1
|
Lu Y, You J. Strategy and application of manipulating DCs chemotaxis in disease treatment and vaccine design. Biomed Pharmacother 2023; 161:114457. [PMID: 36868016 DOI: 10.1016/j.biopha.2023.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/17/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
As the most versatile antigen-presenting cells (APCs), dendritic cells (DCs) function as the cardinal commanders in orchestrating innate and adaptive immunity for either eliciting protective immune responses against canceration and microbial invasion or maintaining immune homeostasis/tolerance. In fact, in physiological or pathological conditions, the diversified migratory patterns and exquisite chemotaxis of DCs, prominently manipulate their biological activities in both secondary lymphoid organs (SLOs) as well as homeostatic/inflammatory peripheral tissues in vivo. Thus, the inherent mechanisms or regulation strategies to modulate the directional migration of DCs even could be regarded as the crucial cartographers of the immune system. Herein, we systemically reviewed the existing mechanistic understandings and regulation measures of trafficking both endogenous DC subtypes and reinfused DCs vaccines towards either SLOs or inflammatory foci (including neoplastic lesions, infections, acute/chronic tissue inflammations, autoimmune diseases and graft sites). Furthermore, we briefly introduced the DCs-participated prophylactic and therapeutic clinical application against disparate diseases, and also provided insights into the future clinical immunotherapies development as well as the vaccines design associated with modulating DCs mobilization modes.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, 291 Fucheng Road, Zhejiang 310018, PR China; Zhejiang-California International NanoSystems Institute, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, PR China.
| |
Collapse
|
2
|
A therapeutic DC vaccine with maintained immunological activity exhibits robust anti-tumor efficacy. J Control Release 2022; 349:254-268. [PMID: 35803328 DOI: 10.1016/j.jconrel.2022.06.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022]
Abstract
Dendritic cells (DCs) vaccines are a major focus of future anti-tumor immunotherapy for their pivotal role in eliciting reactive tumor-specific T-cell responses. Tumor cell-mediated DCs (TC-DC) activation and tumor antigen-mediated DCs (TA-DC) activation are two conventional modes of DC vaccine construction in clinical studies. The former physiologically mimicks the tumor identification and rejection, significantly contributing to DC-based immune recognition and migration towards the complexed tumor microenvironment (TME). However, as immunosuppressive molecules may exist in TME, these TC-DC are generally characterized with aberrant lipid accumulation and inositol-requiring kinase 1α (IRE1α)-X-box binding protein 1 (XBP1) hyperactivation, which is provoked by overwhelming oxidative stress and endoplasmic reticulum (ER) stress, resulting in TC-DC malfunction. Oppositely, without contacting immunosuppressive TME, TA-DC vaccines perform better in T-cell priming and lymph nodes (LNs) homing, but are relatively weak in TME infiltration and identification. Herein, we prepared a KIRA6-loaded α-Tocopherol nanoemulsion (KT-NE), which simultaneously ameliorated oxidative stress and ER stress in the dysfunctional lipid-laden TC-DC. The TC-DC treated by KT-NE could maintain immunological activity, simultaneously, exhibited satisfactory chemotaxis towards LNs and tumor sites in vivo, and effectively suppressed malignant progression by unleashing activated tumor-reactive T cells. This study generated a new DC-vaccine that owned puissant aptitude to identify complicated TME as well as robust immunological activity to boost T-cell initiation, which may provide some insights into the design and application of DC-vaccines for clinical application.
