an MAPK-dependent manner. Importantly, the EseK-mediated inhibition of MAPKs in vivo attenuated bacterial clearance in larvae. Taken together, this work reveals that the E. piscicida T3SS effector EseK promotes bacterial infection by inhibiting MAPK activation, which provides insights into the molecular pathogenesis of E. piscicida in fish.
Collapse
|
13
|
Sabur A, Bhowmick S, Chhajer R, Ejazi SA, Didwania N, Asad M, Bhattacharyya A, Sinha U, Ali N. Liposomal Elongation Factor-1α Triggers Effector CD4 and CD8 T Cells for Induction of Long-Lasting Protective Immunity against Visceral Leishmaniasis. Front Immunol 2018; 9:18. [PMID: 29441060 PMCID: PMC5797590 DOI: 10.3389/fimmu.2018.00018] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 01/04/2018] [Indexed: 12/01/2022] Open
Abstract
Despite advances, identification and formulation of safe and effective vaccine for long-lasting protection against leishmaniasis is still inadequate. In this study, we have identified a novel antigen, leishmanial elongation factor-1α (EF1-α), as an immunodominant component of solubilized leishmanial membrane antigens that reacts with visceral leishmaniasis (VL) sera and induces cellular proliferative and cytokine response in PBMCs of cured VL subjects. Leishmanial EF1-α is a 50 kDa antigen that plays a crucial role in pathogen survival by regulating oxidative burst in the host phagocytes. Previously, immunodominant truncated forms of EF1-α from different species of Leishmania have been reported. Formulation of the L. donovani 36 kDa truncated as well as the cloned recombinant EF1-α in cationic liposomes induce strong resistance to parasitic burden in liver and spleen of BALB/c mice through induction of DTH and a IL-10 and TGF-β suppressed mixed Th1/Th2 cytokine responses. Multiparametric analysis of splenocytes for generation of antigen-specific IFN-γ, IL2, and TNF-α producing lymphocytes indicate that cationic liposome facilitates expansion of both CD4+ as well as CD8+ memory and effector T cells. Liposomal EF1-α is a novel and potent vaccine formulation against VL that imparts long-term protective responses. Moreover, the flexibility of this formulation opens up the scope to combine additional adjuvants and epitope selected antigens for use in other disease forms also.
Collapse
Affiliation(s)
- Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sudipta Bhowmick
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rudra Chhajer
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Sarfaraz Ahmad Ejazi
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nicky Didwania
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Bhattacharyya
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Utsa Sinha
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
14
|
Thomas SA, Nandan D, Kass J, Reiner NE. Countervailing, time-dependent effects on host autophagy promotes intracellular survival of Leishmania. J Biol Chem 2017; 293:2617-2630. [PMID: 29269416 DOI: 10.1074/jbc.m117.808675] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 12/18/2017] [Indexed: 11/06/2022] Open
Abstract
Autophagy is essential for cell survival under stress and has also been implicated in host defense. Here, we investigated the interactions between Leishmania donovani, the main etiological agent of visceral leishmaniasis, and the autophagic machinery of human macrophages. Our results revealed that during early infection-and via activation of the Akt pathway-Leishmania actively inhibits the induction of autophagy. However, by 24 h, Leishmania switched from being an inhibitor to an overall inducer of autophagy. These findings of a dynamic, biphasic response were based on the accumulation of lipidated light chain 3 (LC3), an autophagosome marker, by Western blotting and confocal fluorescence microscopy. We also present evidence that Leishmania induces delayed host cell autophagy via a mechanism independent of reduced activity of the mechanistic target of rapamycin (mTOR). Notably, Leishmania actively inhibited mTOR-regulated autophagy even at later stages of infection, whereas there was a clear induction of autophagy via some other mechanism. In this context, we examined host inositol monophosphatase (IMPase), reduced levels of which have been implicated in mTOR-independent autophagy, and we found that IMPase activity is significantly decreased in infected cells. These findings indicate that Leishmania uses an alternative pathway to mTOR to induce autophagy in host macrophages. Finally, RNAi-mediated down-regulation of host autophagy protein 5 (ATG5) or autophagy protein 9A (ATG9A) decreased parasite loads, demonstrating that autophagy is essential for Leishmania survival. We conclude that Leishmania uses an alternative pathway to induce host autophagy while simultaneously inhibiting mTOR-regulated autophagy to fine-tune the timing and magnitude of this process and to optimize parasite survival.
