1
|
Alterations in metabolic flux in migraine and the translational relevance. J Headache Pain 2022; 23:127. [PMID: 36175833 PMCID: PMC9523955 DOI: 10.1186/s10194-022-01494-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Migraine is a highly prevalent disorder with significant economical and personal burden. Despite the development of effective therapeutics, the causes which precipitate migraine attacks remain elusive. Clinical studies have highlighted altered metabolic flux and mitochondrial function in patients. In vivo animal experiments can allude to the metabolic mechanisms which may underlie migraine susceptibility. Understanding the translational relevance of these studies are important to identifying triggers, biomarkers and therapeutic targets in migraine. MAIN BODY Functional imaging studies have suggested that migraineurs feature metabolic syndrome, exhibiting hallmark features including upregulated oxidative phosphorylation yet depleted available free energy. Glucose hypometabolism is also evident in migraine patients and can lead to altered neuronal hyperexcitability such as the incidence of cortical spreading depression (CSD). The association between obesity and increased risk, frequency and worse prognosis of migraine also highlights lipid dysregulation in migraine pathology. Calcitonin gene related peptide (CGRP) has demonstrated an important role in sensitisation and nociception in headache, however its role in metabolic regulation in connection with migraine has not been thoroughly explored. Whether impaired metabolic function leads to increased release of peptides such as CGRP or excessive nociception leads to altered flux is yet unknown. CONCLUSION Migraine susceptibility may be underpinned by impaired metabolism resulting in depleted energy stores and altered neuronal function. This review discusses both clinical and in vivo studies which provide evidence of altered metabolic flux which contribute toward pathophysiology. It also reviews the translational relevance of animal studies in identifying targets of biomarker or therapeutic development.
Collapse
|
2
|
Noseda R. Cerebro-Cerebellar Networks in Migraine Symptoms and Headache. FRONTIERS IN PAIN RESEARCH 2022; 3:940923. [PMID: 35910262 PMCID: PMC9326053 DOI: 10.3389/fpain.2022.940923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
The cerebellum is associated with the biology of migraine in a variety of ways. Clinically, symptoms such as fatigue, motor weakness, vertigo, dizziness, difficulty concentrating and finding words, nausea, and visual disturbances are common in different types of migraine. The neural basis of these symptoms is complex, not completely known, and likely involve activation of both specific and shared circuits throughout the brain. Posterior circulation stroke, or neurosurgical removal of posterior fossa tumors, as well as anatomical tract tracing in animals, provided the first insights to theorize about cerebellar functions. Nowadays, with the addition of functional imaging, much progress has been done on cerebellar structure and function in health and disease, and, as a consequence, the theories refined. Accordingly, the cerebellum may be useful but not necessary for the execution of motor, sensory or cognitive tasks, but, rather, would participate as an efficiency facilitator of neurologic functions by improving speed and skill in performance of tasks produced by the cerebral area to which it is reciprocally connected. At the subcortical level, critical regions in these processes are the basal ganglia and thalamic nuclei. Altogether, a modulatory role of the cerebellum over multiple brain regions appears compelling, mainly by considering the complexity of its reciprocal connections to common neural networks involved in motor, vestibular, cognitive, affective, sensory, and autonomic processing—all functions affected at different phases and degrees across the migraine spectrum. Despite the many associations between cerebellum and migraine, it is not known whether this structure contributes to migraine initiation, symptoms generation or headache. Specific cerebellar dysfunction via genetically driven excitatory/inhibitory imbalances, oligemia and/or increased risk to white matter lesions has been proposed as a critical contributor to migraine pathogenesis. Therefore, given that neural projections and functions of many brainstem, midbrain and forebrain areas are shared between the cerebellum and migraine trigeminovascular pathways, this review will provide a synopsis on cerebellar structure and function, its role in trigeminal pain, and an updated overview of relevant clinical and preclinical literature on the potential role of cerebellar networks in migraine pathophysiology.