Collapse
|
3
|
Park HJ, Boo S, Park I, Shin MS, Takahashi T, Takanari J, Homma K, Kang I. AHCC ®, a Standardized Extract of Cultured Lentinula Edodes Mycelia, Promotes the Anti-Tumor Effect of Dual Immune Checkpoint Blockade Effect in Murine Colon Cancer. Front Immunol 2022; 13:875872. [PMID: 35514996 PMCID: PMC9066372 DOI: 10.3389/fimmu.2022.875872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 12/22/2022] Open
Abstract
Treatment strategies combining immune checkpoint blockade (ICB) with other agents have emerged as a promising approach in the treatment of cancers. AHCC®, a standardized extract of cultured Lentinula edodes mycelia, has been reported to inhibit tumor growth and enhance immune cell function. Here we investigated whether AHCC® promotes the therapeutic effect of immunotherapy in cancers. A combination of oral AHCC® and dual immune checkpoint blockade (DICB), including PD-1/CTLA-4 blockade, had reduced tumor growth and increased granzyme B and Ki-67 expression by tumor-infiltrating CD8+ T cells in MC38 colon cancer bearing mice compared to a combination of water and DICB. In the same tumor bearing mice, AHCC® and DICB treatment also altered the composition of the gut microbiome with the increased abundance of the species of Ruminococcaceae family which is associated with increased therapeutic efficacy of immunotherapy. The anti-tumor effect of AHCC® and DICB was not found in MC38 tumor-bearing mice treated with antibiotics. These data suggest that AHCC® increases the anti-tumor effect of DICB by enhancing T cell function and affecting the gut microbiome.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Sunjin Boo
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Jeju National University School of Medicine, Jeju, South Korea
| | - Inkeun Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States.,Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, South Korea
| | - Min Sun Shin
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Tsukasa Takahashi
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Jun Takanari
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Kohei Homma
- Research and Development Division, Amino Up Co., Ltd, Sapporo, Japan
| | - Insoo Kang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
4
|
Lu Y, Shi Y, You J. Strategy and clinical application of up-regulating cross presentation by DCs in anti-tumor therapy. J Control Release 2021; 341:184-205. [PMID: 34774890 DOI: 10.1016/j.jconrel.2021.11.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/20/2022]
Abstract
The cross presentation of exogenous antigen (Ag) by dendritic cells (DCs) facilitates a diversified mode of T-cell activation, orchestrates specific humoral and cellular immunity, and contributes to an efficient anti-tumor immune response. DCs-mediated cross presentation is subject to both intrinsic and extrinsic factors, including the homing and phenotype of DCs, the spatiotemporal trafficking and degradation kinetics of Ag, and multiple microenvironmental clues, with many details largely unexplored. Here, we systemically review the current mechanistic understanding and regulation strategies of cross presentation by heterogeneous DC populations. We also provide insights into the future exploitation of DCs cross presentation for a better clinical efficacy in anti-tumor therapy.
Collapse
Affiliation(s)
- Yichao Lu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Yingying Shi
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China
| | - Jian You
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
5
|
Ackley J, Ochoa MA, Ghoshal D, Roy K, Lonial S, Boise LH. Keeping Myeloma in Check: The Past, Present and Future of Immunotherapy in Multiple Myeloma. Cancers (Basel) 2021; 13:4787. [PMID: 34638271 PMCID: PMC8507631 DOI: 10.3390/cancers13194787] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma is an incurable disease of malignant plasma cells and an ideal target for modern immune therapy. The unique plasma cell biology maintained in multiple myeloma, coupled with its hematological nature and unique bone marrow microenvironment, provide an opportunity to design specifically targeted immunotherapies that selectively kill transformed cells with limited on-target off-tumor effects. Broadly defined, immune therapy is the utilization of the immune system and immune agents to treat a disease. In the context of multiple myeloma, immune therapy can be subdivided into four main categories: immune modulatory imide drugs, targeted antibodies, adoptive cell transfer therapies, and vaccines. In recent years, advances in all four of these categories have led to improved therapies with enhanced antitumor activity and specificity. In IMiDs, modified chemical structures have been developed that improve drug potency while reducing dose limiting side effects. Targeted antibody therapies have resulted from the development of new selectively expressed targets as well as the development of antibody drug conjugates and bispecific antibodies. Adoptive cell therapies, particularly CAR-T therapies, have been enhanced through improvements in the manufacturing process, as well as through the development of CAR constructs that enhance CAR-T activation and provide protection from a suppressive immune microenvironment. This review will first cover in-class breakthrough therapies for each of these categories, as well as therapies currently utilized in the clinic. Additionally, this review will explore up and coming therapeutics in the preclinical and clinical trial stage.
