1
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
2
|
Rivero CV, Martínez SJ, Novick P, Cueto JA, Salassa BN, Vanrell MC, Li X, Labriola CA, Polo LM, Engman DM, Clos J, Romano PS. Repurposing Carvedilol as a Novel Inhibitor of the Trypanosoma cruzi Autophagy Flux That Affects Parasite Replication and Survival. Front Cell Infect Microbiol 2021; 11:657257. [PMID: 34476220 PMCID: PMC8406938 DOI: 10.3389/fcimb.2021.657257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/20/2021] [Indexed: 11/13/2022] Open
Abstract
T. cruzi, the causal agent of Chagas disease, is a parasite able to infect different types of host cells and to persist chronically in the tissues of human and animal hosts. These qualities and the lack of an effective treatment for the chronic stage of the disease have contributed to the durability and the spread of the disease around the world. There is an urgent necessity to find new therapies for Chagas disease. Drug repurposing is a promising and cost-saving strategy for finding new drugs for different illnesses. In this work we describe the effect of carvedilol on T. cruzi. This compound, selected by virtual screening, increased the accumulation of immature autophagosomes characterized by lower acidity and hydrolytic properties. As a consequence of this action, the survival of trypomastigotes and the replication of epimastigotes and amastigotes were impaired, resulting in a significant reduction of infection and parasite load. Furthermore, carvedilol reduced the whole-body parasite burden peak in infected mice. In summary, in this work we present a repurposed drug with a significant in vitro and in vivo activity against T. cruzi. These data in addition to other pharmacological properties make carvedilol an attractive lead for Chagas disease treatment.
Collapse
Affiliation(s)
- Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina.,Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Santiago José Martínez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina.,Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Paul Novick
- Department of Chemistry, Stanford University, San Francisco, CA, United States
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Betiana Nebaí Salassa
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Xiaomo Li
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Carlos Alberto Labriola
- Laboratorio de Biología estructural y celular, Fundación Instituto Leloir (FIL-CONICET), Buenos Aires, Argentina
| | - Luis Mariano Polo
- Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| | - David M Engman
- Department of Pathology and Laboratory Medicine, Cedars Sinai Medical Center, Los Angeles, CA, United States
| | - Joachim Clos
- Leishmaniasis Group, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora - Instituto de Histología y Embriología "Dr. Mario H. Burgos", IHEM-CONICET- Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
3
|
Losinno AD, Martínez SJ, Labriola CA, Carrillo C, Romano PS. Induction of autophagy increases the proteolytic activity of reservosomes during Trypanosoma cruzi metacyclogenesis. Autophagy 2021; 17:439-456. [PMID: 31983275 PMCID: PMC8007142 DOI: 10.1080/15548627.2020.1720428] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 02/01/2023] Open
Abstract
Cruzipain, the major cysteine protease of the pathogenic protozoa Trypanosoma cruzi, is an important virulence factor that plays a key role in the parasite nutrition, differentiation and host cell infection. Cruzipain is synthesized as a zymogen, matured, and delivered to reservosomes. These organelles that store proteins and lipids ingested by endocytosis undergo a dramatic decrease in number during the metacyclogenesis of T. cruzi. Autophagy is a process that digests the own cell components to supply energy under starvation or different stress situations. This pathway is important during cell growth, differentiation and death. Previously, we showed that the autophagy pathway of T. cruzi is induced during metacyclogenesis. This work aimed to evaluate the participation of macroautophagy/autophagy in the distribution and function of reservosomes and cruzipain during this process. We found that parasite starvation promotes the cruzipain delivery to reservosomes. Enhanced autophagy increases acidity and hydrolytic activity in these compartments resulting in cruzipain enzymatic activation and self- processing. Inhibition of autophagy similarly impairs cruzipain traffic and activity than protease inhibitors, whereas mutant parasites that exhibit increased basal autophagy, also display increased cruzipain processing under control conditions. Further experiments showed that autophagy induced cruzipain activation and self-processing promote T. cruzi differentiation and host cell infection. These findings highlight the key role of T. cruzi autophagy in these processes and reveal a potential new target for Chagas disease therapy.Abbreviations: Baf: bafilomycin A1; CTE: C-terminal extension; Cz: cruzipain; IIF: indirect immunofluorescence; K777: vinyl sulfone with specific Cz inhibitory activity; Prot Inh: broad-spectrum protease inhibitor; Spa1: spautin-1; Wort: wortmannin.
