1
|
Chen HR, Zhou N, Liu YD, Peng LH. An Amphibians-Derived Protein Provides Novel Biotherapeutics for Various Wounds Treatment. Biomol Ther (Seoul) 2025; 33:399-407. [PMID: 39933951 PMCID: PMC11893494 DOI: 10.4062/biomolther.2024.096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/14/2024] [Accepted: 10/22/2024] [Indexed: 02/13/2025] Open
Abstract
Acute burns and chronic wounds frequently fail to heal owing to various reasons. Most drugs currently used for wound therapy in clinical practice have notable drawbacks, making their application a substantial concern. For instance, anti-inflammatory drugs can exert multisystem toxicity, and cellular therapies are costly and difficult to retain. In recent years, natural functional proteins derived from animals and plants have gained increasing attention owing to their unique biological activities, low cost, and broad application prospects in wound therapy. Herein, we isolated a new protein (JH015Y) from amphibians and demonstrated its excellent wound repair and regeneration properties compared with those of epidermal growth factor, both in vitro and in vivo. JH015 protein increased the proliferative ability of human keratinocytes and skin fibroblasts by 47.73 and 41.40%, respectively. In vivo, the medium-dose (0.5 mg/dose) groups of JH015Y protein demonstrated accelerated wound healing from day 4, with wound healing rates 1.26, 1.27, and 1.14 times that of the blank group in acute wounds, burn wounds, and diabetic ulcer, respectively. Histological analysis of Masson-stained sections indicated that the JH015Y protein contributed to collagen deposition on the wound surface, markedly reduced inflammatory cell infiltration, and exhibited low biological toxicity. Accordingly, the JH015Y protein is a promising biotherapeutic agent for accelerated wound repair and regeneration.
Collapse
Affiliation(s)
- Hao-Ran Chen
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, Zhejiang University, Hangzhou 310058, China
| | - Nan Zhou
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, Zhejiang University, Hangzhou 310058, China
| | - Yu-Da Liu
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, Zhejiang University, Hangzhou 310058, China
| | - Li-Hua Peng
- Hangzhou Institute of Innovative Medicine, Institute of Drug Discovery and Design, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Du W, Wang X, Zhou Y, Wu W, Huang H, Jin Z. From micro to macro, nanotechnology demystifies acute pancreatitis: a new generation of treatment options emerges. J Nanobiotechnology 2025; 23:57. [PMID: 39881355 PMCID: PMC11776322 DOI: 10.1186/s12951-025-03106-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Acute pancreatitis (AP) is a disease characterized by an acute inflammatory response in the pancreas. This is caused by the abnormal activation of pancreatic enzymes by a variety of etiologic factors, which results in a localized inflammatory response. The symptoms of this disease include abdominal pain, nausea and vomiting and fever. These symptoms are induced by a hyperinflammatory response and oxidative stress. In recent years, research has focused on developing anti-inflammatory and antioxidative therapies for the treatment of acute pancreatitis (AP). However, there are still limitations to this approach, including poor drug stability, low bioavailability and a short half-life. The advent of nanotechnology has opened up a novel avenue for the management of acute pancreatitis (AP). Nanomaterials can serve as an efficacious vehicle for conventional pharmaceuticals, enhancing their targeting ability, improving bioavailability and prolonging their half-life. Moreover, they can also exert a direct therapeutic effect. This review begins by introducing the general situation of acute pancreatitis (AP). It then discusses the pathogenesis of acute pancreatitis (AP) and the current status of treatment. Finally, it considers the literature related to the treatment of acute pancreatitis (AP) by nanomaterials. The objective of this study is to provide a comprehensive review of the existing literature on the use of nanomaterials in the treatment of acute pancreatitis (AP). In particular, the changes in inflammatory markers and therapeutic outcomes following the administration of nanomaterials are examined. This is done with the intention of offering insights that can inform subsequent research and facilitate the clinical application of nanomaterials in the management of acute pancreatitis (AP).