Collapse
Affiliation(s)
- Sneha A Thomas
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and
| | - Devki Nandan
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and
| | - Jennifer Kass
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and
| | - Neil E Reiner
- From the Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, British Columbia V6H 3Z6 and .,the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
15
|
Naqvi N, Ahuja K, Selvapandiyan A, Dey R, Nakhasi H, Puri N. Role of Mast Cells in clearance of Leishmania through extracellular trap formation. Sci Rep 2017; 7:13240. [PMID: 29038500 PMCID: PMC5643406 DOI: 10.1038/s41598-017-12753-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 09/08/2017] [Indexed: 12/28/2022] Open
Abstract
Mast Cells (MCs) are one of the first immune cells encountered by invading pathogens. Their presence in large numbers in the superficial dermis, where Leishmania is encountered, suggests that they may play a critical role in immune responses to Leishmania. In this study the interactions of Leishmania donovani, the causative agent of visceral Leishmaniasis, and Leishmania tropica, the causative agent of cutaneous Leishmaniasis with MCs were studied. Co-culture of Leishmania with Peritoneal Mast Cells (PMCs) from BALB/c mice and Rat Basophilic Leukaemia (RBL-2H3) MCs led to significant killing of L. tropica and to a lesser extent of L. donovani. Also, while there was significant uptake of L. tropica by MCs, L. donovani was not phagocytosed. There was significant generation of Reactive Oxygen Species (ROS) by MCs on co-culture with these species of Leishmania which may contribute to their clearance. Interactions of MCs with Leishmania led to generation of MC extracellular traps comprising of DNA, histones and tryptase probably to ensnare these pathogens. These results clearly establish that MCs may contribute to host defences to Leishmania in a differential manner, by actively taking up these pathogens, and also by mounting effector responses for their clearance by extracellular means.
Collapse
Affiliation(s)
- Nilofer Naqvi
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Kavita Ahuja
- JH-Institute of Molecular Medicine, Jamia Hamdard, New Delhi, 110062, India.,Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | | | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Hira Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Niti Puri
- Cellular and Molecular Immunology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
16
|
Singh AK, Pandey RK, Shaha C, Madhubala R. MicroRNA expression profiling of Leishmania donovani-infected host cells uncovers the regulatory role of MIR30A-3p in host autophagy. Autophagy 2016; 12:1817-1831. [PMID: 27459332 DOI: 10.1080/15548627.2016.1203500] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leishmania is an obligate intracellular parasite that replicates inside phagolysosomes or parasitophorous vacuoles (PV) of the monocyte/macrophage lineage. It reprograms macrophages and produces a metabolic state conducive to successful infection and multiplication. MicroRNAs (miRNAs), a class of small 22 to 24 nucleotide noncoding regulatory RNAs alter the gene expression and consequently proteome output by targeting mRNAs, may play a regulatory role in modulating host cell functions. In the present study, we demonstrate the novel regulatory role of host microRNA, MIR30A-3p in modulation of host cell macroautophagy/autophagy after infection with L. donovani. Our in vitro studies showed that MIR30A-3p expression was significantly enhanced after L. donovani infection in a time-dependent manner. Transient transfection with a MIR30A-3p inhibitor followed by L. donovani infection promoted the autophagic response and decreased the intracellular parasite burden in both THP-1 cells and human monocyte-derived macrophages (HsMDM). BECN1/Beclin 1, the mammalian ortholog of yeast Vps30/Atg6, is a key autophagy-promoting protein that plays a key role in the regulation of cell death and survival. We report BECN1-dependent modulation of host cell autophagy in response to L. donovani infection. Pretreatment of L. donovani-infected macrophages with the MIR30A-3p mimic decreased and with antagomir increased the expression of BECN1 protein. We demonstrate that BECN1 is a potential target of MIR30A-3p and this miRNA negatively regulates BECN1 expression. Our present study reveals for the first time a novel role of MIR30A-3p in regulating autophagy-mediated L. donovani elimination by targeting BECN1. The present study has significant impact for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Alok Kumar Singh
- a School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| | - Rajeev Kumar Pandey
- b Cell Death and Differentiation Research Laboratory, National Institute of Immunology , New Delhi , India
| | - Chandrima Shaha
- b Cell Death and Differentiation Research Laboratory, National Institute of Immunology , New Delhi , India
| | - Rentala Madhubala
- a School of Life Sciences, Jawaharlal Nehru University , New Delhi , India
| |
Collapse
|
17
|
Sabur A, Asad M, Ali N. Lipid based delivery and immuno-stimulatory systems: Master tools to combat leishmaniasis. Cell Immunol 2016; 309:55-60. [PMID: 27470274 DOI: 10.1016/j.cellimm.2016.07.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/25/2022]
Abstract
Disease management of leishmaniasis is appalling due to lack of a human vaccine and the toxicity and resistance concerns with limited therapeutic drugs. The challenges in development of a safe vaccine for generation and maintenance of robust antileishmanial protective immunity through a human administrable route of immunization can be addressed through immunomodulation and targeted delivery. The versatility of lipid based particulate system for deliberate delivery of diverse range of molecules including immunomodulators, antigens and drugs have essentially found pivotal role in design of proficient vaccination and therapeutic strategies against leishmaniasis. The prospects of lipid based preventive and curative formulations for leishmaniasis have been highlighted in this review.