Collapse
Affiliation(s)
- James Ackley
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
| | - Miguel Armenta Ochoa
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Delta Ghoshal
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Krishnendu Roy
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA; (M.A.O.); (D.G.); (K.R.)
- NSF Engineering Research Center for Cell Manufacturing Technologies, The Marcus Center for Therapeutic Cell Characterization and Manufacturing and the Center for ImmunoEngineering, The Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sagar Lonial
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H. Boise
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, USA; (J.A.); (S.L.)
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Casey M, Nakamura K. The Cancer-Immunity Cycle in Multiple Myeloma. Immunotargets Ther 2021; 10:247-260. [PMID: 34295843 PMCID: PMC8291851 DOI: 10.2147/itt.s305432] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/10/2021] [Indexed: 12/23/2022] Open
Abstract
Multiple myeloma is a plasma cell malignancy that primarily affects the elderly. The global burden of multiple myeloma is increasing in many countries due to an aging population. Despite recent advances in therapy, myeloma remains an incurable disease, highlighting the pressing need for new therapies. Accumulating evidence supports that triggering the host immune system is a critical therapeutic mechanism of action by various anti-myeloma therapies. These anti-myeloma therapies include proteasome inhibitors, immunomodulatory drugs, monoclonal antibody drugs, and autologous stem cell transplantation. More recently, T cell-based immunotherapeutics (including chimeric antigen receptor T-cell therapies and bispecific T-cell engagers) have shown dramatic clinical benefits in patients with relapsed or refractory multiple myeloma. While immune-based therapeutic approaches are recognized as key modalities for improved clinical outcomes in myeloma patients, understanding the immune system in multiple myeloma patients remains elusive. The cancer-immunity cycle is a conceptual framework illustrating how immune cells recognize and eliminate tumor cells. Based on this framework, this review will provide an overview of the immune system in multiple myeloma patients and discuss potential therapeutic approaches to stimulate anti-tumor immunity.
Collapse
Affiliation(s)
- Mika Casey
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia
| | - Kyohei Nakamura
- Immune Targeting in Blood Cancers Laboratory, QIMR Berghofer Medical Research Institute, Herston, 4006, Australia
| |
Collapse
|
7
|
Nishida H. Rapid Progress in Immunotherapies for Multiple Myeloma: An Updated Comprehensive Review. Cancers (Basel) 2021; 13:2712. [PMID: 34072645 PMCID: PMC8198014 DOI: 10.3390/cancers13112712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 12/27/2022] Open
Abstract
Despite rapid advances in treatment approaches of multiple myeloma (MM) over the last two decades via proteasome inhibitors (PIs), immunomodulatory drugs (IMiDs), and monoclonal antibodies (mAbs), their efficacies are limited. MM still remains incurable, and the majority of patients shortly relapse and eventually become refractory to existing therapies due to the genetic heterogeneity and clonal evolution. Therefore, the development of novel therapeutic strategies with different mechanisms of action represents an unmet need to achieve a deep and highly durable response as well as to improve patient outcomes. The antibody-drug conjugate (ADC), belanatmab mafadotin, which targets B cell membrane antigen (BCMA) on plasma cells, was approved for the treatment of MM in 2020. To date, numerous immunotherapies, including bispecific antibodies, such as bispecific T cell engager (BiTE), the duobody adoptive cellular therapy using a dendritic cell (DC) vaccine, autologous chimeric antigen (CAR)-T cells, allogeneic CAR-natural killer (NK) cells, and checkpoint inhibitors have been developed for the treatment of MM, and a variety of clinical trials are currently underway or are expected to be planned. In the future, the efficacy of combination approaches, as well as allogenic CAR-T or NK cell therapy, will be examined, and promising results may alter the treatment paradigm of MM. This is a comprehensive review with an update on the most recent clinical and preclinical advances with a focus on results from clinical trials in progress with BCMA-targeted immunotherapies and the development of other novel targets in MM. Future perspectives will also be discussed.
