1
|
Katano K, Nakanuma S, Tokoro T, Takei R, Takada S, Okazaki M, Kato K, Makino I, Harada K, Yagi S. Impact of aging on peribiliary glands in ischemia-reperfusion injury. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2024; 31:705-715. [PMID: 39011821 DOI: 10.1002/jhbp.12047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
BACKGROUND The detailed mechanisms underlying the development of ischemia-type biliary lesions (ITBLs) in aged donor grafts remain unclear. In the present study we aimed to investigate the impact of aging on the response of the peribiliary gland (PBG) to ischemia-reperfusion injury (IRI) and its temporal changes. METHODS Experiments were performed using a 90-min partial warm liver ischemia model in male Wistar rats of two age groups: young (7-8 weeks old) and old (52-60 weeks old). Liver tissues were obtained 24, 72, and 168 h after IRI. Histopathological and immunohistochemical assessments of the perihilar bile duct (PHBD), including the PBG, distal to the clip-clamped site were performed. RESULTS Young rats showed little change in the bile duct tissues after IRI. However, old rats showed an increased PBG volume in the PHBD and marked PBG cell proliferation 24 h after IRI. Bile duct wall thickening with narrowing of the lumen peaked 72 h after IRI. Mucus production and oxidative stress in the PBG were significantly higher in old than in young rats after IRI. These findings showed a trend toward improvement 168 h after IRI. CONCLUSION Age-dependent differences in the response of the PBG to IRI may be related to differences in ITBL frequency.
Collapse
Affiliation(s)
- Kaoru Katano
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Shinichi Nakanuma
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Tomokazu Tokoro
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Ryohei Takei
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Satoshi Takada
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsuyoshi Okazaki
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Kaichiro Kato
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Isamu Makino
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medicine, Kanazawa, Japan
| | - Shintaro Yagi
- Department of Hepato-Biliary-Pancreatic Surgery and Transplantation, Kanazawa University Hospital, Kanazawa, Japan
| |
Collapse
|
2
|
Agostini C, Buccianti S, Risaliti M, Fortuna L, Tirloni L, Tucci R, Bartolini I, Grazi GL. Complications in Post-Liver Transplant Patients. J Clin Med 2023; 12:6173. [PMID: 37834818 PMCID: PMC10573382 DOI: 10.3390/jcm12196173] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/16/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Liver transplantation (LT) is the treatment of choice for liver failure and selected cases of malignancies. Transplantation activity has increased over the years, and indications for LT have been widened, leading to organ shortage. To face this condition, a high selection of recipients with prioritizing systems and an enlargement of the donor pool were necessary. Several authors published their case series reporting the results obtained with the use of marginal donors, which seem to have progressively improved over the years. The introduction of in situ and ex situ machine perfusion, although still strongly debated, and better knowledge and treatment of the complications may have a role in achieving better results. With longer survival rates, a significant number of patients will suffer from long-term complications. An extensive review of the literature concerning short- and long-term outcomes is reported trying to highlight the most recent findings. The heterogeneity of the behaviors within the different centers is evident, leading to a difficult comparison of the results and making explicit the need to obtain more consent from experts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ilenia Bartolini
- Department of Experimental and Clinical Medicine, AOU Careggi, 50134 Florence, Italy; (C.A.); (S.B.); (M.R.); (L.F.); (L.T.); (R.T.); (G.L.G.)
| | | |
Collapse
|
3
|
Dingfelder J, Rauter L, Berlakovich GA, Kollmann D. Biliary Viability Assessment and Treatment Options of Biliary Injury During Normothermic Liver Perfusion—A Systematic Review. Transpl Int 2022; 35:10398. [PMID: 35707635 PMCID: PMC9189281 DOI: 10.3389/ti.2022.10398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
In recent years, significant progress has been made in the field of liver machine perfusion. Many large transplant centers have implemented machine perfusion strategies in their clinical routine. Normothermic machine perfusion (NMP) is primarily used to determine the quality of extended criteria donor (ECD) organs and for logistical reasons. The vast majority of studies, which assessed the viability of perfused grafts, focused on hepatocellular injury. However, biliary complications are still a leading cause of post-transplant morbidity and the need for re-transplantation. To evaluate the extent of biliary injury during NMP, reliable criteria that consider cholangiocellular damage are needed. In this review, different approaches to assess damage to the biliary tree and the current literature on the possible effects of NMP on the biliary system and biliary injury have been summarized. Additionally, it provides an overview of novel biomarkers and therapeutic strategies that are currently being investigated. Although expectations of NMP to adequately assess biliary injury are high, scant literature is available. There are several biomarkers that can be measured in bile that have been associated with outcomes after transplantation, mainly including pH and electrolytes. However, proper validation of those and other novel markers and investigation of the pathophysiological effect of NMP on the biliary tree is still warranted.