Collapse
Affiliation(s)
- Abdus Sabur
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| | - Nahid Ali
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, 4, Raja SC Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
18
|
Fernández-Figueroa EA, Imaz-Rosshandler I, Castillo-Fernández JE, Miranda-Ortíz H, Fernández-López JC, Becker I, Rangel-Escareño C. Down-Regulation of TLR and JAK/STAT Pathway Genes Is Associated with Diffuse Cutaneous Leishmaniasis: A Gene Expression Analysis in NK Cells from Patients Infected with Leishmania mexicana. PLoS Negl Trop Dis 2016; 10:e0004570. [PMID: 27031998 PMCID: PMC4816531 DOI: 10.1371/journal.pntd.0004570] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 03/02/2016] [Indexed: 12/15/2022] Open
Abstract
An important NK-cell inhibition with reduced TNF-α, IFN-γ and TLR2 expression had previously been identified in patients with diffuse cutaneous leishmaniasis (DCL) infected with Leishmania mexicana. In an attempt to pinpoint alterations in the signaling pathways responsible for the NK-cell dysfunction in patients with DCL, this study aimed at identifying differences in the NK-cell response towards Leishmania mexicana lipophosphoglycan (LPG) between patients with localized and diffuse cutaneous leishmaniasis through gene expression profiling. Our results indicate that important genes involved in the innate immune response to Leishmania are down-regulated in NK cells from DCL patients, particularly TLR and JAK/STAT signaling pathways. This down-regulation showed to be independent of LPG stimulation. The study sheds new light for understanding the mechanisms that undermine the correct effector functions of NK cells in patients with diffuse cutaneous leishmaniasis contributing to a better understanding of the pathobiology of leishmaniasis. Leishmaniasis, caused by protozoan parasites is considered a neglected disease. Leishmania mexicana can cause localized or diffuse cutaneous leishmaniasis. Patients with localized cutaneous leishmaniasis contain the parasite within granulomas, whereas patients with diffuse cutaneous leishmaniasis show uncontrolled parasite spread. The cause of this progression remains unknown. However, NK cells have been shown to play an important role since they are among the first to produce cytokines (IFN-γ and TNF-α) that help phagocytic cells to eliminate the intracellular parasite. Previous studies had shown that NK cells of patients with diffuse cutaneous leishmaniasis are unresponsive to Leishmania, yet underlying mechanisms were unknown. The current work aims at understanding how the parasite modulates NK-cell responses through gene expression profiling between patients with localized and diffuse cutaneous leishmaniasis. A highlight of our results is that NK cells of patients with the uncontrolled form of leishmaniasis show down-regulation patterns for genes that regulate the innate immune response through TLR receptors and JAK/STAT signaling pathways at different levels: transcription factors (NF-κB and STAT-1), cytokine receptors (IFN-γR2 and IL-12Rβ2) and cytokines (TNF-α). The alteration of expression levels for genes in immune response signaling pathways could predispose to DCL development and/or be associated with disease severity.
Collapse
Affiliation(s)
| | - Iván Imaz-Rosshandler
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Juan E. Castillo-Fernández
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Haydee Miranda-Ortíz
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Juan C. Fernández-López
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
| | - Ingeborg Becker
- Computational Genomics, Instituto Nacional de Medicina Genómica, Arenal Tepepan, México D.F., México
- * E-mail: (CRE); (IB)
| | - Claudia Rangel-Escareño
- Unidad de Investigación en Medicina Experimental, Centro de Medicina Tropical, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida, D.F., México
- * E-mail: (CRE); (IB)
| |
Collapse
|
19
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016; 7:183. [PMID: 26941717 PMCID: PMC4764696 DOI: 10.3389/fmicb.2016.00183] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/02/2016] [Indexed: 01/08/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host’s MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
20
|
Soares-Silva M, Diniz FF, Gomes GN, Bahia D. The Mitogen-Activated Protein Kinase (MAPK) Pathway: Role in Immune Evasion by Trypanosomatids. Front Microbiol 2016. [PMID: 26941717 DOI: 10.3389/fmicb.2016.00183/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Leishmania spp. and Trypanosoma cruzi are the causative agents of leishmaniasis and Chagas disease, respectively, two neglected tropical diseases that affect about 25 million people worldwide. These parasites belong to the family Trypanosomatidae, and are both obligate intracellular parasites that manipulate host signaling pathways and the innate immune system to establish infection. Mitogen-activated protein kinases (MAPKs) are serine and threonine protein kinases that are highly conserved in eukaryotes, and are involved in signal transduction pathways that modulate physiological and pathophysiological cell responses. This mini-review highlights existing knowledge concerning the mechanisms that Leishmania spp. and T. cruzi have evolved to target the host's MAPK signaling pathways and highjack the immune response, and, in this manner, promote parasite maintenance in the host.
