1
|
Bakhtiyari M, Liaghat M, Aziziyan F, Shapourian H, Yahyazadeh S, Alipour M, Shahveh S, Maleki-Sheikhabadi F, Halimi H, Forghaniesfidvajani R, Zalpoor H, Nabi-Afjadi M, Pornour M. The role of bone marrow microenvironment (BMM) cells in acute myeloid leukemia (AML) progression: immune checkpoints, metabolic checkpoints, and signaling pathways. Cell Commun Signal 2023; 21:252. [PMID: 37735675 PMCID: PMC10512514 DOI: 10.1186/s12964-023-01282-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Acute myeloid leukemia (AML) comprises a multifarious and heterogeneous array of illnesses characterized by the anomalous proliferation of myeloid cells in the bone marrow microenvironment (BMM). The BMM plays a pivotal role in promoting AML progression, angiogenesis, and metastasis. The immune checkpoints (ICs) and metabolic processes are the key players in this process. In this review, we delineate the metabolic and immune checkpoint characteristics of the AML BMM, with a focus on the roles of BMM cells e.g. tumor-associated macrophages, natural killer cells, dendritic cells, metabolic profiles and related signaling pathways. We also discuss the signaling pathways stimulated in AML cells by BMM factors that lead to AML progression. We then delve into the roles of immune checkpoints in AML angiogenesis, metastasis, and cell proliferation, including co-stimulatory and inhibitory ICs. Lastly, we discuss the potential therapeutic approaches and future directions for AML treatment, emphasizing the potential of targeting metabolic and immune checkpoints in AML BMM as prognostic and therapeutic targets. In conclusion, the modulation of these processes through the use of directed drugs opens up new promising avenues in combating AML. Thereby, a comprehensive elucidation of the significance of these AML BMM cells' metabolic and immune checkpoints and signaling pathways on leukemic cells can be undertaken in the future investigations. Additionally, these checkpoints and cells should be considered plausible multi-targeted therapies for AML in combination with other conventional treatments in AML. Video Abstract.
Collapse
Affiliation(s)
- Maryam Bakhtiyari
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mahsa Liaghat
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Medical Laboratory Sciences, Faculty of Medical Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Fatemeh Aziziyan
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hooriyeh Shapourian
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sheida Yahyazadeh
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maedeh Alipour
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Shaghayegh Shahveh
- American Association of Naturopath Physician (AANP), Washington, DC, USA
| | - Fahimeh Maleki-Sheikhabadi
- Department of Hematology and Blood Banking, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Halimi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Razieh Forghaniesfidvajani
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Hamidreza Zalpoor
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran.
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Majid Pornour
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, MD, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Javed H, Singh S, Urs SUR, Oldenburg J, Biswas A. Genetic landscape in coagulation factor XIII associated defects – Advances in coagulation and beyond. Blood Rev 2022; 59:101032. [PMID: 36372609 DOI: 10.1016/j.blre.2022.101032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Coagulation factor XIII (FXIII) acts as a fine fulcrum in blood plasma that maintains the balance between bleeding and thrombosis by covalently crosslinking the pre-formed fibrin clot into an insoluble one that is resistant to premature fibrinolysis. In plasma, FXIII circulates as a pro-transglutaminase complex composed of the dimeric catalytic FXIII-A encoded by the F13A1 gene and dimeric carrier/regulatory FXIII-B subunits encoded by the F13B gene. Growing evidence accumulated over decades of exhaustive research shows that not only does FXIII play major roles in both pathological extremes of hemostasis i.e. bleeding and thrombosis, but that it is, in fact, a pleiotropic protein with physiological roles beyond coagulation. However, the current FXIII genetic-epidemiological literature is overwhelmingly derived from the bleeding pathology associated with its deficiency. In this article we review the current clinical, functional, and molecular understanding of this fascinating multifaceted protein, especially putting into the same perspective its genetic landscape.
Collapse
|
3
|
Discrete Logic Modeling of Cell Signaling Pathways. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2488:159-181. [PMID: 35347689 DOI: 10.1007/978-1-0716-2277-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell signaling pathways often crosstalk generating complex biological behaviors observed in different cellular contexts. Frequently, laboratory experiments focus on a few putative regulators, alone unable to predict the molecular mechanisms behind the observed phenotypes. Here, systems biology complements these approaches by giving a holistic picture to complex signaling crosstalk. In particular, Boolean network models are a meaningful tool to study large network behaviors and can cope with incomplete kinetic information. By introducing a model describing pathways involved in hematopoietic stem cell maintenance, we present a general approach on how to model cell signaling pathways with Boolean network models.
Collapse
|
4
|
Wang J, Xiong M, Sun Q, Tan WS, Cai H. Three-Dimension Co-culture of Hematopoietic Stem Cells and Differentiated Osteoblasts on Gallic Acid Grafted-Chitosan Scaffold as a Model of Hematopoietic Stem Cells Niche. Stem Cell Rev Rep 2022; 18:1168-1180. [PMID: 34985623 DOI: 10.1007/s12015-021-10325-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/28/2021] [Indexed: 11/26/2022]
Abstract
The existing approaches of hematopoietic stem cells (HSCs) expansion in vitro were difficult to meet the needs of clinical application. While in vivo, HSCs efficiently self-renew in niche where they interact with three dimension extracellular matrix and stromal cells. Osteoblasts (OBs) are one of most significant stromal cells of HSCs niche. Here, we proposed a three-dimensional environment based on gallic acid grafted-chitosan (2c) scaffold and OBs differentiated from human umbilical cord mesenchymal stem cells (HUMSCs) to recapitulate the main components of HSCs niche. The results of alkaline phosphatase staining and alizarin red staining demonstrated that HUMSCs were successfully induced into OBs. The results showed that the expansions of CD34+cells, CD34+CD38- cells and CD34+CD38-CD45RA-CD49f+CD90+ cells (primitive hematopoietic stem cells, pHSCs) harvested from the biomimetic HSCs niche based on 2c scaffold and OBs (IV) group were larger than those harvested from other three culture groups. Importantly, it was found that the CD34+ cells harvested from IV group had better secondary expansion capability and colony forming potential, indicating better self-renewal ability. In addition, the biomimetic HSCs niche based on 2c scaffold and OBs protected HSCs apoptosis and promoted HSCs division. Taken together, the biomimetic HSCs niche based on 2c scaffold and OBs was an effective strategy for ex vivo expansion of HSCs in clinical scale.
Collapse
Affiliation(s)
- Jin Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Minghao Xiong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Qihao Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Haibo Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.
| |
Collapse
|
5
|
Filik Y, Bauer K, Hadzijusufovic E, Haider P, Greiner G, Witzeneder N, Hoermann G, Hohensinner PJ, Gleixner KV, Wojta J, Sperr WR, Valent P. PI3-kinase inhibition as a strategy to suppress the leukemic stem cell niche in Ph+ chronic myeloid leukemia. Am J Cancer Res 2021; 11:6042-6059. [PMID: 35018241 PMCID: PMC8727792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/03/2021] [Indexed: 06/14/2023] Open
Abstract
Recent data suggest that the disease-associated microenvironment, known as the leukemic stem cell (LSC) niche, is substantially involved in drug resistance of LSC in BCR-ABL1+ chronic myeloid leukemia (CML). Attacking the LSC niche in CML may thus be an effective approach to overcome drug resistance. We have recently shown that osteoblasts are a major site of niche-mediated LSC resistance against second- and third-generation tyrosine kinase inhibitors (TKI) in CML. In the present study, we screened for drugs that are capable of suppressing the growth and viability of osteoblasts and/or other niche cells and can thereby overcome TKI resistance of CML LSC. Proliferation was analyzed by determining 3H-thymidine uptake in niche-related cells, and apoptosis was measured by Annexin-V/DAPI-staining and flow cytometry. We found that the dual PI3 kinase (PI3K) and mTOR inhibitor BEZ235 and the selective pan-PI3K inhibitor copanlisib suppress proliferation of primary osteoblasts (BEZ235 IC50: 0.05 μM; copanlisib IC50: 0.05 μM), the osteoblast cell line CAL-72 (BEZ235 IC50: 0.5 μM; copanlisib IC50: 1 μM), primary umbilical vein-derived endothelial cells (BEZ235 IC50: 0.5 μM; copanlisib IC50: 0.5 μM), and the vascular endothelial cell line HMEC-1 (BEZ235 IC50: 1 μM; copanlisib IC50: 1 μM), whereas no comparable effects were seen with the mTOR inhibitor rapamycin. Furthermore, we show that BEZ235 and copanlisib cooperate with nilotinib and ponatinib in suppressing proliferation and survival of osteoblasts and endothelial cells. Finally, BEZ235 and copanlisib were found to overcome osteoblast-mediated resistance against nilotinib and ponatinib in K562 cells, KU812 cells and primary CD34+/CD38- CML LSC. Together, targeting osteoblastic niche cells through PI3K inhibition may be a new effective approach to overcome niche-induced TKI resistance in CML. Whether this approach can be translated into clinical application and can counteract drug resistance of LSC in patients with CML remains to be determined in clinical trials.
