1
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
2
|
Schaefer LV, Dech S, Aehle M, Bittmann FN. Disgusting odours affect the characteristics of the Adaptive Force in contrast to neutral and pleasant odours. Sci Rep 2021; 11:16410. [PMID: 34385522 PMCID: PMC8361115 DOI: 10.1038/s41598-021-95759-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
The olfactomotor system is especially investigated by examining the sniffing in reaction to olfactory stimuli. The motor output of respiratory-independent muscles was seldomly considered regarding possible influences of smells. The Adaptive Force (AF) characterizes the capability of the neuromuscular system to adapt to external forces in a holding manner and was suggested to be more vulnerable to possible interfering stimuli due to the underlying complex control processes. The aim of this pilot study was to measure the effects of olfactory inputs on the AF of the hip and elbow flexors, respectively. The AF of 10 subjects was examined manually by experienced testers while smelling at sniffing sticks with neutral, pleasant or disgusting odours. The reaction force and the limb position were recorded by a handheld device. The results show, inter alia, a significantly lower maximal isometric AF and a significantly higher AF at the onset of oscillations by perceiving disgusting odours compared to pleasant or neutral odours (p < 0.001). The adaptive holding capacity seems to reflect the functionality of the neuromuscular control, which can be impaired by disgusting olfactory inputs. An undisturbed functioning neuromuscular system appears to be characterized by a proper length tension control and by an earlier onset of mutual oscillations during an external force increase. This highlights the strong connection of olfaction and motor control also regarding respiratory-independent muscles.
Collapse
Affiliation(s)
- Laura V Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany.
| | - Silas Dech
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Markus Aehle
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| | - Frank N Bittmann
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam, Germany
| |
Collapse
|
3
|
Schaefer LV, Dech S, Bittmann FN. Adaptive Force and emotionally related imaginations - preliminary results suggest a reduction of the maximal holding capacity as reaction to disgusting food imagination. Heliyon 2021; 7:e07827. [PMID: 34485726 PMCID: PMC8391030 DOI: 10.1016/j.heliyon.2021.e07827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/28/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
The link between emotions and motor control has been discussed for years. The measurement of the Adaptive Force (AF) provides the possibility to get insights into the adaptive control of the neuromuscular system in reaction to external forces. It was hypothesized that the holding isometric AF is especially vulnerable to disturbing inputs. Here, the behavior of the AF under the influence of positive (tasty) vs. negative (disgusting) food imaginations was investigated. The AF was examined in n = 12 cases using an objectified manual muscle test of the hip flexors, elbow flexors or pectoralis major muscle, performed by one of two experienced testers while the participants imagined their most tasty or most disgusting food. The reaction force and the limb position were measured by a handheld device. While the slope of force rises and the maximal AF did not differ significantly between tasty and disgusting imaginations (p > 0.05), the maximal isometric AF was significantly lower and the AF at the onset of oscillations was significantly higher under disgusting vs. tasty imaginations (both p = 0.001). A proper length tension control of muscles seems to be a crucial functional parameter of the neuromuscular system which can be impaired instantaneously by emotionally related negative imaginations. This might be a potential approach to evaluate somatic reactions to emotions.
Collapse
Affiliation(s)
- Laura V. Schaefer
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University Potsdam, Germany
| | - Silas Dech
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University Potsdam, Germany
| | - Frank N. Bittmann
- Regulative Physiology and Prevention, Department Sports and Health Sciences, University Potsdam, Germany
| |
Collapse
|
4
|
Skeletal muscle weakness in older adults home-restricted due to COVID-19 pandemic: a role for full-body in-bed gym and functional electrical stimulation. Aging Clin Exp Res 2021; 33:2053-2059. [PMID: 34047931 PMCID: PMC8160559 DOI: 10.1007/s40520-021-01885-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/09/2021] [Indexed: 01/03/2023]
Abstract
Persons suffering with systemic neuromuscular disorders or chronic organ failures, spend less time for daily physical activity, aggravating their mobility impairments. From 2020, patients at risk are also older adults, who, though negative for the SARS-Cov-2 infection, suffer with a fatigue syndrome due to home restriction/quarantine. Besides eventual psycological managements, it could be useful to offer to these patients a rehabilitation workouts easy to learn and to independently repeat at home (Full-Body In-Bed Gym). Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation (FES), we suggest for this fatigue syndrome a 10–20 min long daily routine of easy and safe physical exercises that may recover from muscle weakness the main 400 skeletal muscles used for every-day activities. Leg muscles could be trained also by an adjunctive neuro-muscular electrical stimulation (NMES) in frail old persons. Many of the exercises could be performed in bed (Full-Body in-Bed Gym), thus hospitalized patients can learn this light training before leaving the hospital. Full-Body in-Bed Gym is, indeed, an extension of well-established cardiovascular-ventilation rehabilitation training performed by patients after heavy surgery. Blood pressure readings, monitored before and after daily routine of Full-Body in-Bed Gym, demonstrate a transient decrease in peripheral resistance due to increased blood flow to major body muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the fatigue syndrome related to the restrictions/quarantine imposed to the general population during the COVID-19 pandemic.