Collapse
Affiliation(s)
- Mercedes Soares-Silva
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Flavia F Diniz
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Gabriela N Gomes
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Minas Gerais, Brazil
| | - Diana Bahia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisMinas Gerais, Brazil; Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São PauloSão Paulo, Brazil
| |
Collapse
|
21
|
Giri J, Srivastav S, Basu M, Palit S, Gupta P, Ukil A. Leishmania donovani Exploits Myeloid Cell Leukemia 1 (MCL-1) Protein to Prevent Mitochondria-dependent Host Cell Apoptosis. J Biol Chem 2015; 291:3496-507. [PMID: 26670606 DOI: 10.1074/jbc.m115.672873] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is one of the mechanisms used by host cells to remove unwanted intracellular organisms, and often found to be subverted by pathogens through use of host anti-apoptotic proteins. In the present study, with the help of in vitro and in vivo approaches, we documented that the macrophage anti-apoptotic protein myeloid cell leukemia 1 (MCL-1) is exploited by the intra-macrophage parasite Leishmania donovani to protect their "home" from actinomycin D-induced mitochondria-dependent apoptosis. Among all the anti-apoptotic BCL-2 family members, infection preferentially up-regulated expression of MCL-1 at both the mRNA and protein levels and compared with infected control, MCL-1-silenced infected macrophages documented enhanced caspase activity and increased apoptosis when subjected to actinomycin D treatment. Phosphorylation kinetics and ChIP assay demonstrated that infection-induced MCL-1 expression was regulated by transcription factor CREB (cAMP-response element-binding protein) and silencing of CREB resulted in reduced expression of MCL-1 and increased apoptosis. During infection, MCL-1 was found to be localized in mitochondria and this was significantly reduced in Tom70-silenced macrophages, suggesting the active role of TOM70 in MCL-1 transport. In the mitochondria, MCL-1 interacts with the major pro-apoptotic protein BAK and prevents BAK-BAK homo-oligomer formation thereby preventing cytochrome c release-mediated mitochondrial dysfunction. Silencing of MCL-1 in the spleen of infected mice showed decreased parasite burden and increased induction of splenocyte apoptosis. Collectively our results showed that L. donovani exploited the macrophage anti-apoptotic protein MCL-1 to prevent BAK-mediated mitochondria-dependent apoptosis thereby protecting its niche, which is essential for disease progression.
Collapse
Affiliation(s)
- Jayeeta Giri
- From the Department of Biochemistry, University of Calcutta, Kolkata and
| | - Supriya Srivastav
- the Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Moumita Basu
- From the Department of Biochemistry, University of Calcutta, Kolkata and
| | - Shreyasi Palit
- the Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Purnima Gupta
- From the Department of Biochemistry, University of Calcutta, Kolkata and
| | - Anindita Ukil
- From the Department of Biochemistry, University of Calcutta, Kolkata and
| |
Collapse
|
22
|
Dar AA, Enjamuri N, Shadab M, Ali N, Khan AT. Synthesis of Unsymmetrical Sulfides and Their Oxidation to Sulfones to Discover Potent Antileishmanial Agents. ACS COMBINATORIAL SCIENCE 2015; 17:671-81. [PMID: 26441303 DOI: 10.1021/acscombsci.5b00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Unsymmetrical sulfides were first synthesized using combinations of a 1,3-dicarbonyl, an aromatic aldehyde and a thiol in the presence of 10 mol % ethanolic piperidine. These sulfides derivatives were subsequently converted into corresponding sulfones via oxidation in the presence of m-chloroperoxybenzoic acid (m-CPBA) at ice-bath to room temperature. The former reaction was achieved at room temperature through one-pot three-component. The later was obtained in good yields using mild reaction conditions with flexibility in choice from a range of substrates. The antimicrobial properties of the newly synthesized sulfone derivatives were investigated against the protozoan parasite, Leishmania donovani, a causative agent of visceral leishmaniasis (VL). Nine sulfone derivatives were found to be efficacious and exhibited significant antimicrobial activity. Further, these compounds were nontoxic on murine peritoneal macrophages thus eliminating potential cytoxicity in the host cells. These compounds may be indicated as potential leads in the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Ajaz A. Dar
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | - Nagasuresh Enjamuri
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
| | | | - Nahid Ali
- Infectious
Diseases and Immunology Division, Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata 700 032, India
| | - Abu T. Khan
- Department
of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781 039, India
- Aliah University, IIA/27, New
Town, Kolkata-700 156, West Bengal, India
| |
Collapse
|
23
|
Khadem F, Uzonna JE. Immunity to visceral leishmaniasis: implications for immunotherapy. Future Microbiol 2015; 9:901-15. [PMID: 25156379 DOI: 10.2217/fmb.14.43] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, L. infantum (syn. Leishmania chagasi), is a globally widespread disease with a burden of about 400,000 new infections reported annually. It is the most dangerous form of human leishmaniasis in terms of mortality and morbidity and is spreading to several nonendemic areas because of migration, global traveling and military conflicts. The emergence of Leishmania-HIV co-infection and increased prevalence of drug-resistant strains have worsened the impact of the disease. The traditional low-cost drugs are often toxic with several adverse effects, highlighting the need for development of new therapeutic and prophylactic strategies. Therefore, a detailed understanding of mechanisms of protective immunity is extremely important in order to develop new therapeutics in the form of vaccines or immunotherapies. This review gives an overview of visceral leishmaniasis, with particular emphasis on the innate and adaptive immune responses, vaccine and vaccination strategies and their potentials for immunotherapy against the disease.