Collapse
Affiliation(s)
- Yüksel Filik
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Karin Bauer
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Emir Hadzijusufovic
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
- Department/Clinic for Companion Animals and Horses, Clinic for Small Animals, Clinical Unit of Internal Medicine, University of Veterinary Medicine ViennaVienna, Austria
| | - Patrick Haider
- Department of Internal Medicine II, Division of Cardiology, Medical University of ViennaVienna, Austria
| | - Georg Greiner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Laboratory Medicine, Medical University of ViennaVienna, Austria
- Ihr Labor, Medical Diagnostic LaboratoriesVienna, Austria
| | - Nadine Witzeneder
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Laboratory Medicine, Medical University of ViennaVienna, Austria
| | - Gregor Hoermann
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Laboratory Medicine, Medical University of ViennaVienna, Austria
- MLL Munich Leukemia LaboratoryMunich, Germany
| | - Philipp J Hohensinner
- Department of Internal Medicine II, Division of Cardiology, Medical University of ViennaVienna, Austria
| | - Karoline V Gleixner
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Johann Wojta
- Department of Internal Medicine II, Division of Cardiology, Medical University of ViennaVienna, Austria
- Ludwig Boltzmann Institute for Cardiovascular Research, Medical University of ViennaVienna, Austria
| | - Wolfgang R Sperr
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| | - Peter Valent
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of ViennaVienna, Austria
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of ViennaVienna, Austria
| |
Collapse
|
6
|
Sharkeev YP, Komarova EG, Chebodaeva VV, Sedelnikova MB, Zakharenko AM, Golokhvast KS, Litvinova LS, Khaziakhmatova OG, Malashchenko VV, Yurova KA, Gazatova ND, Kozlov IG, Khlusova MY, Zaitsev KV, Khlusov IA. Amorphous-Crystalline Calcium Phosphate Coating Promotes In Vitro Growth of Tumor-Derived Jurkat T Cells Activated by Anti-CD2/CD3/CD28 Antibodies. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3693. [PMID: 34279263 PMCID: PMC8269898 DOI: 10.3390/ma14133693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
A modern trend in traumatology, orthopedics, and implantology is the development of materials and coatings with an amorphous-crystalline structure that exhibits excellent biocopatibility. The structure and physico-chemical and biological properties of calcium phosphate (CaP) coatings deposited on Ti plates using the micro-arc oxidation (MAO) method under different voltages (200, 250, and 300 V) were studied. Amorphous, nanocrystalline, and microcrystalline statesof CaHPO4 and β-Ca2P2O7 were observed in the coatings using TEM and XRD. The increase in MAO voltage resulted in augmentation of the surface roughness Ra from 2.5 to 6.5 µm, mass from 10 to 25 mg, thickness from 50 to 105 µm, and Ca/P ratio from 0.3 to 0.6. The electrical potential (EP) of the CaP coatings changed from -456 to -535 mV, while the zeta potential (ZP) decreased from -53 to -40 mV following an increase in the values of the MAO voltage. Numerous correlations of physical and chemical indices of CaP coatings were estimated. A decrease in the ZP magnitudes of CaP coatings deposited at 200-250 V was strongly associated with elevated hTERT expression in tumor-derived Jurkat T cells preliminarily activated with anti-CD2/CD3/CD28 antibodies and then contacted in vitro with CaP-coated samples for 14 days. In turn, in vitro survival of CD4+ subsets was enhanced, with proinflammatory cytokine secretion of activated Jurkat T cells. Thus, the applied MAO voltage allowed the regulation of the physicochemical properties of amorphous-crystalline CaP-coatings on Ti substrates to a certain extent. This method may be used as a technological mechanism to trigger the behavior of cells through contact with micro-arc CaP coatings. The possible role of negative ZP and Ca2+ as effectors of the biological effects of amorphous-crystalline CaP coatings is discussed. Micro-arc CaP coatings should be carefully tested to determine their suitability for use in patients with chronic lymphoid malignancies.
Collapse
Affiliation(s)
- Yurii P Sharkeev
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
- Research School of High-Energy Physics, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Ekaterina G Komarova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Valentina V Chebodaeva
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | - Mariya B Sedelnikova
- Laboratory of Physics of Nanostructured Biocomposites, Institute of Strength Physics and Materials Science, Siberian Branch of Russian Academy of Sciences, 634055 Tomsk, Russia
| | | | - Kirill S Golokhvast
- School of Engineering, Far Eastern Federal University, 690090 Vladivostok, Russia
| | - Larisa S Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Olga G Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Vladimir V Malashchenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Kristina A Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Natalia D Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
| | - Ivan G Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119991 Moscow, Russia
| | - Marina Y Khlusova
- Department of Pathophysiology, Siberian State Medical University, 634050 Tomsk, Russia
| | - Konstantin V Zaitsev
- Siberian Federal Scientific and Clinical Center of the Federal Medical-Biological Agency, 636070 Seversk, Russia
| | - Igor A Khlusov
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, 236029 Kaliningrad, Russia
- Research School of Chemistry and Applied Biomedical Sciences, National Research Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Morphology and General Pathology, Siberian State Medical University, 634050 Tomsk, Russia
| |
Collapse
|
7
|
Yoshida GJ, Saya H. Molecular pathology underlying the robustness of cancer stem cells. Regen Ther 2021; 17:38-50. [PMID: 33869685 PMCID: PMC8024885 DOI: 10.1016/j.reth.2021.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Intratumoral heterogeneity is tightly associated with the failure of anticancer treatment modalities including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Such heterogeneity is generated in an evolutionary manner not only as a result of genetic alterations but also by the presence of cancer stem cells (CSCs). CSCs are proposed to exist at the top of a tumor cell hierarchy and are undifferentiated tumor cells that manifest enhanced tumorigenic and metastatic potential, self-renewal capacity, and therapeutic resistance. Properties that contribute to the robustness of CSCs include the abilities to withstand redox stress, to rapidly repair damaged DNA, to adapt to a hyperinflammatory or hyponutritious tumor microenvironment, and to expel anticancer drugs by the action of ATP-binding cassette transporters as well as plasticity with regard to the transition between dormant CSC and transit-amplifying progenitor cell phenotypes. In addition, CSCs manifest the phenomenon of metabolic reprogramming, which is essential for maintenance of their self-renewal potential and their ability to adapt to changes in the tumor microenvironment. Elucidation of the molecular underpinnings of these biological features of CSCs is key to the development of novel anticancer therapies. In this review, we highlight the pathological relevance of CSCs in terms of their hallmarks and identification, the properties of their niche—both in primary tumors and at potential sites of metastasis—and their resistance to oxidative stress dependent on system xc (−). Intratumoral heterogeneity driven by CSCs is responsible for therapeutic resistance. CTCs survive in the distant organs and achieve colonization, causing metastasis. E/M hybrid cancer cells due to partial EMT exhibit the highest metastatic potential. The CSC niche regulates stemness in metastatic disease as well as in primary tumor. Activation of system xc(-) by CD44 variant in CSCs is a promising therapeutic target.
Collapse
Key Words
- ABC, ATP-binding cassette
- ALDH, Aldehyde dehydrogenase
- BMP, Bone morphogenetic protein
- CAF, Cancer-associated fibroblast
- CD44 variant
- CD44v, CD44 variant
- CSC, Cancer stem cell
- CTC, Circulating tumor cell
- CagA, Cytotoxin-associated gene A
- Cancer stem cell
- DTC, Disseminated tumor cell
- E/M, Epithelial/mesenchymal
- ECM, Extracellular matrix
- EGF, Epidermal growth factor
- EMT, Epithelial-to-mesenchymal transition
- EpCAM, Epithelial cell adhesion moleculeE
- Epithelial-to-mesenchymal transition (EMT)
- GSC, Glioma stem cell
- GSH, reduced glutathione
- HGF, Hepatocyte growth factor
- HNSCC, Head and neck squamous cell cancer
- IL, Interleukin
- Intratumoral heterogeneity
- MAPK, mitogen-activated protein kinase
- MET, mesenchymal-to-epithelial transition
- NSCLC, non–small cell lung cancer
- Niche
- Nrf2, nuclear factor erythroid 2–related factor 2
- OXPHOS, Oxidative phosphorylation
- Plasticity
- Prrx1, Paired-related homeodomain transcription factor 1
- ROS, Reactive oxygen species
- SRP1, Epithelial splicing regulatory protein 1
- TGF-β, Transforming growth factor–β
Collapse
Affiliation(s)
- Go J Yoshida
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research (IAMR), Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Oliverio S, Beltran JSO, Occhigrossi L, Bordoni V, Agrati C, D'Eletto M, Rossin F, Borelli P, Amarante-Mendes GP, Demidov O, Barlev NA, Piacentini M. Transglutaminase Type 2 is Involved in the Hematopoietic Stem Cells Homeostasis. BIOCHEMISTRY (MOSCOW) 2021; 85:1159-1168. [PMID: 33202201 DOI: 10.1134/s0006297920100041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Type 2 transglutaminase (TG2) is a multifunctional protein involved in various biological processes playing a key regulatory role in cell homeostasis such as cell death and autophagy. New evidence is emerging that support an important role of autophagy in regulating normal hematopoiesis. Prompted by these findings, in this study we investigated in vivo involvement of TG2 in mouse hematopoiesis under normal or nutrient deprivation conditions. We found that the number and rate of differentiation of bone marrow hematopoietic stem cell was decreased in the TG2 knockout mice. We present evidence showing that these effects on hematopoietic system are very likely due to the TG2-dependent impairment of autophagy. In fact, stimulation of autophagy by starvation is able to rescue the block of the differentiation of stem cells progenitors in the TG2 KO mice. It was also shown that the RhoA/ERK½ pathway, known to be essential for regulation of the bone marrow progenitor cells homeostasis, was significantly impaired in the absence of TG2. Hence, this study expanded our knowledge about TG2 discovering a role of this enzyme in regulation of hematopoiesis.