Collapse
Affiliation(s)
- Antonella Denise Losinno
- Laboratorio de Biología de Trypanosoma Cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
| | - Santiago José Martínez
- Laboratorio de Biología de Trypanosoma Cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina
| | - Carlos Alberto Labriola
- Laboratorio de Biología estructural y celular, Fundación Instituto Leloir (FIL-CONICET), Buenos Aires, Argentina
| | - Carolina Carrillo
- Laboratorio de Parasitología molecular y bioquímica, Instituto de Ciencias y Tecnología Dr. César Milstein (ICT—CONICET), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma Cruzi y la célula hospedadora, Instituto de Histología y Embriología (IHEM-CONICET), Mendoza, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
| |
Collapse
|
4
|
Talevi A, Carrillo C, Comini M. The Thiol-polyamine Metabolism of Trypanosoma cruzi: Molecular Targets and Drug Repurposing Strategies. Curr Med Chem 2019; 26:6614-6635. [PMID: 30259812 DOI: 10.2174/0929867325666180926151059] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/23/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
Chagas´ disease continues to be a challenging and neglected public health problem in many American countries. The etiologic agent, Trypanosoma cruzi, develops intracellularly in the mammalian host, which hinders treatment efficacy. Progress in the knowledge of parasite biology and host-pathogen interaction has not been paralleled by the development of novel, safe and effective therapeutic options. It is then urgent to seek for novel therapeutic candidates and to implement drug discovery strategies that may accelerate the discovery process. The most appealing targets for pharmacological intervention are those essential for the pathogen and, whenever possible, absent or significantly different from the host homolog. The thiol-polyamine metabolism of T. cruzi offers interesting candidates for a rational design of selective drugs. In this respect, here we critically review the state of the art of the thiolpolyamine metabolism of T. cruzi and the pharmacological potential of its components. On the other hand, drug repurposing emerged as a valid strategy to identify new biological activities for drugs in clinical use, while significantly shortening the long time and high cost associated with de novo drug discovery approaches. Thus, we also discuss the different drug repurposing strategies available with a special emphasis in their applications to the identification of drug candidates targeting essential components of the thiol-polyamine metabolism of T. cruzi.
Collapse
Affiliation(s)
- Alan Talevi
- Medicinal Chemistry, Department of Biological Sciences, Faculty of Exact Sciences, University of La Plata, La Plata, Argentina
| | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein (ICT Milstein) - CONICET. Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcelo Comini
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay
| |
Collapse
|
5
|
Dietrich R, Alberca L, Ruiz M, Palestro P, Carrillo C, Talevi A, Gavernet L. Identification of cisapride as new inhibitor of putrescine uptake in Trypanosoma cruzi by combined ligand- and structure-based virtual screening. Eur J Med Chem 2018; 149:22-29. [DOI: 10.1016/j.ejmech.2018.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/30/2018] [Accepted: 02/03/2018] [Indexed: 10/18/2022]
|
6
|
Vanrell MC, Losinno AD, Cueto JA, Balcazar D, Fraccaroli LV, Carrillo C, Romano PS. The regulation of autophagy differentially affects Trypanosoma cruzi metacyclogenesis. PLoS Negl Trop Dis 2017; 11:e0006049. [PMID: 29091711 PMCID: PMC5683653 DOI: 10.1371/journal.pntd.0006049] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 11/13/2017] [Accepted: 10/18/2017] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a cellular process required for the removal of aged organelles and cytosolic components through lysosomal degradation. All types of eukaryotic cells from yeasts to mammalian cells have the machinery to activate autophagy as a result of many physiological and pathological situations. The most frequent stimulus of autophagy is starvation and the result, in this case, is the fast generation of utilizable food (e.g. amino acids and basic nutrients) to maintain the vital biological processes. In some organisms, starvation also triggers other associated processes such as differentiation. The protozoan parasite Trypanosoma cruzi undergoes a series of differentiation processes throughout its complex life cycle. Although not all autophagic genes have been identified in the T. cruzi genome, previous works have demonstrated the presence