Collapse
Affiliation(s)
- Forough Khadem
- Department of Immunology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
24
|
Stahl P, Schwarz RT, Debierre-Grockiego F, Meyer T. Trypanosoma cruzi parasites fight for control of the JAK-STAT pathway by disarming their host. JAKSTAT 2015; 3:e1012964. [PMID: 26413423 DOI: 10.1080/21623996.2015.1012964] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/13/2022] Open
Abstract
The zoonotic Chagas' disease is caused by infections with the hemoflagellate Trypanosoma cruzi (T. cruzi) which is endemic in Latin America. Despite recent advances in our understanding of the pathogenesis of the disease, the underlying molecular processes involved in host-parasite interactions are only poorly understood. In particular, the mechanisms for parasite persistence in host cells remain largely unknown. Cytokine-driven transcription factors from the family of STAT (signal transducer and activator of transcription) proteins appear to play a central role in the fight against T. cruzi infection. However, amastigotes proliferating in the cytoplasm of infected host cells develop effective strategies to circumvent the attack executed by STAT proteins. This review highlights the interactions between T. cruzi parasites and human host cells in terms of cytokine signaling and, in particular, discusses the impact of STATs on the balance between parasite invasion and clearance.
Collapse
Affiliation(s)
- Philipp Stahl
- Institute of Virology; Parasitology Unit; University of Marburg ; Marburg, Germany
| | - Ralph T Schwarz
- Institute of Virology; Parasitology Unit; University of Marburg ; Marburg, Germany ; Laboratory for Structural and Functional Glycobiology; University of Lille 1 for Sciences and Technologies ; Lille, France
| | - Françoise Debierre-Grockiego
- Mixed Research Unit 1282; François Rabelais University of Tours-INRA; Infectious Diseases and Public Health ; Tours, France
| | - Thomas Meyer
- Department of Psychosomatic Medicine and Psychotherapy; University of Göttingen ; Göttingen, Germany ; German Center for Cardiovascular Research ; Göttingen, Germany
| |
Collapse
|
25
|
Marr AK, MacIsaac JL, Jiang R, Airo AM, Kobor MS, McMaster WR. Leishmania donovani infection causes distinct epigenetic DNA methylation changes in host macrophages. PLoS Pathog 2014; 10:e1004419. [PMID: 25299267 PMCID: PMC4192605 DOI: 10.1371/journal.ppat.1004419] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/23/2014] [Indexed: 12/15/2022] Open
Abstract
Infection of macrophages by the intracellular protozoan Leishmania leads to down-regulation of a number of macrophage innate host defense mechanisms, thereby allowing parasite survival and replication. The underlying molecular mechanisms involved remain largely unknown. In this study, we assessed epigenetic changes in macrophage DNA methylation in response to infection with L. donovani as a possible mechanism for Leishmania driven deactivation of host defense. We quantified and detected genome-wide changes of cytosine methylation status in the macrophage genome resulting from L. donovani infection. A high confidence set of 443 CpG sites was identified with changes in methylation that correlated with live L. donovani infection. These epigenetic changes affected genes that play a critical role in host defense such as the JAK/STAT signaling pathway and the MAPK signaling pathway. These results provide strong support for a new paradigm in host-pathogen responses, where upon infection the pathogen induces epigenetic changes in the host cell genome resulting in downregulation of innate immunity thereby enabling pathogen survival and replication. We therefore propose a model whereby Leishmania induced epigenetic changes result in permanent down regulation of host defense mechanisms to protect intracellular replication and survival of parasitic cells. The L. donovani parasite causes visceral leishmaniasis, a tropical, neglected disease with an estimated number of 500,000 cases worldwide. Current drug treatments have toxic side effects, lead to drug resistance, and an effective vaccine is not available. The parasite has a complex life cycle residing within different host environments including the gut of a sand fly and immune cells of the mammalian host. Alteration of host cell gene expression including signaling pathways has been shown to be a major strategy to evade host cell immune response and thus enables the Leishmania parasite to survive, replicate and persist in its host cells. Recently it was demonstrated that intracellular pathogens such as viruses and bacteria are able to manipulate epigenetic processes, thereby perhaps facilitating their intracellular survival. Using an unbiased genome-wide DNA methylation approach, we demonstrate here that an intracellular parasite can alter host cell DNA methylation patterns resulting in altered gene expression possibly to establish disease. Thus DNA methylation changes in host cells upon infection might be a common strategy among intracellular pathogens for their uncontrolled replication and dissemination.