Collapse
Affiliation(s)
- S Oliverio
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - J S O Beltran
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy.,Clinical and Experimental Hematology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - L Occhigrossi
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - V Bordoni
- National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy
| | - C Agrati
- National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy
| | - M D'Eletto
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - F Rossin
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy
| | - P Borelli
- Clinical and Experimental Hematology Laboratory, Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - G P Amarante-Mendes
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - O Demidov
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - N A Barlev
- Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| | - M Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, 00133, Italy. .,National Institute for Infectious Diseases I. R. C. C. S. "Lazzaro Spallanzani" Rome, 00149, Italy.,Laboratory of Molecular Medicine, Institute of Cytology, Russian Academy of Sciences, St.-Petersburg, 194064, Russia
| |
Collapse
|
9
|
Ayhan S, Nemutlu E, Uçkan Çetinkaya D, Kır S, Özgül RK. Characterization of human bone marrow niches with metabolome and transcriptome profiling. J Cell Sci 2021; 134:jcs.250720. [PMID: 33526717 DOI: 10.1242/jcs.250720] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 12/28/2022] Open
Abstract
Bone marrow (BM) niches are special microenvironments that work in harmony with each other for the regulation and maintenance of hematopoiesis. Niche investigations have thus far been limited to various model organisms and animal studies; therefore, little is known about different niches in healthy humans. In this study, a special harvesting method for the collection of BM from two different anatomical regions in the iliac crest of humans was used to investigate the presence of different niches in BM. Additionally, metabolomic and transcriptomic profiles were compiled using comparative 'omics' technologies, and the main cellular pathways and corresponding transcripts and metabolites were identified. As a result, we found that the energy metabolism between the regions was different. This study provides basic broad data for regenerative medicine in terms of the design of the appropriate microenvironment for in vitro hematopoietic niche modeling, and identifies the normal reference values that can be compared in hematological disease.
Collapse
Affiliation(s)
- Selda Ayhan
- Center for Stem Cell Research and Development/PEDI-STEM and Department of Stem Cell Sciences, Health Sciences Institute, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.,Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Emirhan Nemutlu
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Duygu Uçkan Çetinkaya
- Center for Stem Cell Research and Development/PEDI-STEM and Department of Stem Cell Sciences, Health Sciences Institute, Hacettepe University, Sıhhıye, Ankara 06100, Turkey.,Department of Pediatrics, Division of Hematology, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Sedef Kır
- Faculty of Pharmacy, Department of Analytical Chemistry, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| | - Rıza Köksal Özgül
- Department of Pediatric Metabolism, Institute of Child Health, Hacettepe University, Sıhhıye, Ankara 06100, Turkey
| |
Collapse
|
10
|
Leguit RJ, Raymakers RAP, Hebeda KM, Goldschmeding R. CCN2 (Cellular Communication Network factor 2) in the bone marrow microenvironment, normal and malignant hematopoiesis. J Cell Commun Signal 2021; 15:25-56. [PMID: 33428075 PMCID: PMC7798015 DOI: 10.1007/s12079-020-00602-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023] Open
Abstract
CCN2, formerly termed Connective Tissue Growth Factor, is a protein belonging to the Cellular Communication Network (CCN)-family of secreted extracellular matrix-associated proteins. As a matricellular protein it is mainly considered to be active as a modifier of signaling activity of several different signaling pathways and as an orchestrator of their cross-talk. Furthermore, CCN2 and its fragments have been implicated in the regulation of a multitude of biological processes, including cell proliferation, differentiation, adhesion, migration, cell survival, apoptosis and the production of extracellular matrix products, as well as in more complex processes such as embryonic development, angiogenesis, chondrogenesis, osteogenesis, fibrosis, mechanotransduction and inflammation. Its function is complex and context dependent, depending on cell type, state of differentiation and microenvironmental context. CCN2 plays a role in many diseases, especially those associated with fibrosis, but has also been implicated in many different forms of cancer. In the bone marrow (BM), CCN2 is highly expressed in mesenchymal stem/stromal cells (MSCs). CCN2 is important for MSC function, supporting its proliferation, migration and differentiation. In addition, stromal CCN2 supports the maintenance and longtime survival of hematopoietic stem cells, and in the presence of interleukin 7, stimulates the differentiation of pro-B lymphocytes into pre-B lymphocytes. Overexpression of CCN2 is seen in the majority of B-acute lymphoblastic leukemias, especially in certain cytogenetic subgroups associated with poor outcome. In acute myeloid leukemia, CCN2 expression is increased in MSCs, which has been associated with leukemic engraftment in vivo. In this review, the complex function of CCN2 in the BM microenvironment and in normal as well as malignant hematopoiesis is discussed. In addition, an overview is given of data on the remaining CCN family members regarding normal and malignant hematopoiesis, having many similarities and some differences in their function.
Collapse
Affiliation(s)
- Roos J. Leguit
- Department of Pathology, University Medical Center Utrecht, H04-312, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| | - Reinier A. P. Raymakers
- Department of Hematology, UMCU Cancer Center, Heidelberglaan 100 B02.226, 3584 CX Utrecht, The Netherlands
| | - Konnie M. Hebeda
- Department of Pathology, Radboud University Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Centre Utrecht, P.O. Box 85500, 3508 GA Utrecht, The Netherlands
| |
Collapse
|
11
|
Factor XIII-A in Diseases: Role Beyond Blood Coagulation. Int J Mol Sci 2021; 22:ijms22031459. [PMID: 33535700 PMCID: PMC7867190 DOI: 10.3390/ijms22031459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/28/2021] [Indexed: 12/28/2022] Open
Abstract
Multidisciplinary research from the last few decades has revealed that Factor XIII subunit A (FXIII-A) is not only involved in blood coagulation, but may have roles in various diseases. Here, we aim to summarize data from studies involving patients with mutations in the F13A1 gene, performed in FXIII-A knock-out mice models, clinical and histological studies assessing correlations between diseases severity and FXIII-A levels, as well as from in vitro experiments. By providing a complex overview on its possible role in wound healing, chronic inflammatory bowel diseases, athe-rosclerosis, rheumatoid arthritis, chronic inflammatory lung diseases, chronic rhinosinusitis, solid tumors, hematological malignancies, and obesity, we also demonstrate how the field evolved from using FXIII-A as a marker to accept and understand its active role in inflammatory and malignant diseases.
Collapse
|
12
|
Chen WC, Hu G, Hazlehurst LA. Contribution of the bone marrow stromal cells in mediating drug resistance in hematopoietic tumors. Curr Opin Pharmacol 2020; 54:36-43. [PMID: 32898723 PMCID: PMC7770000 DOI: 10.1016/j.coph.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
The bone marrow microenvironment (BMM) provides input via production of cytokines, chemokines, extracellular matrixes in the context of lower oxygen levels that influences self-renewal, survival, differentiation, progression, and therapeutic resistance of multiple myeloma and leukemic cells. Within the context of the BMM, tumor cells are supported by osteoblasts, bone marrow stromal cells (BMSCs), fibroblasts, myeloid cells, endothelial cells and blood vessels, as well as extracellular matrix (ECM) that contribute to tumor progression. Environmental mediated-drug resistance (EM-DR) contains cell adhesion-mediated drug resistance (CAM-DR) and soluble factor-mediated drug resistance (SM-DR) that contributes to de novo drug resistance. In this review, we focus on the crosstalk between the BMM and tumor cells as well as mechanisms underlying the BMM contributing to drug resistance in hematologic malignancies.
Collapse
Affiliation(s)
- Wei-Chih Chen
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA; Cancer Center, West Virginia University, Morgantown, WV 26506 USA
| | - Gangqing Hu
- Cancer Center, West Virginia University, Morgantown, WV 26506 USA; Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506 USA
| | - Lori A Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy, West Virginia University, Morgantown, WV 26506 USA; Cancer Center, West Virginia University, Morgantown, WV 26506 USA.
| |
Collapse
|
13
|
Chattopadhyay S, Law S. Morphogen signaling by Wnt/β-catenin pathway and microenvironmental alteration in the bone marrow of agricultural pesticide exposure-induced experimental aplastic anemia. J Biochem Mol Toxicol 2020; 34:e22523. [PMID: 32410290 DOI: 10.1002/jbt.22523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/14/2020] [Accepted: 04/27/2020] [Indexed: 11/08/2022]
Abstract
The etiologic link between pesticide toxicity and aplastic anemia in agricultural and agro-industrial setting has been frequently reported in epidemiological studies conducted worldwide. Chronic pesticide toxicity causes long-term bone marrow injury and perturbs the normal hematopoietic physiology, including survival of hematopoietic progenitor cells and bone marrow's blood cell forming ability. The purpose of this study is to understand the mechanism of pesticide toxicity-mediated bone marrow aplasia by studying Wnt/β-catenin signaling pathway and microenvironmental stromal components. An agricultural pesticide formulation comprising of cypermethrin, chlorpyriphos, and hexaconazole was used to induce bone marrow aplasia in inbred Swiss albino mice. Marrow failure followed by the onset of aplastic condition was confirmed by pancytopenic peripheral blood and hypocellular bone marrow filled with adipocytes. Significant downregulation of canonical Wnt/β-catenin signaling was identified by expression analysis of Wnt3a, β-catenin, and telomerase reverse transcriptase in the aplastic bone marrow hematopoietic stem/progenitor compartment. Along with signaling deregulation, disruption in both the osteoblastic and vascular stromal components was observed in the pesticide-exposed bone marrow microenvironment when compared to control. In this study, we tried to establish the correlation among disease pathophysiology, signaling deregulation in the hematopoietic cells, and bone marrow microenvironmental alteration during environmental exposure-mediated aplastic hematopoietic catastrophe, which may shed light on the unexplored mechanistic perspective of this fatal blood disease.