Collapse
Affiliation(s)
- Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
- *Correspondence: Rodrigo Noseda
| |
Collapse
|
3
|
Kelishadi MR, Naeini AA, Khorvash F, Askari G, Heidari Z. The beneficial effect of Alpha-lipoic acid supplementation as a potential adjunct treatment in episodic migraines. Sci Rep 2022; 12:271. [PMID: 34997178 PMCID: PMC8742085 DOI: 10.1038/s41598-021-04397-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
The current study was performed to evaluate the effects of alpha-lipoic acid (ALA) supplementation on lactate, nitric oxide (NO), vascular cell adhesion molecule-1 (VCAM-1) levels, and clinical symptoms in women with episodic migraines. Considering the inclusion and exclusion criteria, ninety-two women with episodic migraines participated in this randomized, double-blind, placebo-controlled, parallel-design trial. The participants were randomly assigned to receive either 300 mg/day ALA or placebo, twice per day for 12 weeks. The primary outcomes included headache severity, headache frequency per month, and duration of attacks and the secondary outcomes included lactate (a marker of mitochondrial function), NO, and VCAM-1 serum levels were measured at baseline and the end of the intervention. At the end of the study, there was a significant decrease in lactate serum levels (- 6.45 ± 0.82 mg/dl vs - 2.27 ± 1.17 mg/dl; P = 0.039) and VCAM-1 (- 2.02 ± 0.30 ng/ml vs - 1.21 ± 0.36 ng/ml; P = 0.025) in the ALA as compared to the placebo group. In addition, the severity (P < 0.001), frequency (P = 0.001), headache impact test (HIT-6) (P < 0.001), headache dairy results (HDR) (P = 0.003), and migraine headache index score (MHIS) (P < 0.001) had significantly decreased in the intervention as compared to the control group. No significant changes were observed for NO levels and duration of migraine pains. ALA supplementation can be considered a potential adjunct treatment in patients with migraine due to its improving mitochondrial and endothelial functions and clinical symptoms.
Collapse
Affiliation(s)
- Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Amato A, Ragonese P, Ingoglia S, Schiera G, Schirò G, Di Liegro CM, Salemi G, Di Liegro I, Proia P. Lactate Threshold Training Program on Patients with Multiple Sclerosis: A Multidisciplinary Approach. Nutrients 2021; 13:nu13124284. [PMID: 34959834 PMCID: PMC8704660 DOI: 10.3390/nu13124284] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
Physical activity could play a key role in improving the quality of life, particularly in patients with nervous system diseases such as multiple sclerosis (MS). Through lactacid anaerobic training, this study aims to investigate the effects at a bio-psycho-physical level to counteract the chronic fatigue associated with the pathology, and to improve mental health at a psychological and neurotrophic level. Eight subjects (age: 34.88 ± 4.45 years) affected by multiple sclerosis were involved. A lactate threshold training program was administered biweekly for 12 weeks at the beginning of the study (T0), at the end of the study (T1) and at 9 months after the end of the study (T2), with physical, psychological and hematochemicals parameters, and dietary habits being tested. The results obtained confirmed that lactacid exercise can influence brain-derived neurotrophic factor (BDNF) levels as well as dehydroepiandrosterone sulfate (DHEAS) levels. In addition, levels of baseline lactate, which could be best used as an energy substrate, showed a decrease after the protocol training. Self-efficacy regarding worries and concerns management significantly increased from T0 to T1. The eating attitudes test (EAT-26) did not highlight any eating disease in the patients with a normal diet enrolled in our study. Physical exercise also greatly influenced the patients psychologically and emotionally, increasing their self-esteem. Lactate threshold training, together with dietary habits, appears to exert synergic positive effects on inflammation, neural plasticity and neuroprotection, producing preventive effects on MS symptoms and progression.
Collapse
Affiliation(s)
- Alessandra Amato
- Department of Psychology, Educational Science and Human Movement, Research Unit, University of Palermo, 90100 Palermo, Italy; (A.A.); (S.I.)
| | - Paolo Ragonese
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90100 Palermo, Italy; (P.R.); (G.S.); (G.S.); (I.D.L.)
| | - Sonia Ingoglia
- Department of Psychology, Educational Science and Human Movement, Research Unit, University of Palermo, 90100 Palermo, Italy; (A.A.); (S.I.)
| | - Gabriella Schiera
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90100 Palermo, Italy; (P.R.); (G.S.); (G.S.); (I.D.L.)
| | - Carlo Maria Di Liegro
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90100 Palermo, Italy; (G.S.); (C.M.D.L.)
| | - Giuseppe Salemi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90100 Palermo, Italy; (P.R.); (G.S.); (G.S.); (I.D.L.)
| | - Italia Di Liegro
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (Bi.N.D.), University of Palermo, 90100 Palermo, Italy; (P.R.); (G.S.); (G.S.); (I.D.L.)
| | - Patrizia Proia
- Department of Psychology, Educational Science and Human Movement, Research Unit, University of Palermo, 90100 Palermo, Italy; (A.A.); (S.I.)