Collapse
Affiliation(s)
- Alexandra K. Marr
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Julia L. MacIsaac
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Ruiwei Jiang
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Adriana M. Airo
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Michael S. Kobor
- Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Human Early Learning Partnership, School of Population and Public Health, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (MSK); (WRM)
| | - W. Robert McMaster
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- * E-mail: (MSK); (WRM)
| |
Collapse
|
26
|
Saha A, Biswas A, Srivastav S, Mukherjee M, Das PK, Ukil A. Prostaglandin E2 negatively regulates the production of inflammatory cytokines/chemokines and IL-17 in visceral leishmaniasis. THE JOURNAL OF IMMUNOLOGY 2014; 193:2330-9. [PMID: 25049356 DOI: 10.4049/jimmunol.1400399] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Persistence of intracellular infection depends on the exploitation of factors that negatively regulate the host immune response. In this study, we elucidated the role of macrophage PGE2, an immunoregulatory lipid, in successful survival of Leishmania donovani, causative agent of the fatal visceral leishmaniasis. PGE2 production was induced during infection and resulted in increased cAMP level in peritoneal macrophages through G protein-coupled E-series prostanoid (EP) receptors. Among four different EPs (EP1-4), infection upregulated the expression of only EP2, and individual administration of either EP2-specific agonist, butaprost, or 8-Br-cAMP, a cell-permeable cAMP analog, promoted parasite survival. Inhibition of cAMP also induced generation of reactive oxygen species, an antileishmanial effector molecule. Negative modulation of PGE2 signaling reduced infection-induced anti-inflammatory cytokine polarization and enhanced inflammatory chemokines, CCL3 and CCL5. Effect of PGE2 on cytokine and chemokine production was found to be differentially modulated by cAMP-dependent protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC). PGE2-induced decreases in TNF-α and CCL5 were mediated specifically by PKA, whereas administration of brefeldin A, an EPAC inhibitor, could reverse decreased production of CCL3. Apart from modulating inflammatory/anti-inflammatory balance, PGE2 inhibited antileishmanial IL-17 cytokine production in splenocyte culture. Augmented PGE2 production was also found in splenocytes of infected mice, and administration of EP2 antagonist in mice resulted in reduced liver and spleen parasite burden along with host-favorable T cell response. These results suggest that Leishmania facilitates an immunosuppressive environment in macrophages by PGE2-driven, EP2-mediated cAMP signaling that is differentially regulated by PKA and EPAC.
Collapse
Affiliation(s)
- Amrita Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| | - Arunima Biswas
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Supriya Srivastav
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, Council of Scientific & Industrial Research-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India; and
| |
Collapse
|
27
|
Singh OP, Sundar S. Immunotherapy and targeted therapies in treatment of visceral leishmaniasis: current status and future prospects. Front Immunol 2014; 5:296. [PMID: 25183962 PMCID: PMC4135235 DOI: 10.3389/fimmu.2014.00296] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 06/07/2014] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) is a vector-borne chronic infectious disease caused by the protozoan parasite Leishmania donovani or Leishmania infantum. VL is a serious public health problem, causing high morbidity and mortality in the developing world with an estimated 0.2-0.4 million new cases each year. In the absence of a vaccine, chemotherapy remains the favored option for disease control, but is limited by a narrow therapeutic index, significant toxicities, and frequently acquired resistance. Improved understanding of VL pathogenesis offers the development and deployment of immune based treatment options either alone or in combination with chemotherapy. Modulations of host immune response include the inhibition of molecular pathways that are crucial for parasite growth and maintenance; and stimulation of host effectors immune responses that restore the impaired effector functions. In this review, we highlight the challenges in treatment of VL with a particular emphasis on immunotherapy and targeted therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Om Prakash Singh
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| | - Shyam Sundar
- Infectious Disease Research Laboratory, Department of Medicine, Institute of Medical Sciences, Banaras Hindu University , Varanasi , Uttar Pradesh, India
| |
Collapse
|
28
|
Lemaire J, Mkannez G, Guerfali FZ, Gustin C, Attia H, Sghaier RM, Sysco-Consortium, Dellagi K, Laouini D, Renard P. MicroRNA expression profile in human macrophages in response to Leishmania major infection. PLoS Negl Trop Dis 2013; 7:e2478. [PMID: 24098824 PMCID: PMC3789763 DOI: 10.1371/journal.pntd.0002478] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 08/30/2013] [Indexed: 12/31/2022] Open
Abstract