of essential autophagic-related proteins. Under starvation conditions, TcAtg8, which is the parasite homolog of Atg8/LC3 in other organisms, is located in autophagosome-like vesicles. In this work, we have characterized the autophagic pathway during T. cruzi differentiation from the epimastigote to metacyclic trypomastigote form, a process called metacyclogenesis. We demonstrated that autophagy is stimulated during metacyclogenesis and that the induction of autophagy promotes this process. Moreover, with exception of bafilomycin, other classical autophagy modulators have similar effects on T. cruzi autophagy. We also showed that spermidine and related polyamines can positively regulate parasite autophagy and differentiation. We concluded that both polyamine metabolism and autophagy are key processes during T. cruzi metacyclogenesis that could be exploited as drug targets to avoid the parasite cycle progression. In spite of its old discovery, more than one hundred years ago, Trypanosoma cruzi, the causative agent of Chagas’ disease, is still prevalent in the world, infecting more than 6 million people mostly in Latin America, where this illness is endemic. Only two approved drugs, benznidazole and nifurtimox, are currently used for the treatment of Chagas’ disease. Although efficient for the acute phase, they are poorly effective in the chronic period of the disease and they cause many undesirable side effects. There is an urgent need for therapeutic alternatives. To this end, identifying and validating novel molecular targets is critically relevant. This study describes the effect of different inhibitors on the T. cruzi autophagic pathway, a process required for parasite differentiation. Herein, we demonstrate that the regulation of parasite autophagy exhibits similarities and differences with host cell autophagy. Our study provides new insights that could be used to avoid T. cruzi cycle progression in both insect and mammalian hosts.
Collapse
Affiliation(s)
- María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Antonella Denisse Losinno
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Juan Agustín Cueto
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | - Darío Balcazar
- Instituto de Ciencias y Tecnología Dr. César Milstein—CONICET; Buenos Aires, Argentina
| | | | - Carolina Carrillo
- Instituto de Ciencias y Tecnología Dr. César Milstein—CONICET; Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
- * E-mail:
| |
Collapse
|
7
|
Sayé M, Fargnoli L, Reigada C, Labadie GR, Pereira CA. Evaluation of proline analogs as trypanocidal agents through the inhibition of a Trypanosoma cruzi proline transporter. Biochim Biophys Acta Gen Subj 2017; 1861:2913-2921. [PMID: 28844978 DOI: 10.1016/j.bbagen.2017.08.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 06/30/2017] [Accepted: 08/21/2017] [Indexed: 12/26/2022]
Abstract
BACKGROUND Trypanosoma cruzi, the etiological agent of Chagas disease, uses proline as its main carbon source, essential for parasite growth and stage differentiation in epimastigotes and amastigotes. Since proline is involved in many essential biological processes in T. cruzi, its transport and metabolism are interesting drug targets. METHODS Four synthetic proline analogues (ITP-1B/1C/1D/1G) were evaluated as inhibitors of proline transport mediated through the T. cruzi proline permease TcAAAP069. The trypanocidal activity of the compounds was also assessed. RESULTS The compounds ITP-1B and ITP-1G inhibited proline transport mediated through TcAAAP069 permease in a dose-dependent manner. The analogues ITP-1B, -1D and -1G had trypanocidal effect on T. cruzi epimastigotes with IC50 values between 30 and 40μM. However, only ITP-1G trypanocidal activity was related with its inhibitory effect on TcAAAP069 proline transporter. Furthermore, this analogue strongly inhibited the parasite stage differentiation from epimastigote to metacyclic trypomastigote. Finally, compounds ITP-1B and ITP-1G were also able to inhibit the transport mediated by other permeases from the same amino acid permeases family, TcAAAP. CONCLUSIONS It is possible to design synthetic amino acid analogues with trypanocidal activity. The compound ITP-1G is an interesting starting point for new trypanocidal drug design which is also an inhibitor of transport of amino acids and polyamines mediated by permeases from the TcAAAP family, such as proline transporter TcAAAP069 among others. GENERAL SIGNIFICANCE The Trypanosoma cruzi amino acid transporter family TcAAAP constitutes a multiple and promising therapeutic target for the development of new treatments against Chagas disease.