- Correspondence:
| |
Collapse
|
5
|
Abstract
OBJECTIVES Fibromyalgia (FM) patients have an increased risk for glucose metabolism disturbances, and impaired glucose tolerance may be associated with symptom severity. Elevated levels of plasma lactate have been detected in FM patients. Both pyruvate and lactate are produced in glucose metabolism and reflect oxidative metabolism. The objective of our study was to analyse disturbances in glucose, pyruvate, or lactate metabolism in FM patients. METHODS We measured plasma levels of glucose, pyruvate, and lactate during an oral glucose tolerance test in 40 non-diabetic, female FM patients and 30 age- and gender-matched healthy controls. RESULTS FM patients showed a higher glycaemic response to the glucose load at 1 hour (F [1,68] = 10.4, P = .006) and 2 hours (F [1,68] = 7.80, P = .02), and higher glucose area under the curve (13.8 [SD 2.92] vs 11.6 [SD 2.31], P < .01), than healthy controls. Group differences were explained by higher body mass index and percentage of smokers among the FM patients. Pyruvate and lactate levels were similar in both groups. DISCUSSION Impaired glucose regulation in FM patients is likely not due to FM itself, but to associated lifestyle factors. Our results highlight the importance of assessing the glucose regulation status and the lifestyle factors affecting glucose regulation in FM patients for prevention or early treatment of diabetes and associated complications. TRIAL REGISTRATION ClinicalTrials.gov (NCT03300635).
Collapse
Affiliation(s)
- Teemu Zetterman
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Uusimaa, Finland
- Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; City of Vantaa Health Centre, Vantaa, Finland
| | - Ritva Markkula
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Uusimaa, Finland
| | - Eija Kalso
- Department of Anaesthesiology, Intensive Care and Pain Medicine, Helsinki University and Helsinki University Hospital, Uusimaa, Finland
- Sleepwell Research Programme, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Mazzatenta A, Pokorski M, Di Giulio C. Volatile organic compounds (VOCs) in exhaled breath as a marker of hypoxia in multiple chemical sensitivity. Physiol Rep 2021; 9:e15034. [PMID: 34536058 PMCID: PMC8449310 DOI: 10.14814/phy2.15034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 11/24/2022] Open
Abstract
In the history of diagnostics, breath analysis was one of the first method used until the breakthrough of biochemical testing technology. Today, breath analysis has made a comeback with the development of gas analyzers and e‐noses, demonstrating its power in its applicability for diagnosing a wide range of diseases. The physical basis of multiple chemical sensitivity (MCS), an emerging environmental disease, is difficult to understand because it is based on the scenario of chronic hypoxia, with a complex of chemical compounds that trigger the syndrome and result in multiple symptoms. The aim of this study was to investigate MCS by analyzing exhaled volatile organic compounds (VOCs). The volatile, metabolic picture could be a putative gold standard for understanding and diagnosing the disease. The study was based on recording in resting condition using the noninvasive passive e‐nose contactless breath test, the Olfactory Real‐Time Volatile Organic Compounds (ORT‐VOC) test in MCS, and control samples. The VOCs profile distinguished between disease and health. It also distinguished the gender‐related volatile profile with significant robustness. The results trace a putative compensatory physiological pathway elicited by increased lactate, leading to acidosis, and hyperventilation, resulting in the production of specific VOCs. We conclude that breath testing is a valuable tool to investigate the hypoxia‐related VOC profile, facilitating MCS diagnosis.