Collapse
Affiliation(s)
- Sukalpa Chattopadhyay
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
| |
Collapse
|
14
|
Ikonomi N, Kühlwein SD, Schwab JD, Kestler HA. Awakening the HSC: Dynamic Modeling of HSC Maintenance Unravels Regulation of the TP53 Pathway and Quiescence. Front Physiol 2020; 11:848. [PMID: 32848827 PMCID: PMC7411231 DOI: 10.3389/fphys.2020.00848] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/24/2020] [Indexed: 12/22/2022] Open
Abstract
Hematopoietic stem cells (HSCs) provide all types of blood cells during the entire life of the organism. HSCs are mainly quiescent and can eventually enter the cell cycle to differentiate. HSCs are maintained and tightly regulated in a particular environment. The stem cell niche regulates dormancy and awakening. Deregulations of this interplay can lead to hematopoietic failure and diseases. In this paper, we present a Boolean network model that recapitulates HSC regulation in virtue of external signals coming from the niche. This Boolean network integrates and summarizes the current knowledge of HSC regulation and is based on extensive literature research. Furthermore, dynamic simulations suggest a novel systemic regulation of TP53 in homeostasis. Thereby, our model indicates that TP53 activity is balanced depending on external stimulations, engaging a regulatory mechanism involving ROS regulators and RAS activated transcription factors. Finally, we investigated different mouse models and compared them to in silico knockout simulations. Here, the model could recapitulate in vivo observed behaviors and thus sustains our results.
Collapse
Affiliation(s)
- Nensi Ikonomi
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Silke D Kühlwein
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Julian D Schwab
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| | - Hans A Kestler
- Institute of Medical Systems Biology, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Behrmann L, Wellbrock J, Fiedler W. The bone marrow stromal niche: a therapeutic target of hematological myeloid malignancies. Expert Opin Ther Targets 2020; 24:451-462. [PMID: 32188313 DOI: 10.1080/14728222.2020.1744850] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Myeloid malignancies are caused by uncontrolled proliferation of neoplastic cells and lack of mature hematopoietic cells. Beside intrinsic genetic and epigenetic alterations within the neoplastic population, abnormal function of the bone marrow stroma promotes the neoplastic process. To overcome the supportive action of the microenvironment, recent research focuses on the development of targeted therapies, inhibiting the interaction of malignant cells and niche cells.Areas covered: This review covers regulatory networks and potential druggable pathways within the hematopoietic stem cell niche. Recent insights into the cell-to-cell interactions in the bone marrow microenvironment are presented. We performed literature searches using PubMed Database from 2000 to the present.Expert opinion: Future therapy of myeloid malignancies must focus on targeted, personalized treatment addressing specific alterations within the malignant and the supporting niche cells. This includes treatments to overcome resistance mechanisms against chemotherapeutic agents mediated by supporting microenvironment. Novel techniques employing sequencing approaches, Crisp/Cas9, or transgenic mouse models are required to elucidate specific interactions between components of the bone marrow niche to identify new therapeutic targets.
Collapse
Affiliation(s)
- Lena Behrmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Jasmin Wellbrock
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, Hubertus Wald University Cancer Center, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Boroumand P, Klip A. Bone marrow adipose cells - cellular interactions and changes with obesity. J Cell Sci 2020; 133:133/5/jcs238394. [PMID: 32144195 DOI: 10.1242/jcs.238394] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The bone marrow is a spatially restricted niche, housing cells of the hematopoietic and mesenchymal lineages in various hierarchical commitment states. Although highly localized, cells within this niche are also subject to regulation by environmental and/or circulatory changes through extensive vascularization. Bone marrow adipocytes, derived from mesenchymal stem cells and once known as marrow space fillers, are a heterogeneous population. These cells reside in distinct niches within the bone marrow and interact with proximal cells, such as hematopoietic precursors and lineage-committed cells. In this diverse cellular milieu, bone marrow adipocytes influence commitment decisions and cellular lineage selection by interacting with stem and progenitor cells. In addition, bone marrow adipocytes respond to environmental changes, such as obesity, by undergoing hypertrophy, hyperplasia or adoption of characteristics resembling those of peripheral brown, beige or white adipocytes. Here, we review recent findings and concepts on the influence of bone marrow adipocytes on hematopoietic and other cellular lineages within this niche. We discuss how changes in local, systemic, cellular and secreted signals impact on mesenchymal stem cell expansion, differentiation and lineage commitment. Furthermore, we highlight that bone marrow adipocytes may be intermediaries conveying environmental cues to influence hematopoietic cellular survival, proliferation and preferential differentiation.
Collapse
Affiliation(s)
- Parastoo Boroumand
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Amira Klip
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada .,Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
17
|
Lee D, Kim DW, Cho JY. Role of growth factors in hematopoietic stem cell niche. Cell Biol Toxicol 2020; 36:131-144. [PMID: 31897822 DOI: 10.1007/s10565-019-09510-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 12/16/2019] [Indexed: 12/20/2022]
Abstract
Hematopoietic stem cells (HSCs) produce new blood cells everyday throughout life, which is maintained by the self-renewal and differentiation ability of HSCs. This is not controlled by the HSCs alone, but rather by the complex and exquisite microenvironment surrounding the HSCs, which is called the bone marrow niche and consists of various bone marrow cells, growth factors, and cytokines. It is essential to understand the characteristic role of the stem cell niche and the growth factors in the niche formation. In this review, we describe the role of the bone marrow niche and factors for niche homeostasis, and also summarize the latest research related to stem cell niche.
Collapse
Affiliation(s)
- Dabin Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Dong Wook Kim
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 151-742, South Korea.
| |
Collapse
|
18
|
Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ, Holen I. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche in vivo. J Bone Oncol 2019; 17:100244. [PMID: 31236323 PMCID: PMC6582079 DOI: 10.1016/j.jbo.2019.100244] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bone metastasis is one of the most common complications of advanced breast cancer. During dissemination to bone, breast cancer cells locate in a putative 'metastatic niche', a microenvironment that regulates the colonisation, maintenance of tumour cell dormancy and subsequent tumour growth. The precise location and composition of the bone metastatic niche is not clearly defined. We have used in vivo models of early breast cancer dissemination to provide novel evidence that demonstrates overlap between endosteal, perivascular, HSC and the metastatic niche in bone. METHODS Estrogen Receptor (ER) +ve and -ve breast cancer cells were labelled with membrane dyes Vybrant-DiD and Vybrant-CM-DiI and injected via different routes in BALBc/nude mice of different ages. Two-photon microscopy was used to detect and quantitate tumour cells and map their location within the bone microenvironment as well as their distance to the nearest bone surface compared to the nearest other tumour cell. To investigate whether the metastatic niche overlapped with the HSC niche, animals were pre-treated with the CXCR4 antagonist AMD3100 to mobilise hematopoietic (HSCs) prior to injection of breast cancer cells. RESULTS Breast cancer cells displayed a characteristic pattern of homing in the long bones, with the majority of tumour cells seeded in the trabecular regions, regardless of the route of injection, cell-line characteristics (ER status) or animal age. Breast cancer cells located in close proximity to the nearest bone surface and the average distance between individual tumour cells was higher than their distance to bone. Mobilisation of HSCs from the niche to the circulation prior to injection of cell lines resulted in increased numbers of tumour cells disseminated in trabecular regions. CONCLUSION Our data provide evidence that homing of breast cancer cells is independent of their ER status and that the breast cancer bone metastasis niche is located within the trabecular region of bone, an area rich in osteoblasts and microvessels. The increased number of breast cancer cells homing to bone after mobilisation of HSCs suggests that the HSC and the bone metastasis niche overlap.