Background Leishmania (L.) are intracellular protozoan parasites able to survive and replicate in the hostile phagolysosomal environment of infected macrophages. They cause leishmaniasis, a heterogeneous group of worldwide-distributed affections, representing a paradigm of neglected diseases that are mainly embedded in impoverished populations. To establish successful infection and ensure their own survival, Leishmania have developed sophisticated strategies to subvert the host macrophage responses. Despite a wealth of gained crucial information, these strategies still remain poorly understood. MicroRNAs (miRNAs), an evolutionarily conserved class of endogenous 22-nucleotide non-coding RNAs, are described to participate in the regulation of almost every cellular process investigated so far. They regulate the expression of target genes both at the levels of mRNA stability and translation; changes in their expression have a profound effect on their target transcripts. Methodology/Principal Findings We report in this study a comprehensive analysis of miRNA expression profiles in L. major-infected human primary macrophages of three healthy donors assessed at different time-points post-infection (three to 24 h). We show that expression of 64 out of 365 analyzed miRNAs was consistently deregulated upon infection with the same trends in all donors. Among these, several are known to be induced by TLR-dependent responses. GO enrichment analysis of experimentally validated miRNA-targeted genes revealed that several pathways and molecular functions were disturbed upon parasite infection. Finally, following parasite infection, miR-210 abundance was enhanced in HIF-1α-dependent manner, though it did not contribute to inhibiting anti-apoptotic pathways through pro-apoptotic caspase-3 regulation. Conclusions/Significance Our data suggest that alteration in miRNA levels likely plays an important role in regulating macrophage functions following L. major infection. These results could contribute to better understanding of the dynamics of gene expression in host cells during leishmaniasis. Leishmania parasites belong to different species, each one characterized by specific vectors and reservoirs, and causes cutaneous or visceral disease(s) of variable clinical presentation and severity. In its mammalian host, the parasite is an obligate intracellular pathogen infecting the monocyte/macrophage lineage. Leishmania have developed ambiguous relationships with macrophages. Indeed, these cells are the shelter of invading parasites, where they will grow and eventually will reside in a silent state for life. But macrophages are also the cells that participate, through the induction of several pro-inflammatory mediators and antigen presentation, to shape the host immune response and ultimately kill the invader. To subvert these anti-parasite responses, Leishmania manipulate the host machinery for their own differentiation and survival. We aimed to evaluate the impact of L. major (the causative agent of zoonotic cutaneous leishmaniasis) infection on deregulation of non-coding miRNAs, a class of important regulators of gene expression. Our results revealed the implication of several miRNAs on macrophage fate upon parasite infection through regulation of different pathways, including cell death. Our findings provided a new insight for understanding mechanisms governing this miRNA deregulation by parasite infection and will help to provide clues for the development of control strategies for this disease.
Collapse
Affiliation(s)
- Julien Lemaire
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
| | - Ghada Mkannez
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Fatma Z. Guerfali
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Cindy Gustin
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
| | - Hanène Attia
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Rabiaa M. Sghaier
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | | | - Koussay Dellagi
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- Institut de Recherche pour le Développement (IRD) et Centre de Recherche et de Veille sur les Maladies Emergentes dans l'Océan Indien (CRVOI), Sainte Clotilde, Reunion Island, France
| | - Dhafer Laouini
- Institut Pasteur de Tunis, LR11IPT02, Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Tunis-Belvédère, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
- * E-mail: , (DL); (PR)
| | - Patricia Renard
- Laboratory of Biochemistry and Cellular Biology (URBC), NARILIS-University of Namur, Namur, Belgium
- * E-mail: , (DL); (PR)
| |
Collapse
|
29
|
Mol M, Patole MS, Singh S. Signaling networks in Leishmania macrophages deciphered through integrated systems biology: a mathematical modeling approach. SYSTEMS AND SYNTHETIC BIOLOGY 2013; 7:185-95. [PMID: 24432155 DOI: 10.1007/s11693-013-9111-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 06/25/2013] [Indexed: 02/07/2023]
Abstract
Network of signaling proteins and functional interaction between the infected cell and the leishmanial parasite, though are not well understood, may be deciphered computationally by reconstructing the immune signaling network. As we all know signaling pathways are well-known abstractions that explain the mechanisms whereby cells respond to signals, collections of pathways form networks, and interactions between pathways in a network, known as cross-talk, enables further complex signaling behaviours. In silico perturbations can help identify sensitive crosstalk points in the network which can be pharmacologically tested. In this study, we have developed a model for immune signaling cascade in leishmaniasis and based upon the interaction analysis obtained through simulation, we have developed a model network, between four signaling pathways i.e., CD14, epidermal growth factor (EGF), tumor necrotic factor (TNF) and PI3 K mediated signaling. Principal component analysis of the signaling network showed that EGF and TNF pathways can be potent pharmacological targets to curb leishmaniasis. The approach is illustrated with a proposed workable model of epidermal growth factor receptor (EGFR) that modulates the immune response. EGFR signaling represents a critical junction between inflammation related signal and potent cell regulation machinery that modulates the expression of cytokines.