Collapse
Affiliation(s)
- Melisa Sayé
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Lucía Fargnoli
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina
| | - Chantal Reigada
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET, Suipacha 531, S2002LRK Rosario, Argentina; Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK Rosario, Argentina
| | - Claudio A Pereira
- Laboratorio de Parasitología Molecular, Instituto de Investigaciones Médicas "A. Lanari", IDIM-CONICET, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
8
|
The superfamily keeps growing: Identification in trypanosomatids of RibJ, the first riboflavin transporter family in protists. PLoS Negl Trop Dis 2017; 11:e0005513. [PMID: 28406895 PMCID: PMC5404878 DOI: 10.1371/journal.pntd.0005513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/25/2017] [Accepted: 03/21/2017] [Indexed: 01/07/2023] Open
Abstract
Background Trypanosomatid parasites represent a major health issue affecting hundreds of million people worldwide, with clinical treatments that are partially effective and/or very toxic. They are responsible for serious human and plant diseases including Trypanosoma cruzi (Chagas disease), Trypanosoma brucei (Sleeping sickness), Leishmania spp. (Leishmaniasis), and Phytomonas spp. (phytoparasites). Both, animals and trypanosomatids lack the biosynthetic riboflavin (vitamin B2) pathway, the vital precursor of flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) cofactors. While metazoans obtain riboflavin from the diet through RFVT/SLC52 transporters, the riboflavin transport mechanisms in trypanosomatids still remain unknown. Methodology/Principal findings Here, we show that riboflavin is imported with high affinity in Trypanosoma cruzi, Trypanosoma brucei, Leishmania (Leishmania) mexicana, Crithidia fasciculata and Phytomonas Jma using radiolabeled riboflavin transport assays. The vitamin is incorporated through a saturable carrier-mediated process. Effective competitive uptake occurs with riboflavin analogs roseoflavin, lumiflavin and lumichrome, and co-factor derivatives FMN and FAD. Moreover, important biological processes evaluated in T. cruzi (i.e. proliferation, metacyclogenesis and amastigote replication) are dependent on riboflavin availability. In addition, the riboflavin competitive analogs were found to interfere with parasite physiology on riboflavin-dependent processes. By means of bioinformatics analyses we identified a novel family of riboflavin transporters (RibJ) in trypanosomatids. Two RibJ members, TcRibJ and TbRibJ from T. cruzi and T. brucei respectively, were functionally characterized using homologous and/or heterologous expression systems. Conclusions/Significance The RibJ family represents the first riboflavin transporters found in protists and the third eukaryotic family known to date. The essentiality of riboflavin for trypanosomatids, and the structural/biochemical differences that RFVT/SLC52 and RibJ present, make the riboflavin transporter -and its downstream metabolism- a potential trypanocidal drug target. In this work, we show that riboflavin plays a key role in the trypanosomatid life cycles and describe a novel family of riboflavin transporters (RibJ) with uptake function. Despite the vital importance of riboflavin for all living cells, RibJ are the first transporters described in protists. We functionally characterized the T. cruzi and T. brucei RibJ members and the effect of riboflavin analogs on parasite physiology. The structural and biochemical differences presented between human transporters and RibJ members make riboflavin transport and downstream metabolism, attractive and potential trypanosomatid targets.
Collapse
|
9
|
Kwak MK, Lee MH, Park SJ, Shin SM, Liu R, Kang SO. Polyamines regulate cell growth and cellular methylglyoxal in high-glucose medium independently of intracellular glutathione. FEBS Lett 2016; 590:739-49. [PMID: 26898161 DOI: 10.1002/1873-3468.12102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/03/2016] [Accepted: 02/15/2016] [Indexed: 12/19/2022]
Abstract
Polyamines can presumably inhibit protein glycation, when associated with the methylglyoxal inevitably produced during glycolysis. Herein, we hypothesized a nonenzymatic interaction between putrescine and methylglyoxal in putrescine-deficient or -overexpressing Dictyostelium cells in high-glucose medium, which can control methylglyoxal production. Putrescine was essentially required for growth rescue accompanying methylglyoxal detoxification when cells underwent growth defect and cell cycle G1-arrest when supplemented with high glucose. Furthermore, methylglyoxal regulation by putrescine seemed to be a parallel pathway independent of the changes in cellular glutathione content in high-glucose medium. Consequently, we suggest that Dictyostelium cells need polyamines for normal growth and cellular methylglyoxal regulation.