Collapse
Key Words
- ANOVA, Analysis of variance
- Animal models
- Bone metastasis
- Breast cancer
- CTC, Circulating tumour cell
- DAPI, 4′,6-diamidino-2-phenylindole
- DTC, Disseminated tumour cell
- EDTA, Ethylenediaminetetraacetic acid
- ER, Estrogen Receptor
- FBS, Foetal bovine serum
- GFP, Green fluorescent protein
- HSC, Hematopoietic stem cell
- Hematopoietic stem cell
- IC, Intra cardiac
- IV, Intra venous
- Luc2, Luciferase2
- OVX, Ovariectomy
- ROI, Region of interest
- TSP-1, thrombospondin-1
- µCT, Microcomputed tomography
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ingunn Holen
- Department of Oncology and Metabolism, Medical School, University of Sheffield, UK
| |
Collapse
|
19
|
Vijay V, Miller R, Vue GS, Pezeshkian MB, Maywood M, Ast AM, Drusbosky LM, Pompeu Y, Salgado AD, Lipten SD, Geddes T, Blenc AM, Ge Y, Ostrov DA, Cogle CR, Madlambayan GJ. Interleukin-8 blockade prevents activated endothelial cell mediated proliferation and chemoresistance of acute myeloid leukemia. Leuk Res 2019; 84:106180. [PMID: 31299413 DOI: 10.1016/j.leukres.2019.106180] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
One of the greatest challenges in treating acute myeloid leukemia (AML) is chemotherapy refractory disease. Previously, we demonstrated a novel mechanism whereby AML-induced endothelial cell (EC) activation leads to subsequent leukemia cell adherence, quiescence and chemoresistance, identifying activated ECs as potential mediators of relapse. We now show mechanistically that EC activation induces the secretion of interleukin-8 (IL-8) leading to significant expansion of non-adherent AML cells and resistance to cytarabine (Ara-C). Through crystallography and computational modeling, we identified a pocket within IL-8 responsible for receptor binding, screened for small molecules that fit within this pocket, and blocked IL-8 induced proliferation and chemo-protection of AML cells with a hit compound. Results from this study show a new therapeutic strategy for targeting the sanctuary of an activated leukemia microenvironment.
Collapse
Affiliation(s)
- Vindhya Vijay
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Regan Miller
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Gau Shoua Vue
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | | | - Michael Maywood
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Allison M Ast
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Leylah M Drusbosky
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yuri Pompeu
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Alan D Salgado
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Samuel D Lipten
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Timothy Geddes
- Department of Radiation Oncology, William Beaumont Health System, Royal Oak, MI, USA
| | - Ann Marie Blenc
- Department of Hematopathology, William Beaumont Health System, Royal Oak, MI, USA
| | - Yubin Ge
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Molecular Therapeutics Program and Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA
| | - David A Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher R Cogle
- Division of Hematology and Oncology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
20
|
Sabbieti MG, Lacava G, Amaroli A, Marchetti L, Censi R, Di Martino P, Agas D. Molecular Adjuvants Based on Plasmids Encoding Protein Aggregation Domains Affect Bone Marrow Niche Homeostasis. Curr Gene Ther 2019; 17:391-397. [PMID: 29303078 PMCID: PMC6751345 DOI: 10.2174/1566523218666180105122626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/19/2022]
Abstract
Background: During last years, DNA vaccine immunogenicity has been optimized by the employment of co-stimulatory molecules and molecular adjuvants. It has been reported that plasmid (pATRex), encompassing the DNA sequence for the von Willebrand A (vWA/A) domain of the An-thrax Toxin Receptor-1 (ANTXR-1, alias TEM8, Tumor Endothelial Marker 8), acts as strong immune adjuvant by inducing formation of insoluble intracellular aggregates. Markedly, we faced with upsetting findings regarding the safety of pATRex as adjuvant since the aggregosome formation prompted to os-teopenia in mice. Objective: The present study provides additional evidences about the proteinaceous adjuvants action within bone marrow and questioned regarding the self-aggregation protein adjuvants immunotoxicity on marrow niches. Methods & Results: Using histological, biochemical and proteomic assays we shed light on pATRex effects within bone marrow niche and specifically we evidenced an aplastic-like bone marrow with dis-rupted cytokine/chemokine production. Conclusion: The above findings provide compelling support to the thesis that adjuvants based on plas-mids encoding protein aggregation domains disrupt the physiological features of the bone marrow ele-ments.
Collapse
Affiliation(s)
- Maria Giovanna Sabbieti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Giovanna Lacava
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genova, Genova, Italy
| | - Luigi Marchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| | - Roberta Censi
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, Camerino, (MC), Italy
| | - Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino (MC), Italy
| |
Collapse
|
21
|
Jung HE, Shim YR, Oh JE, Oh DS, Lee HK. The autophagy Protein Atg5 Plays a Crucial Role in the Maintenance and Reconstitution Ability of Hematopoietic Stem Cells. Immune Netw 2019; 19:e12. [PMID: 31089439 PMCID: PMC6494762 DOI: 10.4110/in.2019.19.e12] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/17/2019] [Accepted: 01/21/2019] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem cells (HSCs) in bone marrow are pluripotent cells that can constitute the hematopoiesis system through self-renewal and differentiation into immune cells and red blood cells. To ensure a competent hematopoietic system for life, the maintenance of HSCs is tightly regulated. Although autophagy, a self-degradation pathway for cell homeostasis, is essential for hematopoiesis, the role of autophagy key protein Atg5 in HSCs has not been thoroughly investigated. In this study, we found that Atg5 deficiency in hematopoietic cells causes survival defects, resulting in severe lymphopenia and anemia in mice. In addition, the absolute numbers of HSCs and multiple-lineage progenitor cells were significantly decreased, and abnormal erythroid development resulted in reduced erythrocytes in blood of Vav_Atg5−/− mice. The proliferation of Lin−Sca-1+c-Kit+ HSCs was aberrant in bone marrow of Vav_Atg5−/− mice, and mature progenitors and terminally differentiated cells were also significantly altered. Furthermore, the reconstitution ability of HSCs in bone marrow chimeric mice was significantly decreased in the presence of Atg5 deficiency in HSCs. Mechanistically, impairment of autophagy-mediated clearance of damaged mitochondria was the underlying cause of the HSC functional defects. Taken together, these results define the crucial role of Atg5 in the maintenance and the reconstitution ability of HSCs.
Collapse
Affiliation(s)
- Hi Eun Jung
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ye Ri Shim
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Ji Eun Oh
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Dong Sun Oh
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Heung Kyu Lee
- Biomedical Science and Engineering Interdisciplinary Program, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.,KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
22
|
Wang A, Zhong H. Roles of the bone marrow niche in hematopoiesis, leukemogenesis, and chemotherapy resistance in acute myeloid leukemia. ACTA ACUST UNITED AC 2018; 23:729-739. [PMID: 29902132 DOI: 10.1080/10245332.2018.1486064] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To summarize the effects of the bone marrow niche on hematopoiesis and leukemogenesis and discuss the chemotherapy resistance that can arise from interactions between the niche and leukemia stem cells. METHODS We review the major roles of the bone marrow niche in cell proliferation, adhesion and drug resistance. The signaling pathways and major molecular participants in the niche are discussed. We also address potential niche-targeting strategies for the treatment of acute myeloid leukemia (AML). RESULTS The bone marrow niche supports normal hematopoiesis and affects acute myeloid leukemia (AML) initiation, progression and chemotherapy resistance. DISCUSSION AML is a group of heterogeneous malignant diseases characterized by the excessive proliferation of hematopoietic stem and/or progenitor cells. Even with intensive chemotherapy regimens and stem cell transplantation, the overall survival rate for AML is poor. The bone marrow niches of malignant cells are remodeled into a leukemia-permissive environment, and these reformed niches protect AML cells from chemotherapy-induced cell death. Inhibiting the cellular and molecular interactions between the niche and leukemia cells is a promising direction for targeted therapies for AML treatment. CONCLUSIONS Interactions between leukemia cells and the bone marrow niche influence hematopoiesis, leukemogenesis, and chemotherapy resistance in AML and require ongoing study. Understanding the mechanisms that underlie these interactions will help identify rational niche-targeting therapies to improve treatment outcomes in AML patients.
Collapse
Affiliation(s)
- Andi Wang
- a Department of Hematology , South Campus Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| | - Hua Zhong
- a Department of Hematology , South Campus Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai , People's Republic of China
| |
Collapse
|
23
|
Abstract
Bone marrow fat cells comprise the largest population of cells in the bone marrow cavity, a characteristic that has attracted the attention of scholars from different disciplines. The perception that bone marrow adipocytes are "inert space fillers" has been broken, and currently, bone marrow fat is unanimously considered to be the third largest fat depot, after subcutaneous fat and visceral fat. Bone marrow fat (BMF) acts as a metabolically active organ and plays an active role in energy storage, endocrine function, bone metabolism, and the bone metastasis of tumors. Bone marrow adipocytes (BMAs), as a component of the bone marrow microenvironment, influence hematopoiesis through direct contact with cells and the secretion of adipocyte-derived factors. They also influence the progression of hematologic diseases such as leukemia, multiple myeloma, and aplastic anemia, and may be a novel target when exploring treatments for related diseases in the future. Based on currently available data, this review describes the role of BMF in hematopoiesis as well as in the development of hematologic diseases.
Collapse
|
24
|
Endothelial progenitor cells in multiple myeloma neovascularization: a brick to the wall. Angiogenesis 2017; 20:443-462. [PMID: 28840415 DOI: 10.1007/s10456-017-9571-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 07/31/2017] [Indexed: 12/12/2022]
Abstract
Multiple myeloma (MM) is characterized by the clonal expansion of plasma cells in the bone marrow that leads to events such as bone destruction, anaemia and renal failure. Despite the several therapeutic options available, there is still no effective cure, and the standard survival is up to 4 years. The evolution from the asymptomatic stage of monoclonal gammopathy of undetermined significance to MM and the progression of the disease itself are related to cellular and molecular alterations in the bone marrow microenvironment, including the development of the vasculature. Post-natal vasculogenesis is characterized by the recruitment to the tumour vasculature of bone marrow progenitors, known as endothelial progenitor cells (EPCs), which incorporate newly forming blood vessels and differentiate into endothelial cells. Several processes related to EPCs, such as recruitment, mobilization, adhesion and differentiation, are tightly controlled by cells and molecules in the bone marrow microenvironment. In this review, the bone marrow microenvironment and the mechanisms associated to the development of the neovasculature promoted by EPCs are discussed in detail in both a non-pathological scenario and in MM. The latest developments in therapy targeting the vasculature and EPCs in MM are also highlighted. The identification and characterization of the pathways relevant to the complex setting of MM are of utter importance to identify not only biomarkers for an early diagnosis and disease progression monitoring, but also to reveal intervention targets for more effective therapy directed to cancer cells and the endothelial mediators relevant to neovasculature development.
