1
|
Patiño LH, Castañeda S, Camargo M, Cao LY, Liggayu B, Paniz-Mondolfi A, Ramírez JD. Validation of real-time PCR assays for detecting Plasmodium and Babesia DNA species in blood samples. Acta Trop 2024; 258:107350. [PMID: 39134111 DOI: 10.1016/j.actatropica.2024.107350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Malaria and babesiosis are global health threats affecting humans, wildlife, and domestic animals, particularly in Africa, the Americas, and Europe. Malaria can lead to severe outcomes, while babesiosis usually resembles a mild illness but can be severe and fatal in individuals with weakened immune systems. Swift, accurate detection of these parasites is crucial for treatment and control. We evaluated a real-time PCR assay for diagnosing five Plasmodium and three Babesia species from blood samples, assessing its sensitivity, specificity, and analytical performance by analyzing 46 malaria-positive and 32 Babesia spp-positive samples diagnosed through microscopy. The limit of detection for Plasmodium species ranged from 30 to 0.0003 copies/µL. For mixed infections, it was 0.3 copies/µL for P. falciparum/P. vivax and 3 copies/µL for P. malariae/P. knowlesi. Babesia species had a detection limit of 0.2 copies/µL. No cross-reactivity was observed among 64 DNA samples from various microorganisms. The assay showed good sensitivity, detecting Plasmodium and Babesia species with 100 % accuracy overall, except for P. falciparum (97.7 %) and B. microti (12.5 %). The low sensitivity of detecting B. microti was attributed to limitations in microscopy for species identification. This technique heavily relies on the proficiency of the examiner, as species within the genus cannot be distinguished under a microscope. Additionally, Babesia can be confused with the early trophozoite stage (ring forms) of Plasmodium parasites. The findings support multiplex qPCR's diagnostic superiority over the gold standard, despite higher costs. It offers enhanced sensitivity, specificity, and detects mixed infections, crucial for effective monitoring and diagnosis of malaria and babesiosis in endemic regions with significant public health challenges.
Collapse
Affiliation(s)
- Luz Helena Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergio Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Li Yong Cao
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernadette Liggayu
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alberto Paniz-Mondolfi
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
2
|
Yalley AK, Ocran J, Cobbinah JE, Obodai E, Yankson IK, Kafintu-Kwashie AA, Amegatcher G, Anim-Baidoo I, Nii-Trebi NI, Prah DA. Advances in Malaria Diagnostic Methods in Resource-Limited Settings: A Systematic Review. Trop Med Infect Dis 2024; 9:190. [PMID: 39330879 PMCID: PMC11435979 DOI: 10.3390/tropicalmed9090190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/31/2024] [Accepted: 08/19/2024] [Indexed: 09/28/2024] Open
Abstract
Malaria continues to pose a health challenge globally, and its elimination has remained a major topic of public health discussions. A key factor in eliminating malaria is the early and accurate detection of the parasite, especially in asymptomatic individuals, and so the importance of enhanced diagnostic methods cannot be overemphasized. This paper reviewed the advances in malaria diagnostic tools and detection methods over recent years. The use of these advanced diagnostics in lower and lower-middle-income countries as compared to advanced economies has been highlighted. Scientific databases such as Google Scholar, PUBMED, and Multidisciplinary Digital Publishing Institute (MDPI), among others, were reviewed. The findings suggest important advancements in malaria detection, ranging from the use of rapid diagnostic tests (RDTs) and molecular-based technologies to advanced non-invasive detection methods and computerized technologies. Molecular tests, RDTs, and computerized tests were also seen to be in use in resource-limited settings. In all, only twenty-one out of a total of eighty (26%) low and lower-middle-income countries showed evidence of the use of modern malaria diagnostic methods. It is imperative for governments and other agencies to direct efforts toward malaria research to upscale progress towards malaria elimination globally, especially in endemic regions, which usually happen to be resource-limited regions.