Collapse
|
5
|
Handberg C, Werlauff U, Højberg AL, Knudsen LF. Impact of the COVID-19 pandemic on biopsychosocial health and quality of life among Danish children and adults with neuromuscular diseases (NMD)-Patient reported outcomes from a national survey. PLoS One 2021; 16:e0253715. [PMID: 34191825 PMCID: PMC8244874 DOI: 10.1371/journal.pone.0253715] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/10/2021] [Indexed: 12/30/2022] Open
Abstract
The purpose was to investigate the impact of the COVID-19 pandemic on biopsychosocial health, daily activities, and quality of life among children and adults with neuromuscular diseases, and to assess the prevalence of COVID-19 infection and the impact of this in patients with neuromuscular diseases. The study was a national questionnaire survey. Responses were obtained from 811 adults (29%) and 67 parents of children (27%) with neuromuscular diseases. Many patients reported decreased health or physical functioning, and changes in access to physiotherapy or healthcare due to the pandemic. Participants generally perceived themselves or their child to be at high risk of severe illness from COVID-19, but only 15 patients had suffered from COVID-19 and experienced mild flu-like symptoms. 25.3% of adults and 46.6% of parents experienced anxiety. 20.4% of adults and 27.6% of parents experienced symptoms of depression. In general, the pandemic contributed to anxiety, a depressed mood as well as to fewer leisure activities, less social contact, isolation from work/school and a reduced quality of life, in particular for patients who perceived themselves to be at high risk of severe illness. The results demonstrate that the pandemic has had a negative impact on biopsychosocial health and quality of life of patients with neuromuscular diseases.
Collapse
Affiliation(s)
- Charlotte Handberg
- National Rehabilitation Center for Neuromuscular Diseases, Aarhus, Denmark
- Department of Public Health, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Ulla Werlauff
- National Rehabilitation Center for Neuromuscular Diseases, Aarhus, Denmark
| | | | - Lone F. Knudsen
- National Rehabilitation Center for Neuromuscular Diseases, Aarhus, Denmark
| |
Collapse
|
6
|
Dech S, Bittmann FN, Schaefer LV. Assessment of the Adaptive Force of Elbow Extensors in Healthy Subjects Quantified by a Novel Pneumatically Driven Measurement System with Considerations of Its Quality Criteria. Diagnostics (Basel) 2021; 11:diagnostics11060923. [PMID: 34063869 PMCID: PMC8224031 DOI: 10.3390/diagnostics11060923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 01/14/2023] Open
Abstract
Adaptive Force (AF) reflects the capability of the neuromuscular system to adapt adequately to external forces with the intention of maintaining a position or motion. One specific approach to assessing AF is to measure force and limb position during a pneumatically applied increasing external force. Through this method, the highest (AFmax), the maximal isometric (AFisomax) and the maximal eccentric Adaptive Force (AFeccmax) can be determined. The main question of the study was whether the AFisomax is a specific and independent parameter of muscle function compared to other maximal forces. In 13 healthy subjects (9 male and 4 female), the maximal voluntary isometric contraction (pre- and post-MVIC), the three AF parameters and the MVIC with a prior concentric contraction (MVICpri-con) of the elbow extensors were measured 4 times on two days. Arithmetic mean (M) and maximal (Max) torques of all force types were analyzed. Regarding the reliability of the AF parameters between days, the mean changes were 0.31–1.98 Nm (0.61%–5.47%, p = 0.175–0.552), the standard errors of measurements (SEM) were 1.29–5.68 Nm (2.53%–15.70%) and the ICCs(3,1) = 0.896–0.996. M and Max of AFisomax, AFmax and pre-MVIC correlated highly (r = 0.85–0.98). The M and Max of AFisomax were significantly lower (6.12–14.93 Nm; p ≤ 0.001–0.009) and more variable between trials (coefficient of variation (CVs) ≥ 21.95%) compared to those of pre-MVIC and AFmax (CVs ≤ 5.4%). The results suggest the novel measuring procedure is suitable to reliably quantify the AF, whereby the presented measurement errors should be taken into consideration. The AFisomax seems to reflect its own strength capacity and should be detected separately. It is suggested its normalization to the MVIC or AFmax could serve as an indicator of a neuromuscular function.