Collapse
Affiliation(s)
- Andrea Mazzatenta
- Department of Neuroscience, Imaging and Clinical Sciences, University "d'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Mieczyslaw Pokorski
- Institute of Health Sciences, University of Opole, Opole, Poland.,Faculty of Health Sciences, The Jan Dlugosz University in Czestochowa, Czestochowa, Poland
| | - Camillo Di Giulio
- Department of Neuroscience, Imaging and Clinical Sciences, University "d'Annunzio" Chieti-Pescara, Chieti, Italy
| |
Collapse
|
7
|
Rezaei Kelishadi M, Alavi Naeini A, Askari G, Khorvash F, Heidari Z. The efficacy of alpha-lipoic acid in improving oxidative, inflammatory, and mood status in women with episodic migraine in a randomised, double-blind, placebo-controlled clinical trial. Int J Clin Pract 2021; 75:e14455. [PMID: 34105866 DOI: 10.1111/ijcp.14455] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/19/2021] [Indexed: 11/28/2022] Open
Abstract
AIM Migraine is a common neurovascular disorder, which is associated with severe to moderate disabling headaches. Oxidative stress and inflammation might play a role in migraine pathogenesis and the mood disorders. Considering the antioxidant and anti-inflammatory properties of alpha-lipoic acid (ALA), this study was designed to investigate its effect on oxidative, inflammatory, and mood conditions in women with episodic migraine. METHODS In total, 92 women with episodic migraine participated in the study. The patients were randomly divided into two groups, receiving a 300-mg capsule of ALA or placebo twice daily for 3 months. To assess the oxidative and inflammatory status, the serum levels of total antioxidant capacity (TAC), total oxidant status (TOS), glutathione (GSH), malondialdehyde (MDA), oxidative stress index (OSI), and C-reactive protein (CRP) were determined at the beginning and at the end of the intervention. A depression, anxiety, stress scale (DASS-21-items) questionnaire was used to evaluate mood status. RESULTS Finally, 79 patients reached the final analysis stage. At the end of the intervention, a significant decrease in the serum levels of MDA (means difference [MD]: -0.83, 95% confidence intervals (CI): -1.04, -0.62 nmol/mL vs MD: -0.32, CI: -0.48, -0.15 nmol/mL; P < .001) and CRP (MD: -0.78, CI: -1.17, -0.39 mg/L vs MD: -0.63, CI: -1.80, 0.52 mg/L; P < .001) was observed in the ALA as compared with the placebo group, but changes in serum GSH (P = .086), TAC (P = .068), TOS (P = .225), and OSI (P = .404) were not statistically significant. In addition, depression, anxiety, and stress (with P < .001, in all cases) had significantly decreased in the intervention as compared with the control group. CONCLUSION The results of this study suggest that ALA supplementation for 3 months has beneficial effects on improving the oxidative, inflammatory, and mood conditions of patients suffering from episodic migraine.
Collapse
Affiliation(s)
- Mahnaz Rezaei Kelishadi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amirmansour Alavi Naeini
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gholamreza Askari
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Marino C, Grimaldi M, Sabatini P, Amato P, Pallavicino A, Ricciardelli C, D’Ursi AM. Fibromyalgia and Depression in Women: An 1H-NMR Metabolomic Study. Metabolites 2021; 11:429. [PMID: 34209136 PMCID: PMC8304744 DOI: 10.3390/metabo11070429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/15/2021] [Accepted: 06/23/2021] [Indexed: 12/18/2022] Open
Abstract
Fibromyalgia is a chronic and systemic syndrome characterized by muscle, bone, and joint pain. It is a gender-specific condition with a 9:1 incidence ratio between women and men. Fibromyalgia is frequently associated with psychic disorders affecting the cognitive and emotional spheres. In the reported work, we compared 31 female fibromyalgia patients to 31 female healthy controls. They were analyzed for biochemical clinical parameters, for autoimmune markers, and were subjected to 1H-NMR metabolomics analysis. To identify a correlation between the metabolomic profile and the psychic condition, a subset of 19 fibromyalgia patients was subjected to HAM-A and HAM-D Hamilton depression tests. Multivariate statistical analysis showed the dysmetabolism of several metabolites involved in energy balance that are associated with systemic inflammatory conditions. The severity of depression worsens dysmetabolic conditions; conversely, glycine and glutamate, known for their critical role as neuromodulators, appear to be potential biomarkers of fibromyalgia and are associated with different severity depression conditions.