Collapse
Affiliation(s)
- Hiroko Nishida
- Department of Pathology, Keio University, School of Medicine, Tokyo 160-8582, Japan; ; Tel.: +81-3-5363-3764; Fax: +81-3-3353-3290
- Division of Hematology, Department of Internal of Medicine, Keio University, School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
8
|
Evolving Role of Daratumumab: From Backbencher to Frontline Agent. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:572-587. [DOI: 10.1016/j.clml.2020.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/08/2020] [Accepted: 03/19/2020] [Indexed: 12/11/2022]
|
9
|
Chu TH, Vo MC, Park HS, Lakshmi TJ, Jung SH, Kim HJ, Lee JJ. Potent anti-myeloma efficacy of dendritic cell therapy in combination with pomalidomide and programmed death-ligand 1 blockade in a preclinical model of multiple myeloma. Cancer Immunol Immunother 2020; 70:31-45. [PMID: 32623477 DOI: 10.1007/s00262-020-02654-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/25/2020] [Indexed: 01/05/2023]
Abstract
Dendritic cell (DC)-based vaccines are recognized as a promising immunotherapeutic strategy against cancer; however, the efficacy of immunotherapy with DCs is controlled via immune checkpoints, such as programmed death-ligand 1 (PD-L1). PD-L1 expressed on DC and tumor cells binds to programmed death-1 (PD-1) receptors on the activated T cells, which leads to the inhibition of cytotoxic T cells. Blocking of PD-L1 on DC may lead to improve the efficacy of DC therapy for cancer. Here we demonstrated that DC vaccination in combination with pomalidomide and programmed death-ligand 1 (PD-L1) blockade inhibited tumor growth of a multiple myeloma (MM) mouse model. DCs + pomalidomide with dexamethasone + PD-L1 blockade significantly inhibited immune immunosuppressive factors and promoted proportions of immune effector cells in the spleen and tumor microenvironment. Additionally, functional activities of cytotoxic T lymphocytes and NK cells in spleen were enhanced by DCs + pomalidomide with dexamethasone + PD-L1 blockade. Taken together, this study identifies a potential new therapeutic approach for the treatment of MM. These results also provide a foundation for the future development of immunotherapeutic modalities to inhibit tumor growth and restore immune function in MM.
Collapse
Affiliation(s)
- Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea. .,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea.
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea. .,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyangro, Hwasun, Jeollanamdo, 519-763, Republic of Korea. .,Vaxcell-Bio Therapeutics, Hwasun, Jeollanamdo, Republic of Korea.
| |
Collapse
|
10
|
Vo MC, Lakshmi TJ, Jung SH, Cho D, Park HS, Chu TH, Lee HJ, Kim HJ, Kim SK, Lee JJ. Cellular immunotherapy in multiple myeloma. Korean J Intern Med 2019; 34:954-965. [PMID: 30754964 PMCID: PMC6718748 DOI: 10.3904/kjim.2018.325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022] Open
Abstract
In multiple myeloma (MM), the impaired function of several types of immune cells favors the tumor's escape from immune surveillance and, therefore, its growth and survival. Tremendous improvements have been made in the treatment of MM over the past decade but cellular immunotherapy using dendritic cells, natural killer cells, and genetically engineered T-cells represent a new therapeutic era. The application of these treatments is growing rapidly, based on their capacity to eradicate MM. In this review, we summarize recent progress in cellular immunotherapy for MM and its future prospects.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Duck Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hyun-Ju Lee
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, College of Industrial Science, Kongju National University, Yesan, Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
- VaxCell-Bio Therapeutics, Hwasun, College of Industrial Science, Kongju National University, Yesan, Korea
- Correspondence to Je-Jung Lee, M.D. Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun 58128, Korea Tel: +82-61-379-7638, Fax: +82-61-379-7628, E-mail:
| |
Collapse
|
11
|
Franssen LE, Mutis T, Lokhorst HM, van de Donk NWCJ. Immunotherapy in myeloma: how far have we come? Ther Adv Hematol 2019; 10:2040620718822660. [PMID: 30719268 PMCID: PMC6348514 DOI: 10.1177/2040620718822660] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