Collapse
Affiliation(s)
- Wei Du
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Xinyue Wang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yuyan Zhou
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Wencheng Wu
- Central Laboratory, Department of Medical Ultrasound, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Haojie Huang
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| | - Zhendong Jin
- Department of Gastroenterology, Shanghai Institute of Pancreatic Diseases, National Key Laboratory of Immunity and Inflammation, Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
3
|
Sarkhel S, Shuvo SM, Ansari MA, Mondal S, Kapat P, Ghosh A, Sarkar T, Biswas R, Atanase LI, Carauleanu A. Nanotechnology-Based Approaches for the Management of Diabetes Mellitus: An Innovative Solution to Long-Lasting Challenges in Antidiabetic Drug Delivery. Pharmaceutics 2024; 16:1572. [PMID: 39771551 PMCID: PMC11678074 DOI: 10.3390/pharmaceutics16121572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Diabetes is a widespread metabolic illness. Mismanagement of diabetes can lead to severe complications that tremendously impact patients' quality of life. The assimilation of nanotechnology in diabetes care holds the potential to revolutionize treatment paradigms, improve patient outcomes, and reduce the economic burden associated with this pervasive disease. This manuscript explores the multifaceted utilization of nanomaterials in diabetes care, emphasizing the unique features of nano-based medication delivery methods and smart drug delivery mechanisms. Additionally, this paper talks about research on nanocarrier-integrated oral, transdermal, and inhalable insulin delivery; dendrimer- and nanocarrier-coupled antisense oligonucleotide-driven gene therapy; the implementation of gold nanoparticles and quantum dots for glucose surveillance; and nucleic acid therapies. There are certain restrictions when using medication delivery methods that are commonly available to handle diabetes. In order to increase efficacy and safety, the rapidly developing science of nanotechnology is also being explored and employed in medical biology. Nanomaterials like liposomes, dendrimers, niosomes, polymeric and metallic nanocarriers, and solid lipid nanoparticles are among the nanocarriers that have been developed for better delivery of various oral hypoglycemic agents in comparison to conventional therapies. These nanocarriers provide great control over elevated blood glucose levels, making them one of the most intriguing and promising technologies available today. Furthermore, adding additional ligands to nanocarriers allows for more focused distribution while protecting the encapsulated hypoglycemic drugs.
Collapse
Affiliation(s)
- Shounak Sarkhel
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Saikat Mollick Shuvo
- Department of Pharmaceutical Technology, JIS University, Agarpara, Kolkata 700109, WB, India;
| | - Md Ahesan Ansari
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Sourav Mondal
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Pritam Kapat
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Arindam Ghosh
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Tanima Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Ranu Biswas
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, WB, India; (S.S.); (M.A.A.); (S.M.); (P.K.); (A.G.); (T.S.)
| | - Leonard Ionut Atanase
- Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Alexandru Carauleanu
- Department of Obstetrics and Gynecology, Grigore T. Popa University of Medicine and Pharmacy, 700111 Iasi, Romania;
| |
Collapse
|
4
|
Ma X, Tian Y, Yang R, Wang H, Allahou LW, Chang J, Williams G, Knowles JC, Poma A. Nanotechnology in healthcare, and its safety and environmental risks. J Nanobiotechnology 2024; 22:715. [PMID: 39548502 PMCID: PMC11566612 DOI: 10.1186/s12951-024-02901-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/03/2024] [Indexed: 11/18/2024] Open
Abstract
Nanotechnology holds immense promise in revolutionising healthcare, offering unprecedented opportunities in diagnostics, drug delivery, cancer therapy, and combating infectious diseases. This review explores the multifaceted landscape of nanotechnology in healthcare while addressing the critical aspects of safety and environmental risks associated with its widespread application. Beginning with an introduction to the integration of nanotechnology in healthcare, we first delved into its categorisation and various materials employed, setting the stage for a comprehensive understanding of its potential. We then proceeded to elucidate the diverse healthcare applications of nanotechnology, spanning medical diagnostics, tissue engineering, targeted drug delivery, gene delivery, cancer therapy, and the development of antimicrobial agents. The discussion extended to the current situation surrounding the clinical translation and commercialisation of these cutting-edge technologies, focusing on the nanotechnology-based healthcare products that have been approved globally to date. We also discussed the safety considerations of nanomaterials, both in terms of human health and environmental impact. We presented the in vivo health risks associated with nanomaterial exposure, in relation with transport mechanisms, oxidative stress, and physical interactions. Moreover, we highlighted the environmental risks, acknowledging the potential implications on ecosystems and biodiversity. Lastly, we strived to offer insights into the current regulatory landscape governing nanotechnology in healthcare across different regions globally. By synthesising these diverse perspectives, we underscore the imperative of balancing innovation with safety and environmental stewardship, while charting a path forward for the responsible integration of nanotechnology in healthcare.