Collapse
|
4
|
de Jong IEM, Overi D, Carpino G, Gouw ASH, van den Heuvel MC, van Kempen LC, Mancone C, Onori P, Cardinale V, Casadei L, Alvaro D, Porte RJ, Gaudio E. Persistent biliary hypoxia and lack of regeneration are key mechanisms in the pathogenesis of posttransplant nonanastomotic strictures. Hepatology 2022; 75:814-830. [PMID: 34543480 PMCID: PMC9300015 DOI: 10.1002/hep.32166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 08/30/2021] [Accepted: 09/16/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Nonanastomotic biliary strictures (NAS) are a major cause of morbidity after orthotopic liver transplantation (OLT). Although ischemic injury of peribiliary glands (PBGs) and peribiliary vascular plexus during OLT has been associated with the later development of NAS, the exact underlying mechanisms remain unclear. We hypothesized that bile ducts of patients with NAS suffer from ongoing biliary hypoxia and lack of regeneration from PBG stem/progenitor cells. APPROACH AND RESULTS Forty-two patients, requiring retransplantation for either NAS (n = 18), hepatic artery thrombosis (HAT; n = 13), or nonbiliary graft failure (controls; n = 11), were included in this study. Histomorphological analysis of perihilar bile ducts was performed to assess differences in markers of cell proliferation and differentiation in PBGs, microvascular density (MVD), and hypoxia. In addition, isolated human biliary tree stem cells (hBTSCs) were used to examine exo-metabolomics during in vitro differentiation toward mature cholangiocytes. Bile ducts of patients with NAS or HAT had significantly reduced indices of PBG mass, cellular proliferation and differentiation (mucus production, secretin receptor expression, and primary cilia), reduced MVD, and increased PBG apoptosis and hypoxia marker expression, compared to controls. Metabolomics of hBTSCs during in vitro differentiation toward cholangiocytes revealed a switch from a glycolytic to oxidative metabolism, indicating the need for oxygen. CONCLUSIONS NAS are characterized by a microscopic phenotype of chronic biliary hypoxia attributed to loss of microvasculature, resulting in reduced proliferation and differentiation of PBG stem/progenitor cells into mature cholangiocytes. These findings suggest that persistent biliary hypoxia is a key mechanism underlying the development of NAS after OLT.
Collapse
Affiliation(s)
- Iris E M de Jong
- Surgical Research LaboratoryDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands.,Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Guido Carpino
- Division of Health SciencesDepartment of Movement, Human and Health SciencesUniversity of Rome "Foro Italico"RomeItaly
| | - Annette S H Gouw
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Marius C van den Heuvel
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Léon C van Kempen
- Department of PathologyUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Carmine Mancone
- Department of Molecular MedicineSapienza University of RomeRomeItaly
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and BiotechnologiesPolo Pontino, Sapienza University of RomeRomeItaly
| | - Luca Casadei
- Department of ChemistrySapienza University of RomeRomeItaly
| | - Domenico Alvaro
- Department of Translational and Precision MedicineSapienza University of RomeRomeItaly
| | - Robert J Porte
- Section of Hepatobiliary Surgery and Liver TransplantationDepartment of SurgeryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic SciencesSapienza University of RomeRomeItaly
| |
Collapse
|
5
|
Pellicciari C. Twenty years of histochemistry in the third millennium, browsing the scientific literature. Eur J Histochem 2020; 64. [PMID: 33478199 PMCID: PMC7789425 DOI: 10.4081/ejh.2020.3213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the last twenty years, about 240,000 articles where histochemical techniques were used have been published in indexed journals, and their yearly number has progressively increased. The histochemical approach was selected by researchers with very different scientific interests, as the journals in which these articles were published fall within 140 subject categories. The relative proportion of articles in some of these journal categories did change over the years, and browsing the table of contents of the European Journal of Histochemistry, as an example of a strictly histochemical journal, it appeared that in recent years histochemical techniques were preferentially used to mechanistically investigate natural or experimentally induced dynamic processes, with reduced attention to purely descriptive works. It may be foreseen that, in the future, histochemistry will be increasingly focused on studying the molecular pathways responsible for cell differentiation, the maintenance or loss of the differentiated state, and tissue regeneration.