Collapse
Affiliation(s)
- Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Mun-Hyoung Lee
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Seong-Jun Park
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Sang-Min Shin
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Rui Liu
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, Institute of Microbiology, Seoul National University, Korea
| |
Collapse
|
10
|
Bellera CL, Balcazar DE, Vanrell MC, Casassa AF, Palestro PH, Gavernet L, Labriola CA, Gálvez J, Bruno-Blanch LE, Romano PS, Carrillo C, Talevi A. Computer-guided drug repurposing: Identification of trypanocidal activity of clofazimine, benidipine and saquinavir. Eur J Med Chem 2015; 93:338-48. [DOI: 10.1016/j.ejmech.2015.01.065] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 12/29/2014] [Accepted: 01/28/2015] [Indexed: 01/31/2023]
|
11
|
Cherkesova TS, Hargrove TY, Vanrell MC, Ges I, Usanov SA, Romano PS, Lepesheva GI. Sequence variation in CYP51A from the Y strain of Trypanosoma cruzi alters its sensitivity to inhibition. FEBS Lett 2014; 588:3878-85. [PMID: 25217832 DOI: 10.1016/j.febslet.2014.08.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 08/26/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
Abstract
CYP51 (sterol 14α-demethylase) is an efficient target for clinical and agricultural antifungals and an emerging target for treatment of Chagas disease, the infection that is caused by multiple strains of a protozoan pathogen Trypanosoma cruzi. Here, we analyze CYP51A from the Y strain T. cruzi. In this protein, proline 355, a residue highly conserved across the CYP51 family, is replaced with serine. The purified enzyme retains its catalytic activity, yet has been found less susceptible to inhibition. These biochemical data are consistent with cellular experiments, both in insect and human stages of the pathogen. Comparative structural analysis of CYP51 complexes with VNI and two derivatives suggests that broad-spectrum CYP51 inhibitors are likely to be preferable as antichagasic drug candidates.
Collapse
Affiliation(s)
- Tatiana S Cherkesova
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | - Tatiana Y Hargrove
- Department of Biochemistry School of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | - M Cristina Vanrell
- Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Igor Ges
- Department of Biomedical Engineering School of Engineering, Vanderbilt University, Nashville, TN 37232, USA
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry National Academy of Sciences of Belarus, Minsk 220141, Belarus
| | - Patricia S Romano
- Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza 5500, Argentina
| | - Galina I Lepesheva
- Department of Biochemistry School of Medicine, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
12
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
13
|
Romano PS, Cueto JA, Casassa AF, Vanrell MC, Gottlieb RA, Colombo MI. Molecular and cellular mechanisms involved in the Trypanosoma cruzi/host cell interplay. IUBMB Life 2012; 64:387-96. [PMID: 22454195 DOI: 10.1002/iub.1019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 02/10/2012] [Indexed: 01/12/2023]
Abstract
The protozoan parasite Trypanosoma cruzi has a complex biological cycle that involves vertebrate and invertebrate hosts. In mammals, the infective trypomastigote form of this parasite can invade several cell types by exploiting phagocytic-like or nonphagocytic mechanisms depending on the class of cell involved. Morphological studies showed that when trypomastigotes contact macrophages, they induce the formation of plasma membrane protrusions that differ from the canonical phagocytosis that occurs in the case of noninfective epimastigotes. In contrast, when trypomastigotes infect epithelial or muscle cells, the cell surface is minimally modified, suggesting the induction of a different class of process. Lysosomal-dependent or -independent T. cruzi invasion of host cells are two different models that describe the molecular and cellular events activated during parasite entry into nonphagocytic cells. In this context, we have previously shown that induction of autophagy in host cells before infection favors T. cruzi invasion. Furthermore, we demonstrate that autophagosomes and the autophagosomal protein LC3 are recruited to the T. cruzi entry sites and that the newly formed T. cruzi parasitophorous vacuole has characteristics of an autophagolysosome. This review summarizes the current knowledge of the molecular and cellular mechanisms of T. cruzi invasion in nonphagocytic cells. Based on our findings, we propose a new model in which T. cruzi takes advantage of the upregulation of autophagy during starvation to increase its successful colonization of host cells.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina.
| | | | | | | | | | | |
Collapse
|