Collapse
|
25
|
Chatterjee R, Gupta S, Law S. Hematopathological alterations of major tumor suppressor cascade, vital cell cycle inhibitors and hematopoietic niche components in experimental myelodysplasia. Chem Biol Interact 2017; 273:1-10. [PMID: 28549617 DOI: 10.1016/j.cbi.2017.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/17/2017] [Indexed: 11/18/2022]
Abstract
Myelodysplastic syndrome (MDS) is a poorly understood dreadful hematopoietic disorder that involves maturational defect and abnormalities in blood cell production leading to dysplastic changes and peripheral blood pancytopenia. The present work aims in establishing the mechanistic relationship of the expressional alterations of major tumor suppressor cascade, vital cell cycle inhibitors and hematopoietic microenvironmental components with the disease pathophysiologies. The study involves the development of N-N' Ethylnitrosourea (ENU) induced mouse model of MDS, characterization of the disease with blood film and bone marrow smear studies, scanning electron microscopic observation, mitochondrial membrane potential determination, flowcytometric analysis of osteoblastic and vascular niche components along with the expressional study of cleaved caspase-3, PCNA, Chk-2, p53, Ndn, Gfi-1, Tie-2, Sdf-1, Gsk-3β, p18 and Myt-1 in the bone marrow compartment. Dysplastic features were found in peripheral blood of MDS mice which seemed to be the consequence of three marrow pathophysiological conditions viz; aberrant rise of cellular proliferation, increased apoptosis and crowding of abnormal blast population. Expressional decline of the p53 cascade involving Chk-2, p53, Ndn, Gfi-1 along with the downregulation of major cell cycle inhibitors seemed to be associated with the hyper-proliferative nature of bone marrow cells during MDS. Moreover the disruption of osteoblastic niche components added to the decreased hematopoietic quiescency. Increased marrow vascular niche components signified the pre-malignant state of MDS. Elevated cellular apoptosis and rise in the blast burden were also found to be associated with the p53 expression dependent collapsing of mitochondrial membrane potential and upregulation of Tie-2 respectively. The study established the mechanistic correlation between the alterations of the mentioned signaling components and hematopoietic anomalies during MDS which may be beneficial for the development of therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Ritam Chatterjee
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India
| | - Shubhangi Gupta
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India
| | - Sujata Law
- Stem Cell Research and Application Unit, Department of Biochemistry and Medical Biotechnology, Calcutta School of Tropical Medicine, 108, C.R Avenue, Kolkata 700073, West Bengal, India.
| |
Collapse
|
26
|
Expression of Coagulation Factor XIII Subunit A Correlates with Outcome in Childhood Acute Lymphoblastic Leukemia. Pathol Oncol Res 2017; 24:345-352. [PMID: 28523449 DOI: 10.1007/s12253-017-0236-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/23/2017] [Indexed: 12/15/2022]
Abstract
Previously we identified B-cell lineage leukemic lymphoblasts as a new expression site for subunit A of blood coagulation factor XIII (FXIII-A). On the basis of FXIII-A expression, various subgroups of B-cell precursor acute lymphoblastic leukemia (BCP-ALL) can be identified. Fifty-five children with BCP-ALL were included in the study. Bone marrow samples were obtained by aspiration and the presence of FXIII-A was detected by flow cytometry. G-banding and fluorescent in situ hybridization was performed according to standard procedures. The 10-year event-free survival (EFS) and overall survival (OS) rate of FXIII-A-positive and FXIII-A-negative patients showed significant differences (EFS: 84% vs. 61%, respectively; p = 0.031; OS: 89% vs. 61%; p = 0.008). Of all the parameters examined, there was correlation only between FXIII-A expression and 'B-other' genetic subgroup. Further multivariate Cox regression analysis of FXIII-subtype and genetic group or 'B-other' subgroup identified the FXIII-A negative characteristic as an independent factor associated with poor outcome in BCP-ALL. We found an excellent correlation between long-term survival and the FXIII-A-positive phenotype of BCP lymphoblasts at presentation. The results presented seem to be convincing enough to suggest a possible role for FXIII-A expression in the prognostic grouping of childhood BCP-ALL patients.
Collapse
|
27
|
Leiva O, Ng SK, Chitalia S, Balduini A, Matsuura S, Ravid K. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J 2017; 7:e525. [PMID: 28157219 PMCID: PMC5386340 DOI: 10.1038/bcj.2017.6] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 02/06/2023] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm that arises from clonal proliferation of hematopoietic stem cells and leads to progressive bone marrow (BM) fibrosis. While cellular mutations involved in the development of PMF have been heavily investigated, noteworthy is the important role the extracellular matrix (ECM) plays in the progression of BM fibrosis. This review surveys ECM proteins contributors of PMF, and highlights how better understanding of the control of the ECM within the BM niche may lead to combined therapeutic options in PMF.
Collapse
Affiliation(s)
- O Leiva
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S K Ng
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - S Chitalia
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - A Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Laboratory of Biotechnology, IRCCS San Matteo Foundation, Pavia, Italy
| | - S Matsuura
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| | - K Ravid
- Department of Medicine and Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
28
|
Pleyer L, Valent P, Greil R. Mesenchymal Stem and Progenitor Cells in Normal and Dysplastic Hematopoiesis-Masters of Survival and Clonality? Int J Mol Sci 2016; 17:ijms17071009. [PMID: 27355944 PMCID: PMC4964385 DOI: 10.3390/ijms17071009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 05/20/2016] [Accepted: 06/08/2016] [Indexed: 02/07/2023] Open
Abstract
Myelodysplastic syndromes (MDS) are malignant hematopoietic stem cell disorders that have the capacity to progress to acute myeloid leukemia (AML). Accumulating evidence suggests that the altered bone marrow (BM) microenvironment in general, and in particular the components of the stem cell niche, including mesenchymal stem cells (MSCs) and their progeny, play a pivotal role in the evolution and propagation of MDS. We here present an overview of the role of MSCs in the pathogenesis of MDS, with emphasis on cellular interactions in the BM microenvironment and related stem cell niche concepts. MSCs have potent immunomodulatory capacities and communicate with diverse immune cells, but also interact with various other cellular components of the microenvironment as well as with normal and leukemic stem and progenitor cells. Moreover, compared to normal MSCs, MSCs in MDS and AML often exhibit altered gene expression profiles, an aberrant phenotype, and abnormal functional properties. These alterations supposedly contribute to the “reprogramming” of the stem cell niche into a disease-permissive microenvironment where an altered immune system, abnormal stem cell niche interactions, and an impaired growth control lead to disease progression. The current article also reviews molecular targets that play a role in such cellular interactions and possibilities to interfere with abnormal stem cell niche interactions by using specific targeted drugs.
Collapse
Affiliation(s)
- Lisa Pleyer
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology & Ludwig Boltzmann Cluster Oncology, Medical University of Vienna, 1090 Vienna, Austria.
| | - Richard Greil
- 3rd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Laboratory for Immunological and Molecular Cancer Research, Oncologic Center, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria.
- Center for Clinical Cancer and Immunology Trials at Salzburg Cancer Research Institute, 5020 Salzburg, Austria.
- 3rd Medical Department, Cancer Cluster Salzburg, 5020 Salzburg, Austria.
| |
Collapse
|
29
|
Shirzad R, Shahrabi S, Ahmadzadeh A, Kampen KR, Shahjahani M, Saki N. Signaling and molecular basis of bone marrow niche angiogenesis in leukemia. Clin Transl Oncol 2016; 18:957-71. [PMID: 26742939 DOI: 10.1007/s12094-015-1477-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Angiogenesis, the process of blood vessel formation, is necessary for tissue survival in normal and pathologic conditions. Increased angiogenesis in BM niche is correlated with leukemia progression and resistance to treatment. Angiogenesis can interfere with disease progression and several angiogenic (such as vascular growth factors) as well as anti-angiogenic factors (i.e. angiostatin) can affect angiogenesis. Furthermore, miRs can affect the angiogenic process by inhibiting angiogenesis or increasing the expression of growth factors. Given the importance of angiogenesis in BM for maintenance of leukemic clones, recognition of angiogenic and anti-angiogenic factors and miRs as well as drug resistance mechanisms of leukemic blasts can improve the therapeutic strategies. We highlight the changes in angiogenic balance within the BM niche in different leukemia types. Moreover, we explored the pathways leading to drug resistance in relation to angiogenesis and attempted to assign interesting candidates for future research.