Collapse
Affiliation(s)
- Carmen Marino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Manuela Grimaldi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Paola Sabatini
- U.O.C. Clinical Pathology D.E.A. III Umberto I, Viale S. Francesco D’Assisi, 84014 Nocera Inferiore, Italy;
| | - Patrizia Amato
- ASL Ser. T Cava de’ Tirreni, Piazza Matteo Galdi 1/3, 84013 Pregiato, Italy;
| | - Arianna Pallavicino
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Carmen Ricciardelli
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| | - Anna Maria D’Ursi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy; (C.M.); (M.G.); (A.P.); (C.R.)
| |
Collapse
|
9
|
Grech O, Mollan SP, Wakerley BR, Fulton D, Lavery GG, Sinclair AJ. The Role of Metabolism in Migraine Pathophysiology and Susceptibility. Life (Basel) 2021; 11:415. [PMID: 34062792 PMCID: PMC8147354 DOI: 10.3390/life11050415] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 01/07/2023] Open
Abstract
Migraine is a highly prevalent and disabling primary headache disorder, however its pathophysiology remains unclear, hindering successful treatment. A number of key secondary headache disorders have headaches that mimic migraine. Evidence has suggested a role of mitochondrial dysfunction and an imbalance between energetic supply and demand that may contribute towards migraine susceptibility. Targeting these deficits with nutraceutical supplementation may provide an additional adjunctive therapy. Neuroimaging techniques have demonstrated a metabolic phenotype in migraine similar to mitochondrial cytopathies, featuring reduced free energy availability and increased metabolic rate. This is reciprocated in vivo when modelling a fundamental mechanism of migraine aura, cortical spreading depression. Trials assessing nutraceuticals successful in the treatment of mitochondrial cytopathies including magnesium, coenzyme q10 and riboflavin have also been conducted in migraine. Although promising results have emerged from nutraceutical trials in patients with levels of minerals or vitamins below a critical threshold, they are confounded by lacking control groups or cohorts that are not large enough to be representative. Energetic imbalance in migraine may be relevant in driving the tissue towards maximum metabolic capacity, leaving the brain lacking in free energy. Personalised medicine considering an individual's deficiencies may provide an approach to ameliorate migraine.
Collapse
Affiliation(s)
- Olivia Grech
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Susan P. Mollan
- Birmingham Neuro-Ophthalmology Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham B15 2TH, UK;
| | - Benjamin R. Wakerley
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| | - Daniel Fulton
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK;
| | - Gareth G. Lavery
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
| | - Alexandra J. Sinclair
- Metabolic Neurology, Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; (O.G.); (B.R.W.); (G.G.L.)
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham B15 2TH, UK
- Department of Neurology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Trust, Birmingham B15 2TH, UK
| |
Collapse
|
10
|
Giustiniani A, Battaglia G, Messina G, Morello H, Guastella S, Iovane A, Oliveri M, Palma A, Proia P. Transcranial Alternating Current Stimulation (tACS) Does Not Affect Sports People's Explosive Power: A Pilot Study. Front Hum Neurosci 2021; 15:640609. [PMID: 33994980 PMCID: PMC8116517 DOI: 10.3389/fnhum.2021.640609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/23/2022] Open
Abstract
Purpose: This study is aimed to preliminary investigate whether transcranial alternating current stimulation (tACS) could affect explosive power considering genetic background in sport subjects. Methods: Seventeen healthy sports volunteers with at least 3 years of sports activities participated in the experiment. After 2 weeks of familiarization performed without any stimulation, each participant received either 50 Hz-tACS or sham-tACS. Before and after stimulation, subjects performed the following tests: (1) the squat jump with the hands on the hips (SJ); (2) countermovement jump with the hands on the hips (CMJ); (3) countermovement jump with arm swing (CMJ-AS); (4) 15-s Bosco's test; (5) seated backward overhead medicine ball throw (SBOMBT); (6) seated chest pass throw (SCPT) with a 3-kg rubber medicine ball; and (7) hand-grip test. Additionally, saliva samples were collected from each participant. Genotyping analysis was carried out by polymerase chain reaction (PCR). Results: No significant differences were found in sport performance of subjects after 50 Hz-tACS. Additionally, we did not find any influence of genetic background on tACS-related effect on physical performance. These results suggest that tACS at gamma frequency is not able to induce an after-effect modulating sport performance. Further investigations with larger sample size are needed in order to understand the potential role of non-invasive brain stimulation techniques (NIBS) in motor performances. Conclusions: Gamma-tACS applied before the physical performance fails to improve explosive power in sport subjects.
Collapse
Affiliation(s)
- Andreina Giustiniani
- IRCCS San Camillo Hospital, Venice, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy.,Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Battaglia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Giuseppe Messina
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Hely Morello
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | | | - Angelo Iovane
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Massimiliano Oliveri
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Antonio Palma
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| | - Patrizia Proia
- Sport and Exercise Sciences Research Unit, Department of Psychological, Pedagogical and Educational Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|