The treatment of multiple myeloma (MM) has evolved substantially over the past decades, leading to a significantly improved outcome of MM patients. The introduction of high-dose therapy, especially, and autologous stem cell transplantation, as well as the development of new drugs, such as immunomodulatory drugs (IMiDs) and proteasome inhibitors have contributed to the improvement in survival. However, eventually most MM patients relapse, which indicates that there is a need for new agents and novel treatment strategies. Importantly, the long-term survival in a subset of MM patients after allogeneic stem cell transplantation illustrates the potential of immunotherapy in MM, but allogeneic stem cell transplantation is also associated with a high rate of treatment-related mortality. Recently, a better insight into several immune-evasion mechanisms, which contribute to tumor progression, has resulted in the development of active and well-tolerated novel forms of immunotherapy. These immunotherapeutic agents can be used as monotherapy, or, even more successfully, in combination with other established anti-MM agents to further improve depth and duration of response by preventing the outgrowth of resistant clones. This review will discuss the mechanisms used by MM cells to evade the immune system, and also provide an overview of currently approved immunotherapeutic drugs, such as IMiDs (e.g. lenalidomide and pomalidomide) and monoclonal antibodies that target cell surface antigens present on the MM cell (e.g. elotuzumab and daratumumab), as well as novel immunotherapies (e.g. chimeric antigen receptor T-cells, bispecific antibodies and checkpoint inhibitors) currently in clinical development in MM.
Collapse
Affiliation(s)
- Laurens E Franssen
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tuna Mutis
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk M Lokhorst
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Vo MC, Yang S, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Lee JJ. Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model. Front Immunol 2018; 9:1798. [PMID: 30123221 PMCID: PMC6085413 DOI: 10.3389/fimmu.2018.01798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 07/20/2018] [Indexed: 01/14/2023] Open
Abstract
We have previously shown that immunization with tumor antigen-loaded dendritic cells (DCs) and the immunomodulating drug, lenalidomide, synergistically potentiates the enhancing antitumor immunity in a myeloma mouse model. In this study, we investigated the immunogenicity of DCs combined with pomalidomide and dexamethasone in a myeloma mouse model. MOPC-315 cells were injected subcutaneously to establish myeloma-bearing mice. Four test groups were used to mimic clinical protocol: (1) PBS control, (2) DCs, (3) pomalidomide + dexamethasone, and (4) DCs + pomalidomide + dexamethasone. The combination of DCs plus pomalidomide and dexamethasone displayed greater inhibition of tumor growth compared to the other groups. This effect was closely related with reduced numbers of immune suppressor cells including myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells, with the induction of immune effector cells such as CD4+ and CD8+ T cells, memory T cells, natural killer (NK) cells, and M1 macrophages, and with the activation of T lymphocytes and NK cells in the spleen. Moreover, the level of the immunosuppressive factor vascular endothelial growth factor was significantly reduced in the tumor microenvironment. The collective findings in the murine myeloma model suggest that tumor antigen-loaded DCs combined with pomalidomide and dexamethasone synergistically enhance antitumor immunity by skewing the immune-suppressive status toward an immune-supportive status.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Seoyun Yang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyun-Ju Lee
- Vaxcell-Bio Therapeutics, Hwasun, South Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Vaxcell-Bio Therapeutics, Hwasun, South Korea
| |
Collapse
|
13
|
Vo MC, Jung SH, Chu TH, Lee HJ, Lakshmi TJ, Park HS, Kim HJ, Rhee JH, Lee JJ. Lenalidomide and Programmed Death-1 Blockade Synergistically Enhances the Effects of Dendritic Cell Vaccination in a Model of Murine Myeloma. Front Immunol 2018; 9:1370. [PMID: 29967612 PMCID: PMC6015916 DOI: 10.3389/fimmu.2018.01370] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 06/01/2018] [Indexed: 01/22/2023] Open
Abstract