Collapse
|
6
|
Safarikia S, Carpino G, Overi D, Cardinale V, Venere R, Franchitto A, Onori P, Alvaro D, Gaudio E. Distinct EpCAM-Positive Stem Cell Niches Are Engaged in Chronic and Neoplastic Liver Diseases. Front Med (Lausanne) 2020; 7:479. [PMID: 32984373 PMCID: PMC7492539 DOI: 10.3389/fmed.2020.00479] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
In normal human livers, EpCAMpos cells are mostly restricted in two distinct niches, which are (i) the bile ductules and (ii) the mucous glands present inside the wall of large intrahepatic bile ducts (the so-called peribiliary glands). These EpCAMpos cell niches have been proven to harbor stem/progenitor cells with great importance in liver and biliary tree regeneration and in the pathophysiology of human diseases. The EpCAMpos progenitor cells within bile ductules are engaged in driving regenerative processes in chronic diseases affecting hepatocytes or interlobular bile ducts. The EpCAMpos population within peribiliary glands is activated when regenerative needs are finalized to repair large intra- or extra-hepatic bile ducts affected by chronic pathologies, including primary sclerosing cholangitis and ischemia-induced cholangiopathies after orthotopic liver transplantation. Finally, the presence of distinct EpCAMpos cell populations may explain the histological and molecular heterogeneity characterizing cholangiocarcinoma, based on the concept of multiple candidate cells of origin. This review aimed to describe the precise anatomical distribution of EpCAMpos populations within the liver and the biliary tree and to discuss their contribution in the pathophysiology of human liver diseases, as well as their potential role in regenerative medicine of the liver.
Collapse
Affiliation(s)
- Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
7
|
Carpino G, Nevi L, Overi D, Cardinale V, Lu WY, Di Matteo S, Safarikia S, Berloco PB, Venere R, Onori P, Franchitto A, Forbes SJ, Alvaro D, Gaudio E. Peribiliary Gland Niche Participates in Biliary Tree Regeneration in Mouse and in Human Primary Sclerosing Cholangitis. Hepatology 2020; 71:972-989. [PMID: 31330051 DOI: 10.1002/hep.30871] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Mechanisms underlying the repair of extrahepatic biliary tree (EHBT) after injury have been scarcely explored. The aims of this study were to evaluate, by using a lineage tracing approach, the contribution of peribiliary gland (PBG) niche in the regeneration of EHBT after damage and to evaluate, in vivo and in vitro, the signaling pathways involved. APPROACH AND RESULTS Bile duct injury was induced by the administration of 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet for 14 days to Krt19Cre TdTomatoLSL mice. Human biliary tree stem/progenitor cells (BTSC) within PBGs were isolated from EHBT obtained from liver donors. Hepatic duct samples (n = 10) were obtained from patients affected by primary sclerosing cholangitis (PSC). Samples were analyzed by histology, immunohistochemistry, western blotting, and polymerase chain reaction. DDC administration causes hyperplasia of PBGs and periductal fibrosis in EHBT. A PBG cell population (Cytokeratin19- /SOX9+ ) is involved in the renewal of surface epithelium in injured EHBT. The Wnt signaling pathway triggers human BTSC proliferation in vitro and influences PBG hyperplasia in vivo in the DDC-mediated mouse biliary injury model. The Notch signaling pathway activation induces BTSC differentiation in vitro toward mature cholangiocytes and is associated with PBG activation in the DDC model. In human PSC, inflammatory and stromal cells trigger PBG activation through the up-regulation of the Wnt and Notch signaling pathways. CONCLUSIONS We demonstrated the involvement of PBG cells in regenerating the injured biliary epithelium and identified the signaling pathways driving BTSC activation. These results could have relevant implications on the pathophysiology and treatment of cholangiopathies.
Collapse
Affiliation(s)
- Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Lorenzo Nevi
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Wei-Yu Lu
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Sabina Di Matteo
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Samira Safarikia
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Rosanna Venere
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Stuart J Forbes
- Medical Research Council Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Domenico Alvaro
- Department of Precision and Translational Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|