Collapse
Affiliation(s)
- Milsee Mol
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune, India
| | - Milind S Patole
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune University Campus, Pune, India
| |
Collapse
|
30
|
Soong L, Henard CA, Melby PC. Immunopathogenesis of non-healing American cutaneous leishmaniasis and progressive visceral leishmaniasis. Semin Immunopathol 2012; 34:735-51. [PMID: 23053396 PMCID: PMC4111229 DOI: 10.1007/s00281-012-0350-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 09/21/2012] [Indexed: 12/21/2022]
Abstract
The outcomes of Leishmania infection are determined by host immune and nutrition status, parasite species, and co-infection with other pathogens. While subclinical infection and self-healing cutaneous leishmaniasis (CL) are common, uncontrolled parasite replication can lead to non-healing local lesions or visceral leishmaniasis (VL). It is known that infection control requires Th1-differentiation cytokines (IL-12, IL-18, and IL-27) and Th1 cell and macrophage activation. However, there is no generalized consensus for the mechanisms of host susceptibility. The recent studies on regulatory T cells and IL-17-producing cells help explain the effector T cell responses that occur independently of the known Th1/Th2 cell signaling pathways. This review focuses on the immunopathogenesis of non-healing American CL and progressive VL. We summarize recent evidence from human and animal studies that reveals the mechanisms of dysregulated, hyper-responses to Leishmania braziliensis, as well as the presence of disease-promoting or the absence of protective responses to Leishmania amazonensis and Leishmania donovani. We highlight immune-mediated parasite growth and immunopathogenesis, with an emphasis on the putative roles of IL-17 and its related cytokines as well as arginase. A better understanding of the quality and regulation of innate immunity and T cell responses triggered by Leishmania will aid in the rational control of pathology and the infection.
Collapse
Affiliation(s)
- Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA.
| | | | | |
Collapse
|
31
|
Das A, Ali N. Vaccine Development Against Leishmania donovani. Front Immunol 2012; 3:99. [PMID: 22615707 PMCID: PMC3351671 DOI: 10.3389/fimmu.2012.00099] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/14/2012] [Indexed: 11/13/2022] Open
Abstract
Visceral leishmaniasis (VL) caused by Leishmania donovani and Leishmania infantum/chagasi represents the second most challenging infectious disease worldwide, leading to nearly 500,000 new cases and 60,000 deaths annually. Zoonotic VL caused by L. infantum is a re-emergent canid zoonoses which represents a complex epidemiological cycle in the New world where domestic dogs serve as a reservoir host responsible for potentially fatal human infection and where dog culling is the only measure for reservoir control. Life-long immunity to VL has motivated development of prophylactic vaccines against the disease but very few have progressed beyond the experimental stage. No licensed vaccine is available till date against any form of leishmaniasis. High toxicity and increasing resistance to the current chemotherapeutic regimens have further complicated the situation in VL endemic regions of the world. Advances in vaccinology, including recombinant proteins, novel antigen-delivery systems/adjuvants, heterologous prime-boost regimens and strategies for intracellular antigen presentation, have contributed to recent advances in vaccine development against VL. Attempts to develop an effective vaccine for use in domestic dogs in areas of canine VL should be pursued for preventing human infection. Studies in animal models and human patients have revealed the pathogenic mechanisms of disease progression and features of protective immunity. This review will summarize the accumulated knowledge of pathogenesis, immune response, and prerequisites for protective immunity against human VL. Authors will discuss promising vaccine candidates, their developmental status and future prospects in a quest for rational vaccine development against the disease. In addition, several challenges such as safety issues, renewed and coordinated commitment to basic research, preclinical studies and trial design will be addressed to overcome the problems faced in developing prophylactic strategies for protection against this lethal infection.
Collapse
Affiliation(s)
- Amrita Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology Kolkata, India
| | | |
Collapse
|