The therapeutic efficacy of dendritic cell (DC)-based immunotherapy may be potentiated in combination with other anticancer therapies that enhance DC function by modulating immune responses and the tumor microenvironment. In this study, we investigated the efficacy of DC vaccination in combination with lenalidomide and programmed death (PD)-1 blockade in a model of murine myeloma. MOPC-315 cell lines were injected subcutaneously to establish myeloma-bearing mice and the following five test groups were established: PBS control, DCs, DCs + lenalidomide, DCs + PD-1 blockade, and DCs + lenalidomide + PD-1 blockade. The combination of DCs plus lenalidomide and PD-1 blockade more potently inhibited tumor growth compared to the other groups. This effect was associated with a reduction in immune suppressor cells (such as myeloid-derived suppressor cells, M2 macrophages, and regulatory T cells) and an increase in immune effector cells [such as CD4+ and CD8+ T cells, natural killer (NK) cells, and M1 macrophages] in the spleen. Functional activities of cytotoxic T lymphocytes and NK cells were also enhanced by the triple combination. Levels of immunosuppressive cytokines, such as TGF-β and IL-10, were significantly reduced in the tumor microenvironment. These findings suggest that the combination of DCs plus lenalidomide and PD-1 blockade synergistically establishes a robust anti-myeloma immunity through a two-way mechanism, which inhibits immunosuppressive cells while activating effector cells with superior polarization of the Th1/Th2 balance in favor of the tumor immune response. This result should provide an experimental ground for incorporating check point inhibitors to existing immunotherapeutic modalities against multiple myeloma.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyun-Ju Lee
- Research Institute, VaxCell-Bio Therapeutics, Hwasun, South Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hye-Seong Park
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea
| | - Joon Haeng Rhee
- Research Institute, VaxCell-Bio Therapeutics, Hwasun, South Korea.,Department of Microbiology and Clinical Vaccine R&D Center, Chonnam National University Medical School, Hwasun, South Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, South Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital and Chonnam National University Medical School, Hwasun, South Korea.,Research Institute, VaxCell-Bio Therapeutics, Hwasun, South Korea
| |
Collapse
|
14
|
Vo MC, Nguyen-Pham TN, Lee HJ, Jung SH, Choi NR, Hoang MD, Kim HJ, Lee JJ. Chaetocin enhances dendritic cell function via the induction of heat shock protein and cancer testis antigens in myeloma cells. Oncotarget 2018; 8:46047-46056. [PMID: 28512265 PMCID: PMC5542247 DOI: 10.18632/oncotarget.17517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DC)-based vaccines are considered useful in cancer immuno-therapy, and the interactions of DC and dying tumor cells are important and promising for cancer immunotherapy. We investigated whether chaetocin could be used to induce death of myeloma cells, for loading onto DCs can affect DCs function. In this study, we show that the dying myeloma cells treated with chaetocin resulted in the induction of heat shock protein (HSP) 90, which was inhibited by antioxidant N-acetyl cysteine, and showed an increase in the expression of MAGE-A3 and MAGE-C1/CT7. DCs loaded with chaetocin-treated dying myeloma cells produced low levels of IL-10 and enhanced the cross presentation of DCs. Additionally, these DCs most potently inhibited regulatory T cells, induced Th1 polarization and activated myeloma-specific cytotoxic T lymphocytes compared with DCs loaded with UVB-irradiated dying myeloma cells. These results suggest that the pretreatment of myeloma cells with chaetocin can enhance DC function through the up-regulation of HSP90 and cancer testis antigens in dying myeloma cells and can potently induce the Th1 polarization of DCs and myeloma-specific cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Nu-Ri Choi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - My-Dung Hoang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
15
|
Vo MC, Nguyen-Pham TN, Lee HJ, Jaya Lakshmi T, Yang S, Jung SH, Kim HJ, Lee JJ. Combination therapy with dendritic cells and lenalidomide is an effective approach to enhance antitumor immunity in a mouse colon cancer model. Oncotarget 2018; 8:27252-27262. [PMID: 28460478 PMCID: PMC5432332 DOI: 10.18632/oncotarget.15917] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 02/20/2017] [Indexed: 11/25/2022] Open
Abstract