Collapse
|
7
|
Carraro U, Albertin G, Martini A, Giuriati W, Guidolin D, Masiero S, Kern H, Hofer C, Marcante A, Ravara B. To contrast and reverse skeletal muscle weakness by Full-Body In-Bed Gym in chronic COVID-19 pandemic syndrome. Eur J Transl Myol 2021; 31. [PMID: 33709653 PMCID: PMC8056156 DOI: 10.4081/ejtm.2021.9641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 01/30/2023] Open
Abstract
Mobility-impaired persons, either very old or younger but suffering with systemic neuromuscular disorders or chronic organ failures, spend small amounts of time for daily physical activity, contributing to aggravate their poor mobility by resting muscle atrophy. Sooner or later the limitations to their mobility enforce them to bed and to more frequent hospitalizations. We include among these patients at risk those who are negative for the SARS-COV-2 infection, but suffering with COVID-19 pandemic syndrome. Beside managements of psychological symptoms, it is mandatory to offer to the last group physical rehabilitation approaches easy to learn and self-managed at home. Inspired by the proven capability to recover skeletal muscle contractility and strength by home-based volitional exercises and functional electrical stimulation, we suggest also for chronic COVID-19 pandemic syndrome a 10-20 min long daily routine of easy and safe physical exercises that can activate, and recover from weakness, the main 400 skeletal muscles used for every-day mobility activities. Persons can do many of them in bed (Full-Body in-Bed Gym), and hospitalized patients can learn this light training before leaving the hospital. It is, indeed, an extension of well-established cardiovascular-respiratory rehabilitation training performed after heavy surgical interventions. Blood pressure readings, monitored before and after daily routine, demonstrate a transient decrease in peripheral resistance due to increased blood flow of many muscles. Continued regularly, Full-Body in-Bed Gym may help maintaining independence of frail people, including those suffering with the COVID-19 pandemic syndrome.
Collapse
Affiliation(s)
- Ugo Carraro
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Giovanna Albertin
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; A-C M-C Foundation for Translational Myology, Padova.
| | - Alessandro Martini
- Department of Neuroscience, University of Padova, Italy; Padova University Research Center "I Approve", University of Padov.
| | | | - Diego Guidolin
- Department of Neuroscience, Section of Human Anatomy, University of Padova.
| | - Stefano Masiero
- CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; Department of Neuroscience, Section of Rehabilitation, University of Padova.
| | - Helmut Kern
- Ludwig Boltzmann Institute for Rehabilitation Research, St. Pölten, Austria; Physiko- und Rheumatherapie, St. Pölten.
| | | | - Andrea Marcante
- UOC Recovery and Functional Rehabilitation, Lonigo Hospital, Azienda ULSS 8 Berica, Lonigo.
| | - Barbara Ravara
- Department of Biomedical Sciences, University of Padova, Italy; CIR-Myo - Interdepartmental Research Center of Myology, University of Padova, Italy; AC M-C Foundation for Translational Myology, Padova, Italy; Department of Neuroscience, Section of Human Anatomy, University of Padova.
| |
Collapse
|
8
|
Tseng YH, Chen TH. Care for Patients With Neuromuscular Disorders in the COVID-19 Pandemic Era. Front Neurol 2021; 12:607790. [PMID: 33841296 PMCID: PMC8024582 DOI: 10.3389/fneur.2021.607790] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/16/2021] [Indexed: 12/26/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has prompted a rapid and unprecedented reorganization of medical institutions, affecting clinical care for patients with chronic neurological diseases. Although there is no evidence that patients with neuromuscular disorders (NMD) confer a higher infection risk of COVID-19, NMD and its associated therapies may affect the patient's ability to cope with infection or its systemic effects. Moreover, there is a concern that patients with chronic NMD may be at increased risk of manifesting severe symptoms of COVID-19. In particular, as respiratory compromises account for the major cause of mortality and morbidity in NMD patients, newly emerging data also show that the risk of exacerbation caused by COVID-19 accumulates in this particular patient group. For example, patients with motor neuron disease and dystrophinopathies often have ventilatory muscle weakness or cardiomyopathy, which may increase the risk of severe COVID-19 infection. Thus, the COVID-19 pandemic may severely affect NMD patients. Several neurological associations and neuromuscular networks have recently guided the impact of COVID-19 on patients with NMD, especially in managing cardiopulmonary involvements. It is recommended that patients with moderate- to high-risk NMD be sophisticatedly monitored to reduce the risk of rapid decline in cardiopulmonary function or potential deterioration of the underlying NMD. However, limited neuromuscular-specific recommendations for NMD patients who contract COVID-19 and outcome data are lacking. There is an urgent need to properly modify the respiratory care method for NMD patients, especially during the COVID-19 pandemic. Conclusively, COVID-19 is a rapidly evolving field, and the practical guidelines for the management of NMD patients are frequently revised. There must be a close collaboration in a multidisciplinary care team that should support their hospital to define a standardized care method for NMD patients during the COVID pandemic. This article reviews evidence-based practical guidelines regarding care delivery, modification, and education, highlighting the need for team-based and interspecialty collaboration.
