1
|
Jeong S, Nam HM, Sung GY. Optimization of hair follicle spheroids for hair-on-a-chip. Biomater Sci 2024; 12:1693-1706. [PMID: 38372380 DOI: 10.1039/d3bm02012f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Currently, most models for hair follicle research have the limitation of not replicating some key features of the hair follicle microenvironment. To complement this, we transfected various factors for hair growth into dermal papilla cells (DPCs) by electroporation and cultured the spheroids with keratinocytes (KCs). We optimized the cell number and culture period for applying spheroids to hair-on-a-chip. Furthermore, we investigated the expression of hair growth factors in spheroids depending on the presence or absence of human umbilical vein endothelial cells (HUVECs) and transfection. In spheroids in which DPCs, KCs, and HUVECs were co-cultured for 21 days, the expression of lymphoid enhancer factor 1 (LEF1), T-cell factor 1 (TCF1), and keratin 25 (K25) in the center of the spheroid, the expression of keratin 17 (K17) on the outer surface of the spheroid, and the shape of hair extending outward from the spheroid surface were observed. From these results, it is expected that a hair-on-a-chip experiment in which short-term cultured TKH spheroids are injected into the dermis and co-cultured with KC will enable the production of full-thickness skin equivalents containing hair in vitro without transplantation into animals.
Collapse
Affiliation(s)
- Subin Jeong
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hyeon-Min Nam
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Republic of Korea
| | - Gun Yong Sung
- Interdisciplinary Program of Nano-Medical Device Engineering, Hallym University, Chuncheon 24252, Republic of Korea.
- Integrative Materials Research Institute, Hallym University, Chuncheon 24252, Republic of Korea
- Major in Materials Science and Engineering, Hallym University, Chuncheon 24252, Republic of Korea
| |
Collapse
|
2
|
Bigliardi P, Junnarkar S, Markale C, Lo S, Bigliardi E, Kalyuzhny A, Ong S, Dunn R, Wahli W, Bigliardi-Qi M. The Opioid Receptor Influences Circadian Rhythms in Human Keratinocytes through the β-Arrestin Pathway. Cells 2024; 13:232. [PMID: 38334624 PMCID: PMC10854934 DOI: 10.3390/cells13030232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/21/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
The recent emphasis on circadian rhythmicity in critical skin cell functions related to homeostasis, regeneration and aging has shed light on the importance of the PER2 circadian clock gene as a vital antitumor gene. Furthermore, delta-opioid receptors (DOPrs) have been identified as playing a crucial role in skin differentiation, proliferation and migration, which are not only essential for wound healing but also contribute to cancer development. In this study, we propose a significant association between cutaneous opioid receptor (OPr) activity and circadian rhythmicity. To investigate this link, we conducted a 48 h circadian rhythm experiment, during which RNA samples were collected every 5 h. We discovered that the activation of DOPr by its endogenous agonist Met-Enkephalin in N/TERT-1 keratinocytes, synchronized by dexamethasone, resulted in a statistically significant 5.6 h delay in the expression of the core clock gene PER2. Confocal microscopy further confirmed the simultaneous nuclear localization of the DOPr-β-arrestin-1 complex. Additionally, DOPr activation not only enhanced but also induced a phase shift in the rhythmic binding of β-arrestin-1 to the PER2 promoter. Furthermore, we observed that β-arrestin-1 regulates the transcription of its target genes, including PER2, by facilitating histone-4 acetylation. Through the ChIP assay, we determined that Met-Enkephalin enhances β-arrestin-1 binding to acetylated H4 in the PER2 promoter. In summary, our findings suggest that DOPr activation leads to a phase shift in PER2 expression via β-arrestin-1-facilitated chromatin remodeling. Consequently, these results indicate that DOPr, much like its role in wound healing, may also play a part in cancer development by influencing PER2.
Collapse
Affiliation(s)
- Paul Bigliardi
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seetanshu Junnarkar
- Agency for Science, Technology and Research, Singapore 138632, Singapore; (S.J.); (S.O.); (R.D.)
| | - Chinmay Markale
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Sydney Lo
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena Bigliardi
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex Kalyuzhny
- Department of Neuroscience, Medical School, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Sheena Ong
- Agency for Science, Technology and Research, Singapore 138632, Singapore; (S.J.); (S.O.); (R.D.)
| | - Ray Dunn
- Agency for Science, Technology and Research, Singapore 138632, Singapore; (S.J.); (S.O.); (R.D.)
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 639798, Singapore;
- Unité Mixte de Recherche (UMR) 1331, Institut National de la Recherche Agronomique (INRA), ToxAlim, 31000 Toulouse, France
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Mei Bigliardi-Qi
- Department of Dermatology, University of Minnesota, Minneapolis, MN 55455, USA (C.M.)
- Stem Cell Institue, McGuire Translational Research Facility, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Bodnar RJ. Endogenous opiates and behavior: 2021. Peptides 2023; 164:171004. [PMID: 36990387 DOI: 10.1016/j.peptides.2023.171004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
This paper is the forty-fourth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2021 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonizts and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY 11367, USA.
| |
Collapse
|