In this study, we investigated efficacy of lenalidomide in combination with tumor antigen-loaded dendritic cells (DCs) in murine colon cancer model. MC-38 cell lines were injected subcutaneously to establish colon cancer-bearing mice. After tumor growth, lenalidomide (50 mg/kg/day) was injected intraperitoneally on 3 consecutive days in combination with tumor antigen-loaded DC vaccination on days 8, 12, 16, and 20. The tumor antigen-loaded DCs plus lenalidomide combination treatment exhibited a significant inhibition of tumor growth compared with the other groups. These effects were associated with a reduction in immune suppressor cells, such as myeloid-derived suppressor cells and regulatory T cells, with the induction of immune effector cells, such as natural killer cells, CD4+ T cells and CD8+ T cells in spleen, and with the activation of cytotoxic T lymphocytes and NK cells. This study suggests that a combination of tumor antigen-loaded DC vaccination and lenalidomide synergistically enhanced antitumor immune response in the murine colon cancer model, by inhibiting the generation of immune suppressive cells and recovery of effector cells, and demonstrated superior polarization of Th1/Th2 balance in favor of Th1 immune response. This combination approach with DCs and lenalidomide may provide a new therapeutic option to improve the treatment of colon cancer.
Collapse
Affiliation(s)
- Manh-Cuong Vo
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thanh-Nhan Nguyen-Pham
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Thangaraj Jaya Lakshmi
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Seoyun Yang
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Sung-Hoon Jung
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Hyeoung-Joon Kim
- Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea.,Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Jeollanamdo, Republic of Korea
| |
Collapse
|
16
|
Pham PV, Le HT, Vu BT, Pham VQ, Le PM, Phan NLC, Trinh NV, Nguyen HTL, Nguyen ST, Nguyen TL, Phan NK. Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: preliminary results. Onco Targets Ther 2016; 9:4441-51. [PMID: 27499638 PMCID: PMC4959598 DOI: 10.2147/ott.s105239] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. Materials and methods NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 106 cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion These results suggested that targeting BCSCs with DCs is a promising therapy for BC.
Collapse
Affiliation(s)
- Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Hanh Thi Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Binh Thanh Vu
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Viet Quoc Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Phong Minh Le
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Nhan Lu-Chinh Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Ngu Van Trinh
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Huyen Thi-Lam Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | - Sinh Truong Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| | | | - Ngoc Kim Phan
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City
| |
Collapse
|
17
|
Guillerey C, Nakamura K, Vuckovic S, Hill GR, Smyth MJ. Immune responses in multiple myeloma: role of the natural immune surveillance and potential of immunotherapies. Cell Mol Life Sci 2016; 73:1569-89. [PMID: 26801219 PMCID: PMC11108512 DOI: 10.1007/s00018-016-2135-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/07/2016] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is a tumor of terminally differentiated B cells that arises in the bone marrow. Immune interactions appear as key determinants of MM progression. While myeloid cells foster myeloma-promoting inflammation, Natural Killer cells and T lymphocytes mediate protective anti-myeloma responses. The profound immune deregulation occurring in MM patients may be involved in the transition from a premalignant to a malignant stage of the disease. In the last decades, the advent of stem cell transplantation and new therapeutic agents including proteasome inhibitors and immunoregulatory drugs has dramatically improved patient outcomes, suggesting potentially key roles for innate and adaptive immunity in disease control. Nevertheless, MM remains largely incurable for the vast majority of patients. A better understanding of the complex interplay between myeloma cells and their immune environment should pave the way for designing better immunotherapies with the potential of very long term disease control. Here, we review the immunological microenvironment in myeloma. We discuss the role of naturally arising anti-myeloma immune responses and their potential corruption in MM patients. Finally, we detail the numerous promising immune-targeting strategies approved or in clinical trials for the treatment of MM.