Collapse
Affiliation(s)
- Yung-Hao Tseng
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Heng Chen
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
9
|
Tan BH, Liu JM, Gui Y, Wu S, Suo JL, Li YC. Neurological involvement in the respiratory manifestations of COVID-19 patients. Aging (Albany NY) 2021; 13:4713-4730. [PMID: 33582654 PMCID: PMC7906194 DOI: 10.18632/aging.202665] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
The peculiar features of coronavirus disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), are challenging the current biological knowledge. Early in Feb, 2020, we suggested that SARS-CoV-2 may possess neuroinvasive potential similar to that of many other coronaviruses. Since then, a variety of neurological manifestations have been associated with SARS-CoV-2 infection, which was supported in some patients with neuroimaging and/or cerebrospinal fluid tests. To date, at least 27 autopsy studies on the brains of COVID-19 patients can be retrieved through PubMed/MEDLINE, among which neuropathological alterations were observed in the brainstem in 78 of 134 examined patients, and SARS-CoV-2 nucleic acid and viral proteins were detected in the brainstem in 16/49 (32.7%) and 18/71 (25.3%) cases, respectively. To shed some light on the peculiar respiratory manifestations of COVID-19 patients, this review assessed the existing evidence about the neurogenic mechanism underlying the respiratory failure induced by SARS-CoV-2 infection. Acknowledging the neurological involvement has important guiding significance for the prevention, treatment, and prognosis of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Bai-Hong Tan
- Laboratory Teaching Center of Basic Medicine, Norman Bethune Health Science Center of Jilin University, Jilin, China
| | - Jia-Mei Liu
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Yue Gui
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Shuang Wu
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Jia-Le Suo
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| | - Yan-Chao Li
- Department of Histology and Embryology, College of Basic Medical Sciences, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin, China
| |
Collapse
|
10
|
Khosravi M. COVID-19 quarantine: Two-way interaction between physical activity and mental health. Eur J Transl Myol 2020; 30:9509. [PMID: 33520149 PMCID: PMC7844403 DOI: 10.4081/ejtm.2020.9509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Recent studies have revealed that physical activity significantly reduces the risk of coronavirus disease 2019 (COVID-19) infection by strengthening the immune system. Also, regular physical activity can reduce the risks of developing physical and mental health problems such as diabetes, hypertension, coronary heart disease, stress, anxiety, depression, etc. However, the two-way interaction between physical activity and psychological symptoms has not been well addressed yet. This paper is intended to examine various dimensions of this interaction and its effects on mental health at the time of COVID-19 quarantine.
Collapse
Affiliation(s)
- Mohsen Khosravi
- Department of Psychiatry and Clinical Psychology, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
11
|
Bittmann FN, Dech S, Aehle M, Schaefer LV. Manual Muscle Testing-Force Profiles and Their Reproducibility. Diagnostics (Basel) 2020; 10:E996. [PMID: 33255648 PMCID: PMC7759939 DOI: 10.3390/diagnostics10120996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/04/2022] Open
Abstract
The manual muscle test (MMT) is a flexible diagnostic tool, which is used in many disciplines, applied in several ways. The main problem is the subjectivity of the test. The MMT in the version of a "break test" depends on the tester's force rise and the patient's ability to resist the applied force. As a first step, the investigation of the reproducibility of the testers' force profile is required for valid application. The study examined the force profiles of n = 29 testers (n = 9 experiences (Exp), n = 8 little experienced (LitExp), n = 12 beginners (Beg)). The testers performed 10 MMTs according to the test of hip flexors, but against a fixed leg to exclude the patient's reaction. A handheld device recorded the temporal course of the applied force. The results show significant differences between Exp and Beg concerning the starting force (padj = 0.029), the ratio of starting to maximum force (padj = 0.005) and the normalized mean Euclidean distances between the 10 trials (padj = 0.015). The slope is significantly higher in Exp vs. LitExp (p = 0.006) and Beg (p = 0.005). The results also indicate that experienced testers show inter-tester differences and partly even a low intra-tester reproducibility. This highlights the necessity of an objective MMT-assessment. Furthermore, an agreement on a standardized force profile is required. A suggestion for this is given.