Collapse
Affiliation(s)
- R Shirzad
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Shahrabi
- Department of Biochemistry and Hematology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - A Ahmadzadeh
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - K R Kampen
- Department of Pediatric Oncology/Hematology, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - M Shahjahani
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - N Saki
- Health Research Institute, Thalassemia and Hemoglobinopathies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
30
|
Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci 2015; 107:5-11. [PMID: 26362755 PMCID: PMC4724810 DOI: 10.1111/cas.12817] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells (CSCs) are undifferentiated cancer cells with a high tumorigenic activity, the ability to undergo self-renewal, and a multilineage differentiation potential. Cancer stem cells are responsible for the development of tumor cell heterogeneity, a key feature for resistance to anticancer treatments including conventional chemotherapy, radiation therapy, and molecularly targeted therapy. Furthermore, minimal residual disease, the major cause of cancer recurrence and metastasis, is enriched in CSCs. Cancer stem cells also possess the property of "robustness", which encompasses several characteristics including a slow cell cycle, the ability to detoxify or mediate the efflux of cytotoxic agents, resistance to oxidative stress, and a rapid response to DNA damage, all of which contribute to the development of therapeutic resistance. The identification of mechanisms underlying such characteristics and the development of novel approaches to target them will be required for the therapeutic elimination of CSCs and the complete eradication of tumors. In this review, we focus on two prospective therapeutic approaches that target CSCs with the aim of disrupting their quiescence or redox defense capability.
Collapse
Affiliation(s)
- Go J Yoshida
- Department of Pathological Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
31
|
Chiarini F, Lonetti A, Evangelisti C, Buontempo F, Orsini E, Evangelisti C, Cappellini A, Neri LM, McCubrey JA, Martelli AM. Advances in understanding the acute lymphoblastic leukemia bone marrow microenvironment: From biology to therapeutic targeting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:449-463. [PMID: 26334291 DOI: 10.1016/j.bbamcr.2015.08.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 02/07/2023]
Abstract
The bone marrow (BM) microenvironment regulates the properties of healthy hematopoietic stem cells (HSCs) localized in specific niches. Two distinct microenvironmental niches have been identified in the BM, the "osteoblastic (endosteal)" and "vascular" niches. Nevertheless, these niches provide sanctuaries where subsets of leukemic cells escape chemotherapy-induced death and acquire a drug-resistant phenotype. Moreover, it is emerging that leukemia cells are able to remodel the BM niches into malignant niches which better support neoplastic cell survival and proliferation. This review focuses on the cellular and molecular biology of microenvironment/leukemia interactions in acute lymphoblastic leukemia (ALL) of both B- and T-cell lineage. We shall also highlight the emerging role of exosomes/microvesicles as efficient messengers for cell-to-cell communication in leukemia settings. Studies on the interactions between the BM microenvironment and ALL cells have led to the discovery of potential therapeutic targets which include cytokines/chemokines and their receptors, adhesion molecules, signal transduction pathways, and hypoxia-related proteins. The complex interplays between leukemic cells and BM microenvironment components provide a rationale for innovative, molecularly targeted therapies, designed to improve ALL patient outcome. A better understanding of the contribution of the BM microenvironment to the process of leukemogenesis and leukemia persistence after initial remission, may provide new targets that will allow destruction of leukemia cells without adversely affecting healthy HSCs. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis,Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
Affiliation(s)
- Francesca Chiarini
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Annalisa Lonetti
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Camilla Evangelisti
- Institute of Molecular Genetics, National Research Council, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Francesca Buontempo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Ester Orsini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Evangelisti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandra Cappellini
- Department of Human Social and Health Sciences, University of Cassino, Cassino, Italy
| | - Luca M Neri
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - James A McCubrey
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| | - Alberto M Martelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
32
|
Liu H, Xia X, Li B. Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues. Exp Biol Med (Maywood) 2015; 240:1099-106. [PMID: 26088863 DOI: 10.1177/1535370215591828] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aging population and the incidence of aging-related diseases such as osteoporosis are on the rise. Aging at the tissue and organ levels usually involves tissue stem cells. Human and animal model studies indicate that aging affects two aspects of mesenchymal stem cell (MSC): a decrease in the bone marrow MSC pool and biased differentiation into adipocyte at the cost of osteoblast, which underlie the etiology of osteoporosis. Aging of MSC cells is also detrimental to some non-skeletal tissues, in particular the hematopoietic system, where MSCs serve as a niche component. In addition, aging compromises the therapeutic potentials of MSC cells, including cells isolated from aged individuals or cells cultured for many passages. Here we discuss the recent progress on our understanding of MSC aging, with a focus on the effects of MSC aging on bone remodeling and hematopoiesis and the mechanisms of MSC aging.
Collapse
Affiliation(s)
- Huijuan Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuechun Xia
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Baojie Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
33
|
Saltarella I, Lamanuzzi A, Reale A, Vacca A, Ria R. Identify multiple myeloma stem cells: Utopia? World J Stem Cells 2015; 7:84-95. [PMID: 25621108 PMCID: PMC4300939 DOI: 10.4252/wjsc.v7.i1.84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/14/2014] [Accepted: 10/29/2014] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.
Collapse
|
34
|
Bigildeev AE, Zezina EA, Shipounova IN, Drize NJ. Interleukin-1 beta enhances human multipotent mesenchymal stromal cell proliferative potential and their ability to maintain hematopoietic precursor cells. Cytokine 2014; 71:246-54. [PMID: 25461405 DOI: 10.1016/j.cyto.2014.10.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 10/15/2014] [Accepted: 10/28/2014] [Indexed: 12/28/2022]
Abstract
Multipotent mesenchymal stromal cells (MMSCs) have been demonstrated to produce mature stromal cells and maintain hematopoietic progenitor cells (HPC). It was previously demonstrated that interleukin-1 beta (IL-1 beta) stimulates the growth of the stromal microenvironment in vivo. The aim of this study was to investigate the effect of IL-1 beta treatment of human MMSCs on their proliferative potential, gene expression, immunomodulating properties, and their ability to support HPCs in vitro. Human bone marrow-derived MMSCs were cultivated in standard conditions or with IL-1 beta. The cumulative cell production was assessed for five passages. After withdrawal of IL-1 beta, MMSC clonal efficiency was investigated, and the maintenance of HPCs on top of MMSCs layers was estimated using cobblestone area forming cell (CAFC) and long-term culture initiating cell (LTC-IC) assays. The effect of untreated MMSCs or MMSCs pretreated with IL-1 beta on lymphocyte proliferation was studied by CFSE staining. The relative expression level of various genes by MMSCs was analyzed using RT-qPCR. The administration of IL-1 beta elevated MMSCs clonal efficiency and total cell production but did not affect lymphocyte proliferation. MMSCs pretreatment with IL-1 beta enhanced their ability to maintain HPCs, as detected by CAFC assay, and it altered the expression levels of genes participating in HPC regulation by stromal cells, e.g., adhesion molecules (ICAM1) and growth factors (SDF1). This study revealed the ability of IL-1 beta to stimulate MMSCs proliferation and enhance their potential to maintain HPCs. MMSCs are considered a stromal niche component in vitro. The combined in vitro and previous in vivo data suggest that IL-1 beta is a systemic regulator of the stromal microenvironment.
Collapse
Affiliation(s)
- Alexey E Bigildeev
- Laboratory Physiology of Hematopoiesis, Hematological Research Center, Ministry of Health, Noviy Zikovskiy proezd 4, Moscow 125167, Russian Federation.
| | - Ekaterina A Zezina
- Laboratory Physiology of Hematopoiesis, Hematological Research Center, Ministry of Health, Noviy Zikovskiy proezd 4, Moscow 125167, Russian Federation; MSU im. Lomonosov, Biology Department, Subdepartment Molecular Immunology, Leninskie Gory, 1, 12, Moscow 119991, Russian Federation.
| | - Irina N Shipounova
- Laboratory Physiology of Hematopoiesis, Hematological Research Center, Ministry of Health, Noviy Zikovskiy proezd 4, Moscow 125167, Russian Federation.
| | - Nina J Drize
- Laboratory Physiology of Hematopoiesis, Hematological Research Center, Ministry of Health, Noviy Zikovskiy proezd 4, Moscow 125167, Russian Federation.
| |
Collapse
|
35
|
Nogueira-Pedro A, Dias CC, Regina H, Segreto C, Addios PC, Lungato L, D'Almeida V, Barros CC, Higa EMS, Buri MV, Ferreira AT, Paredes-Gamero EJ. Nitric oxide-induced murine hematopoietic stem cell fate involves multiple signaling proteins, gene expression, and redox modulation. Stem Cells 2014; 32:2949-60. [PMID: 24964894 DOI: 10.1002/stem.1773] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 12/22/2022]
Abstract
There are a growing number of reports showing the influence of redox modulation in cellular signaling. Although the regulation of hematopoiesis by reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been described, their direct participation in the differentiation of hematopoietic stem cells (HSCs) remains unclear. In this work, the direct role of nitric oxide (NO(•)), a RNS, in the modulation of hematopoiesis was investigated using two sources of NO(•) , one produced by endothelial cells stimulated with carbachol in vitro and another using the NO(•)-donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) in vivo. Two main NO(•) effects were observed: proliferation of HSCs-especially of the short-term HSCs-and its commitment and terminal differentiation to the myeloid lineage. NO(•)-induced proliferation was characterized by the increase in the number of cycling HSCs and hematopoietic progenitor cells positive to BrdU and Ki-67, upregulation of Notch-1, Cx43, PECAM-1, CaR, ERK1/2, Akt, p38, PKC, and c-Myc. NO(•)-induced HSCs differentiation was characterized by the increase in granulocytic-macrophage progenitors, granulocyte-macrophage colony forming units, mature myeloid cells, upregulation of PU.1, and C/EBPα genes concomitantly to the downregulation of GATA-3 and Ikz-3 genes, activation of Stat5 and downregulation of the other analyzed proteins mentioned above. Also, redox status modulation differed between proliferation and differentiation responses, which is likely associated with the transition of the proliferative to differentiation status. Our findings provide evidence of the role of NO(•) in inducing HSCs proliferation and myeloid differentiation involving multiple signaling.