Collapse
Affiliation(s)
- Camille Guillerey
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia
| | - Kyohei Nakamura
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia
| | - Slavica Vuckovic
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Geoffrey R Hill
- Bone Marrow Transplantation Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Mark J Smyth
- Immunology of Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD, 4006, Australia.
- School of Medicine, The University of Queensland, Herston Road, Herston, QLD, 4072, Australia.
| |
Collapse
|
18
|
Kumar J, Kale V, Limaye L. Umbilical cord blood-derived CD11c(+) dendritic cells could serve as an alternative allogeneic source of dendritic cells for cancer immunotherapy. Stem Cell Res Ther 2015; 6:184. [PMID: 26407613 PMCID: PMC4583174 DOI: 10.1186/s13287-015-0160-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/17/2015] [Accepted: 08/17/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction Allogenic dendritic cells (DCs) generated from healthy donors, who are complete or partially HLA-matched, have been used for clinical trials. One of the sources for allogenic DCs is umbilical cord blood (UCB) cells. However, as far as cord blood cells are concerned, looking at their naïve nature, there is a concern as to whether the DCs generated from them will have enough potential to elicit a proper T cell response. For this, we compared CD11c+ UCB-DCs/ Cytotoxic T lymphocytes (CTLs) with the conventional source, i.e. peripheral blood (PBL) monocyte DCs/CTLs, using various parameters. Methods CD11c+ DCs generated from the two sources were compared morphologically, phenotypically and functionally. Functional assays included antigen uptake, chemotactic migration and MLR (mixed lymphocyte reaction). The CTLs generated were examined for the activation markers, granzyme A & granzyme B, and IFN-γ secretion. MUC1 (STAPPVHNV) peptide-specific CTLs were quantified by Streptamer staining. In vitro CTL activity was assessed by their efficiency in killing MCF-7 cells. For in vivo CTL assay, a xenograft of MCF-7-luc-F5 cells in female NOD/SCID mice was employed. Regression of tumors in mice was monitored using an in vivo imaging system before and after ten days of CTL infusion. Statistical analysis of all the experiments between the two groups was evaluated by one-way ANOVA. Results The CD11c+ DCs from the two sources were morphologically and phenotypically similar. Their capacity to uptake antigen, migration towards CCL-19 and MLR activity were equivalent. UCB-CTLs had significantly higher levels of activation markers, number of MUC1 specific CTLs, IFN-γ secretion and IL-12p70/IL-10 ratio than that of PBL-CTLs. Hematoxylin and Eosin-stained tumor sections showed T cell infiltration, which was further confirmed by immunofluorescence staining. In vivo CTL activity was found to be similar with the two sources. Conclusions Our data demonstrate that CD11c+ UCB-DCs/CTLs are as potent as standard CD11c+ PBL-DC/CTLs and could therefore be used as an allogenic source for therapeutic purposes. The findings of this study could help in taking us one step closer towards the personalized therapy using DC based cancer vaccines. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0160-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jeetendra Kumar
- Stem Cell Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Vaijayanti Kale
- Stem Cell Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Lalita Limaye
- Stem Cell Laboratory, National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
19
|
Lee HJ, Kim SK, Cho D, Lee JJ. Cellular immunotherapy as a beacon of hope for hematological malignancies. Blood Res 2015; 50:126-8. [PMID: 26457276 PMCID: PMC4595575 DOI: 10.5045/br.2015.50.3.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
- Hyun-Ju Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Sang-Ki Kim
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Department of Companion & Laboratory Animal Science, Kongju National University, Yesan, Korea
| | - Duck Cho
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Je-Jung Lee
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Korea. ; Department of Hematology-Oncology, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|