Collapse
Affiliation(s)
- Xiaohan Ma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| | - Yaxin Tian
- United InnoMed (Shanghai) Limited, F/2, E-1, No.299, Kangwei Rd, Pudong District, Shanghai, China
| | - Ren Yang
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
| | - Haowei Wang
- Centre for Precision Healthcare, UCL Division of Medicine, University College London, London, WC1E 6JF, UK
| | - Latifa W Allahou
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jinke Chang
- UCL Centre for Biomaterials in Surgical Reconstruction and Regeneration, Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Med-Icine, Dankook University, Cheonan, 31116, South Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, South Korea
| | - Alessandro Poma
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, Royal Free Hospital, University College London, Rowland Hill Street, London, NW3 2PF, UK.
| |
Collapse
|
5
|
Manral K, Singh A, Singh Y. Nanotechnology as a potential treatment for diabetes and its complications: A review. Diabetes Metab Syndr 2024; 18:103159. [PMID: 39612615 DOI: 10.1016/j.dsx.2024.103159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND AND AIM Diabetes mellitus is a chronic metabolic disorder that causes multiple complications in various organs, such as the kidney, liver and cardiovascular system. These complications are the main causes of morbidity and mortality in patients with diabetes. Nanotechnology offers new opportunities for the therapy of diabetes and its multiple complications through site-specific and precise drug delivery. This review summarizes the various studies demonstrating the potential applications of different nanoparticles in diabetes-associated complications. METHOD A literature search was conducted using PubMed, Google Scholar and Scopus databases, focusing on the role of nanoparticles in the improved delivery of various hypoglycemic agents for the treatment of microvascular and macrovascular diabetic complications. RESULTS Numerous studies have shown that nanoparticles, such as nanoliposomes, polymeric micelles, dendrimers and metallic nanoparticles, improve the delivery of various hypoglycemic agents. Moreover, nanoparticles have been found to be safer, with improved pharmacokinetic and pharmacodynamic profiles. CONCLUSION This review outlines the significant role of nanotechnology in diabetes and related complications and its superiority over conventional drug delivery.
Collapse
Affiliation(s)
- Kanika Manral
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Anita Singh
- Department of Pharmaceutical Sciences, Faculty of Technology Sir J.C Bose Technical Campus Bhimtal, Kumaun University Nainital, 263136, India.
| | - Yuvraj Singh
- Department of Pharmacy, BITS-Pilani, Hyderabad Campus, Medchal, Hyderabad, 500078, India.