Collapse
Affiliation(s)
| | | | | | - Laura V. Schaefer
- Division Regulative Physiology and Prevention, Department Sports and Health Sciences, University of Potsdam, 14476 Potsdam, Germany; (F.N.B.); (S.D.); (M.A.)
| |
Collapse
|
12
|
Neurogenic vs. Myogenic Origin of Acquired Muscle Paralysis in Intensive Care Unit (ICU) Patients: Evaluation of Different Diagnostic Methods. Diagnostics (Basel) 2020; 10:diagnostics10110966. [PMID: 33217953 PMCID: PMC7698781 DOI: 10.3390/diagnostics10110966] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/13/2020] [Accepted: 11/15/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction. The acquired muscle paralysis associated with modern critical care can be of neurogenic or myogenic origin, yet the distinction between these origins is hampered by the precision of current diagnostic methods. This has resulted in the pooling of all acquired muscle paralyses, independent of their origin, into the term Intensive Care Unit Acquired Muscle Weakness (ICUAW). This is unfortunate since the acquired neuropathy (critical illness polyneuropathy, CIP) has a slower recovery than the myopathy (critical illness myopathy, CIM); therapies need to target underlying mechanisms and every patient deserves as accurate a diagnosis as possible. This study aims at evaluating different diagnostic methods in the diagnosis of CIP and CIM in critically ill, immobilized and mechanically ventilated intensive care unit (ICU) patients. Methods. ICU patients with acquired quadriplegia in response to critical care were included in the study. A total of 142 patients were examined with routine electrophysiological methods, together with biochemical analyses of myosin:actin (M:A) ratios of muscle biopsies. In addition, comparisons of evoked electromyographic (EMG) responses in direct vs. indirect muscle stimulation and histopathological analyses of muscle biopsies were performed in a subset of the patients. Results. ICU patients with quadriplegia were stratified into five groups based on the hallmark of CIM, i.e., preferential myosin loss (myosin:actin ratio, M:A) and classified as severe (M:A < 0.5; n = 12), moderate (0.5 ≤ M:A < 1; n = 40), mildly moderate (1 ≤ M:A < 1.5; n = 49), mild (1.5 ≤ M:A < 1.7; n = 24) and normal (1.7 ≤ M:A; n = 19). Identical M:A ratios were obtained in the small (4–15 mg) muscle samples, using a disposable semiautomatic microbiopsy needle instrument, and the larger (>80 mg) samples, obtained with a conchotome instrument. Compound muscle action potential (CMAP) duration was increased and amplitude decreased in patients with preferential myosin loss, but deviations from this relationship were observed in numerous patients, resulting in only weak correlations between CMAP properties and M:A. Advanced electrophysiological methods measuring refractoriness and comparing CMAP amplitude after indirect nerve vs. direct muscle stimulation are time consuming and did not increase precision compared with conventional electrophysiological measurements in the diagnosis of CIM. Low CMAP amplitude upon indirect vs. direct stimulation strongly suggest a neurogenic lesion, i.e., CIP, but this was rarely observed among the patients in this study. Histopathological diagnosis of CIM/CIP based on enzyme histochemical mATPase stainings were hampered by poor quantitative precision of myosin loss and the impact of pathological findings unrelated to acute quadriplegia. Conclusion. Conventional electrophysiological methods are valuable in identifying the peripheral origin of quadriplegia in ICU patients, but do not reliably separate between neurogenic vs. myogenic origins of paralysis. The hallmark of CIM, preferential myosin loss, can be reliably evaluated in the small samples obtained with the microbiopsy instrument. The major advantage of this method is that it is less invasive than conventional muscle biopsies, reducing the risk of bleeding in ICU patients, who are frequently receiving anticoagulant treatment, and it can be repeated multiple times during follow up for monitoring purposes.
Collapse
|