Collapse
|
36
|
Bedekovics J, Méhes G. [Pathomechanism and clinical impact of myelofibrosis in neoplastic diseases of the bone marrow]. Orv Hetil 2014; 155:367-75. [PMID: 24583557 DOI: 10.1556/oh.2014.29823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyclonal mesenchymal cells (fibroblasts, endothelial cells, pericytes, osteoblasts, reticular cells, adipocytes, etc.) of the bone marrow create a functional microenvironment, which actively contributes to the maintenance of hemopoesis. This takes place through cellular interactions via growth factors, cytokines, adhesion molecules and extracellular matrix components, as well as through the control of calcium and oxygen concentration. Inflammatory and neoplastic diseases of the bone marrow result in pathologic interaction between hemopoietic progenitors and stromal cells. This may lead to the activation and expansion of the stroma and to the accumulation of reticulin and collagen fibers produced by mesenchymal cells. Clinically relevant fiber accumulation, termed as myelofibrosis accompanies many diseases, although, the extent and the consequence of myelofibrosis are variable in different disorders. The aim of this review is to summarize basic features of the normal bone marrow mesenchymal environment and the pathological process leading to myelofibrosis. In addition, the special features of myelofibrosis in bone marrow diseases, including myeloproliferative neoplasia, myelodysplastic syndrome and other neoplastic conditions are discussed.
Collapse
Affiliation(s)
- Judit Bedekovics
- Debreceni Egyetem, Általános Orvostudományi Kar Pathologiai Intézet Debrecen Nagyerdei krt. 98. 4012
| | - Gábor Méhes
- Debreceni Egyetem, Általános Orvostudományi Kar Pathologiai Intézet Debrecen Nagyerdei krt. 98. 4012
| |
Collapse
|
37
|
In Vitro Characterization of Valproic Acid, ATRA, and Cytarabine Used for Disease-Stabilization in Human Acute Myeloid Leukemia: Antiproliferative Effects of Drugs on Endothelial and Osteoblastic Cells and Altered Release of Angioregulatory Mediators by Endothelial Cells. LEUKEMIA RESEARCH AND TREATMENT 2014; 2014:143479. [PMID: 24527217 PMCID: PMC3910457 DOI: 10.1155/2014/143479] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Accepted: 10/28/2013] [Indexed: 02/08/2023]
Abstract
The combined use of the histone deacetylase inhibitor valproic acid (VPA), the retinoic acid receptor- α agonist all-trans retinoic acid (ATRA), and the deoxyribonucleic acid polymerase- α inhibitor cytarabine (Ara-C) is now considered for disease-stabilizing treatment of acute myeloid leukemia (AML). Leukemogenesis and leukemia cell chemoresistance seem to be supported by neighbouring stromal cells in the bone marrow, and we have therefore investigated the effects of these drugs on primary human endothelial cells and the osteoblastic Cal72 cell line. The results show that VPA and Ara-C have antiproliferative effects, and the antiproliferative/cytotoxic effect of Ara-C was seen at low concentrations corresponding to serum levels found during low-dose in vivo treatment. Furthermore, in functional assays of endothelial migration and tube formation VPA elicited an antiangiogenic effect, whereas ATRA elicited a proangiogenic effect. Finally, VPA and ATRA altered the endothelial cell release of angiogenic mediators; ATRA increased levels of CXCL8, PDGF-AA, and VEGF-D, while VPA decreased VEGF-D and PDGF-AA/BB levels and both drugs reduced MMP-2 levels. Several of these mediators can enhance AML cell proliferation and/or are involved in AML-induced bone marrow angiogenesis, and direct pharmacological effects on stromal cells may thus indirectly contribute to the overall antileukemic activity of this triple drug combination.
Collapse
|
38
|
Sipos W, Föger-Samwald U, Pietschmann P. Supporting Apparatus of Vertebrates: Skeleton and Bones. Comp Med 2014. [DOI: 10.1007/978-3-7091-1559-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Maes C. Role and regulation of vascularization processes in endochondral bones. Calcif Tissue Int 2013; 92:307-23. [PMID: 23292135 DOI: 10.1007/s00223-012-9689-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
Abstract
Adequate vascularization is an absolute requirement for bone development, growth, homeostasis, and repair. Endochondral ossification during fetal skeletogenesis is typified by the initial formation of a prefiguring cartilage template of the future bone, which itself is intrinsically avascular. When the chondrocytes reach terminal hypertrophic differentiation they become invaded by blood vessels. This neovascularization process triggers the progressive replacement of the growing cartilage by bone, in a complex multistep process that involves the coordinated activity of chondrocytes, osteoblasts, and osteoclasts, each standing in functional interaction with the vascular system. Studies using genetically modified mice have started to shed light on the molecular regulation of the cartilage neovascularization processes that drive endochondral bone development, growth, and repair, with a prime role being played by vascular endothelial growth factor and its isoforms. The vasculature of bone remains important throughout life as an intrinsic component of the bone and marrow environment. Bone remodeling, the continual renewal of bone by the balanced activities of osteoclasts resorbing packets of bone and osteoblasts building new bone, takes place in close spatial relationship with the vascular system and depends on signals, oxygen, and cellular delivery via the bloodstream. Conversely, the integrity and functionality of the vessel system, including the exchange of blood cells between the hematopoietic marrow and the circulation, rely on a delicate interplay with the cells of bone. Here, the current knowledge on the cellular relationships and molecular crosstalk that coordinate skeletal vascularization in bone development and homeostasis will be reviewed.
Collapse
Affiliation(s)
- Christa Maes
- Laboratory for Skeletal Cell Biology and Physiology, Department of Development and Regeneration, KU Leuven, Health Sciences Campus Gasthuisberg, O&N1, Herestraat 49, Box 813, 3000, Leuven, Belgium.
| |
Collapse
|
40
|
Urao N, Ushio-Fukai M. Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 2013; 54:26-39. [PMID: 23085514 PMCID: PMC3637653 DOI: 10.1016/j.freeradbiomed.2012.10.532] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 10/02/2012] [Accepted: 10/05/2012] [Indexed: 01/19/2023]
Abstract
Bone marrow (BM)-derived stem and progenitor cell functions including self-renewal, differentiation, survival, migration, proliferation, and mobilization are regulated by unique cell-intrinsic and -extrinsic signals provided by their microenvironment, also termed the "niche." Reactive oxygen species (ROS), especially hydrogen peroxide (H(2)O(2)), play important roles in regulating stem and progenitor cell functions in various physiologic and pathologic responses. The low level of H(2)O(2) in quiescent hematopoietic stem cells (HSCs) contributes to maintaining their "stemness," whereas a higher level of H(2)O(2) within HSCs or their niche promotes differentiation, proliferation, migration, and survival of HSCs or stem/progenitor cells. Major sources of ROS are NADPH oxidase and mitochondria. In response to ischemic injury, ROS derived from NADPH oxidase are increased in the BM microenvironment, which is required for hypoxia and hypoxia-inducible factor-1α expression and expansion throughout the BM. This, in turn, promotes progenitor cell expansion and mobilization from BM, leading to reparative neovascularization and tissue repair. In pathophysiological states such as aging, atherosclerosis, heart failure, hypertension, and diabetes, excess amounts of ROS create an inflammatory and oxidative microenvironment, which induces cell damage and apoptosis of stem and progenitor cells. Understanding the molecular mechanisms of how ROS regulate the functions of stem and progenitor cells and their niche in physiological and pathological conditions will lead to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Norifumi Urao
- Department of Pharmacology, Center for Lung and Vascular Biology, Center for Cardiovascular Research, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | |
Collapse
|
41
|
Osteohematopoietic stem cell niches in bone marrow. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 298:95-133. [PMID: 22878105 DOI: 10.1016/b978-0-12-394309-5.00003-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In adult mammals, maturation of blood and bone cells from their respective progenitors occurs in the bone marrow. The marrow region contains many progenitor and stem cell types that are confined by their biochemical and cellular microenvironments, referred to as stem cell niches. The unique properties of each niche assist the survival, proliferation, migration, and differentiation of that particular stem or progenitor cell type. Among the different niches of the bone marrow, our understanding of the osteohematopoietic niche is the most complete. Its properties, described in this chapter, are a model for studying adult stem cell differentiation, but a lot remains unknown. Our improved understanding of hematopoietic stem cell biology and its relationship with the properties of these niches are critical in the effective and safe use of these cells in regenerative medicine. Here, we review the current knowledge on the properties of these niches and suggest how the potential of hematopoietic progenitors can be utilized in regenerative medicine.
Collapse
|