1
|
Jashiashvili S, Zedginidze A, Ormotsadze G, Shengelaia A. Number and dynamics of micronuclei and near-tetraploidy predict prognosis in childhood acute leukaemia. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2025; 169:44-48. [PMID: 37997902 DOI: 10.5507/bp.2023.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/07/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES This study aims to identify factors possibly contributing to complications in children with acute leukaemia. Despite diverse etiological causes, similar processes trigger the process of cell malignancy. Genomic instability has received considerable attention in this context. METHOD We conducted chromosomal analysis of bone marrow cells and measured the micronuclei (Mn) level in buccal cells over time. Statistical reliability assessment was performed using Analysis of variance (ANOVA), and the data were analyzed and visualized using the SPSS 12 statistical analysis software package. RESULTS On the 15th day of treatment, our findings confirmed a statistically significant correlation (χ2=3.88, P=0.04) between the number of blasts in the bone marrow and unfavourable outcome in patients with a near-tetraploid chromosome clone. Additionally, on the 33rd day of treatment, we observed a correlation between an elevated number of Mn and relapses. DISCUSSION While it is commonly believed that a hyperdiploid clone with >50 chromosomes in childhood acute lymphoblastic leukaemia confers favorable outcome, our study revealed partially heterogeneous results and poor prognosis in patients with a near-tetraploid clone. We have also identified a correlation between the Mn level on the 33rd day of treatment and the development of complications. It is possible that the increased Mn values and the occurrence of relapses were influenced by the individual patient's sensitivity to the genotoxic effect of the medication.
Collapse
Affiliation(s)
| | - Alla Zedginidze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Giorgi Ormotsadze
- Ivane Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | | |
Collapse
|
2
|
Casali C, Siciliani S, Zannino L, Biggiogera M. Histochemistry for nucleic acid research: 60 years in the European Journal of Histochemistry. Eur J Histochem 2022; 66:3409. [PMID: 35441834 PMCID: PMC9044459 DOI: 10.4081/ejh.2022.3409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Since the discovery of DNA structure in 1953, the deoxyribonucleic acid has always been playing a central role in biological research. As physical and ordered nucleotides sequence, it stands at the base of genes existence. Furthermore, beside this 2-dimensional sequence, DNA is characterized by a 3D structural and functional organization, which is of interest for the scientific community due to multiple levels of expression regulation, of interaction with other biomolecules, and much more. Analogously, the nucleic acid counterpart of DNA, RNA, represents a central issue in research, because of its fundamental role in gene expression and regulation, and for the DNA-RNA interplay. Because of their importance, DNA and RNA have always been mentioned and studied in several publications, and the European Journal of Histochemistry is no exception. Here, we review and discuss the papers published in the last 60 years of this Journal, focusing on its contribution in deepening the knowledge about this topic and analysing papers that reflect the interest this Journal always granted to the world of DNA and RNA.
Collapse
Affiliation(s)
- Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Stella Siciliani
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Lorena Zannino
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology, University of Pavia.
| |
Collapse
|
3
|
Lu J, Chen S, Tan H, Huang Z, Li B, Liu L, Chen Y, Zeng X, Zou Y, Xu L. Eukaryotic initiation factor-2, gamma subunit, suppresses proliferation and regulates the cell cycle via the MAPK/ERK signaling pathway in acute myeloid leukemia. J Cancer Res Clin Oncol 2021; 147:3157-3168. [PMID: 34232382 DOI: 10.1007/s00432-021-03712-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE The expression of eukaryotic translation initiation factor-2 subunit 3 (EIF2S3) in patients with non-small cell lung and colorectal cancer is lower than that in healthy individuals. However, the functions of EIF2S3 remain unclear, and its study in leukemia has not been reported. The article aims to explore the role of EIF2S3 in AML (acute myeloid leukemia) and its underlying mechanism. METHODS Reverse transcription-quantitative PCR was performed to evaluate the expression levels of EIF2S3, and its association with patient prognosis was determined. Inducible HEL-EIF2S3 and HL-60-EIF2S3 cell lines were established by retrovirus infection. Cellular proliferation and the cell cycle were analyzed using Cell Counting Kit-8 and flow cytometric analyses. Tumorigenic ability was evaluated using xenograft nude mouse model. Gene expression profiles were analyzed in HL-60-EIF2S3 cells by next-generation sequencing, and WB analysis was performed to detect the expression of related proteins. RESULTS The expression of EIF2S3 in patients with AML was lower than that experiencing CR (P = 0.02). Furthermore, EIF2S3 overexpression inhibited cellular proliferation, halted G0/1 to S phase cell cycle progression, and inhibited tumorigenicity (P = 0.015). 479 differentially expressed genes were identified between HL60-EIF2S3 DOX (-) and HL60-EIF2S3 DOX ( +) cells via NGS and several of them involved in MAPK/ERK signaling pathway. The phosphorylation levels of ERK decreased when EIF2S3 was overexpressed (P < 0.050). CONCLUSION EIF2S3 overexpression may result in a decrease in cellular proliferation, cell cycle arrest, and tumorigenic inhibition via the MAPK/ERK signaling pathway in AML cells.
Collapse
Affiliation(s)
- Jielun Lu
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China.,Department of Urology and Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, People's Republic of China
| | - Shuyi Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China.,Department of Urology and Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, People's Republic of China
| | - Huo Tan
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Zhenqian Huang
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Bo Li
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Ling Liu
- Department of Hematology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 51260, People's Republic of China
| | - Yimin Chen
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Xiaozhen Zeng
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Yawei Zou
- Department of Pediatrics, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China.
| | - Lihua Xu
- Department of Hematology, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang West Road, Yuexiu, Guangzhou, 510000, Guangdong, People's Republic of China. .,Department of Urology and Minimally Invasive Surgery Center, Guangdong Key Laboratory of Urology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Urology, Guangzhou, 510230, Guangdong, People's Republic of China.
| |
Collapse
|
4
|
Pellicciari C. Histochemistry as a versatile research toolkit in biological research, not only an applied discipline in pathology. Eur J Histochem 2018; 62. [PMID: 30572698 PMCID: PMC6317132 DOI: 10.4081/ejh.2018.3006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
The impressive progress of histochemistry over the last 50 years has led to setting up specific and sensitive techniques to describe dynamic events, through the detection of specific molecules in the very place where they exist in live cells. The scientific field where histochemistry has most largely been applied is histopathology, with the aim to identify disease-specific molecular markers or to elucidate the etiopathological mechanisms. Numerous authors did however apply histochemistry to a variety of other research fields; their interests range from the microanatomy of animal and plant organisms to the cellular mechanisms of life. This is especially apparent browsing the contents of the histochemical journals where the articles on subjects other than pathology are the majority; these journals still keep a pivotal role in the field of cell and tissue biology, while being a forum for a diverse range of biologists whose scientific interests expand the research horizon of histochemistry to ever novel subjects. Thus, histochemistry can always receive inspiring stimuli toward a continuous methodological refinement.
Collapse
Affiliation(s)
- Carlo Pellicciari
- University of Pavia, Department of Biology and Biotechnology "Lazzaro Spallanzani".
| |
Collapse
|