| |
Collapse
|
6
|
Yadav K. Nanotechnology in diabetes Management: Revolutionizing treatment and diagnostics. J Mol Liq 2024; 414:126117. [DOI: 10.1016/j.molliq.2024.126117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Shahzad N, Alzahrani AR, Aziz Ibrahim IA, Shahid I, Alanazi IM, Falemban AH, Imam MT, Mohsin N, Azlina MFN, Arulselvan P. Therapeutic strategy of biological macromolecules based natural bioactive compounds of diabetes mellitus and future perspectives: A systematic review. Heliyon 2024; 10:e24207. [PMID: 38298622 PMCID: PMC10828662 DOI: 10.1016/j.heliyon.2024.e24207] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
High blood glucose levels are a hallmark of the metabolic syndrome known as diabetes mellitus. More than 600 million people will have diabetes by 2045 as the global prevalence of the disease continues to rise. Contemporary antidiabetic drugs reduce hyperglycemia and its consequences. However, these drugs come with undesirable side effects, so it's encouraging that research into plant extracts and bioactive substances with antidiabetic characteristics is on the rise. Natural remedies are preferable to conventional anti-diabetic drugs since they are safer for the body, more affordable and have fewer potential adverse effects. Biological macromolecules such as liposomes, niosomes, polymeric nanoparticles, solid lipid nanoparticles, nanoemulsions and metallic nanoparticles are explored in this review. Current drug restrictions have been addressed, and the effectiveness of plant-based antidiabetic therapies has enhanced the merits of these methods. Plant extracts' loading capacity and the carriers' stability are the primary obstacles in developing plant-based nanocarriers. Hydrophilic, hydrophobic, and amphiphilic drugs are covered, and a brief overview of the amphipathic features of liposomes, phospholipids, and lipid nanocarriers is provided. Metallic nanoparticles' benefits and attendant risks are highlighted to emphasize their efficiency in treating hyperglycemia. Researchers interested in the potential of nanoparticles loaded with plant extracts as antidiabetic therapeutics may find the current helpful review.
Collapse
Affiliation(s)
- Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Abdullah R. Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim Abdel Aziz Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ibrahim M. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Alaa Hisham Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mohammad Tarique Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Nehal Mohsin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Najran University, Najran, Saudi Arabia
| | | | - Palanisamy Arulselvan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| |
Collapse
|
8
|
Choi SA, Jee HJ, Bormate KJ, Kim Y, Jung YS. Sex Differences in the Preventive Effect of Cardiovascular and Metabolic Therapeutics on Dementia. Biomol Ther (Seoul) 2023; 31:583-598. [PMID: 37899743 PMCID: PMC10616511 DOI: 10.4062/biomolther.2023.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 10/31/2023] Open
Abstract
Dementia is a clinical syndrome characterized by progressive impairment of cognitive and functional abilities. As currently applied treatments for dementia can only delay the progression of dementia and cannot fundamentally cure it, much attention is being paid to reducing its incidence by preventing the associated risk factors. Cardiovascular and metabolic diseases are well-known risk factors for dementia, and many studies have attempted to prevent dementia by treating these risk factors. Growing evidence suggests that sex-based factors may play an important role in the pathogenesis of dementia. Therefore, a deeper understanding of the differences in the effects of drugs based on sex may help improve their effectiveness. In this study, we reviewed sex differences in the impact of therapeutics targeting risk factors for dementia, such as cardiovascular and metabolic diseases, to prevent the incidence and/or progression of dementia.
Collapse
Affiliation(s)
- Sun Ah Choi
- Graduate School of Global Pharmaceutical Industry and Clinical Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hye Jin Jee
- AI-Super convergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon 16499, Republic of Korea
| | | | - Yeonjae Kim
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Yi-Sook Jung
- Graduate School of Global Pharmaceutical Industry and Clinical Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
- Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
9
|
Sharma R, Borah SJ, Bhawna, Kumar S, Gupta A, Kumari V, Kumar R, Dubey KK, Kumar V. Emerging trends in nano-based antidiabetic therapeutics: a path to effective diabetes management. MATERIALS ADVANCES 2023; 4:3091-3113. [DOI: 10.1039/d3ma00159h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
This review aims to provide an overview of nanoparticles for diabetes mellitus therapy. It explores the properties, synthesis and/or functionalization, mechanistic aspects, and therapeutics for diabetes and its complications.
Collapse
Affiliation(s)
- Ritika Sharma
- Department of Biochemistry, University of Delhi, Delhi, India
| | - Shikha Jyoti Borah
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| | - Bhawna
- Department of Chemistry, University of Delhi, Delhi, India
| | - Sanjeev Kumar
- Department of Chemistry, University of Delhi, Delhi, India
| | | | - Vandana Kumari
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Ravinder Kumar
- Department of Chemistry, Gurukula Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | | | - Vinod Kumar
- Special Centre for Nano Science, Jawaharlal Nehru University, Delhi, India
| |
Collapse
|