Collapse
Affiliation(s)
- Akua K. Yalley
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Joyous Ocran
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Jacob E. Cobbinah
- Department of Biomedical Sciences, School of Allied Health Sciences, University of Cape Coast, PMB, Cape Coast, Ghana; (J.O.); (J.E.C.)
| | - Evangeline Obodai
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra P.O. Box LG 581, Ghana;
| | - Isaac K. Yankson
- CSIR-Building and Road Research Institute, Kumasi P.O. Box UP40, Kumasi, Ghana;
| | - Anna A. Kafintu-Kwashie
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Gloria Amegatcher
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Isaac Anim-Baidoo
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Nicholas I. Nii-Trebi
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Korle Bu, Accra P.O. Box KB 143, Ghana; (A.K.Y.); (A.A.K.-K.); (G.A.); (I.A.-B.)
| | - Diana A. Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra P.O. Box LG 54, Ghana
- Department of Science Laboratory Technology, Faculty of Applied Sciences, Accra Technical University, Barnes Road, Accra P.O. Box GP 561, Ghana
| |
Collapse
|
3
|
Chang W, Cohen J, Wang DQ, Abdulla S, Mahende MK, Gavana T, Scott V, Msuya HM, Mwanyika-Sando M, Njau RJA, Lu SN, Temu S, Masanja H, Anthony W, Aregawi W M, Sunder N, Kun T, Bruxvoort K, Kitau J, Kihwele F, Chila G, Michael M, Castro M, Menzies NA, Kim S, Ning X, Zhou XN, Chaki P, Mlacha YP. Impact of 1,7-malaria reactive community-based testing and response (1,7-mRCTR) approach on malaria prevalence in Tanzania. Infect Dis Poverty 2023; 12:116. [PMID: 38105258 PMCID: PMC10726614 DOI: 10.1186/s40249-023-01166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023] Open
Abstract
BACKGROUND Progress in malaria control has stalled in recent years and innovative surveillance and response approaches are needed to accelerate malaria control and elimination efforts in endemic areas of Africa. Building on a previous China-UK-Tanzania pilot study on malaria control, this study aimed to assess the impact of the 1,7-malaria Reactive Community-Based Testing and Response (1,7-mRCTR) approach implemented over two years in three districts of Tanzania. METHODS The 1,7-mRCTR approach provides community-based malaria testing via rapid diagnostic tests and treatment in villages with the highest burden of malaria incidence based on surveillance data from health facilities. We used a difference-in-differences quasi-experimental design with linear probability models and two waves of cross-sectional household surveys to assess the impact of 1,7-mRCTR on malaria prevalence. We conducted sensitivity analyses to assess the robustness of our results, examined how intervention effects varied in subgroups, and explored alternative explanations for the observed results. RESULTS Between October 2019 and September 2021, 244,771 community-based malaria rapid tests were completed in intervention areas, and each intervention village received an average of 3.85 rounds of 1-7mRCTR. Malaria prevalence declined from 27.4% at baseline to 11.7% at endline in the intervention areas and from 26.0% to 16.0% in the control areas. 1,7-mRCTR was associated with a 4.5-percentage-point decrease in malaria prevalence (95% confidence interval: - 0.067, - 0.023), equivalent to a 17% reduction from the baseline. In Rufiji, a district characterized by lower prevalence and where larviciding was additionally provided, 1,7-mRCTR was associated with a 63.9% decline in malaria prevalence. CONCLUSIONS The 1,7-mRCTR approach reduced malaria prevalence. Despite implementation interruptions due to the COVID-19 pandemic and supply chain challenges, the study provided novel evidence on the effectiveness of community-based reactive approaches in moderate- to high-endemicity areas and demonstrated the potential of South-South cooperation in tackling global health challenges.
Collapse
Affiliation(s)
- Wei Chang
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jessica Cohen
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Duo-Quan Wang
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Chinese Center for Tropical Diseases Research, Shanghai, People's Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Salim Abdulla
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Muhidin Kassim Mahende
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Tegemeo Gavana
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Valerie Scott
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Hajirani M Msuya
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | | | - Ritha John A Njau
- Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Shen-Ning Lu
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, People's Republic of China
- Chinese Center for Tropical Diseases Research, Shanghai, People's Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Silas Temu
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Honorati Masanja
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | | | - Maru Aregawi W
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | - Tang Kun
- Vanke School of Public Health, Tsinghua University, Beijing, People's Republic of China
| | - Katia Bruxvoort
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jovin Kitau
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Fadhila Kihwele
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Godlove Chila
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Mihayo Michael
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
| | - Marcia Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nicolas A Menzies
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Sein Kim
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Xiao Ning
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Chinese Center for Tropical Diseases Research, Shanghai, People's Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Xiao-Nong Zhou
- Chinese Center for Disease Control and Prevention, National Institute of Parasitic Diseases, Shanghai, People's Republic of China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
- Chinese Center for Tropical Diseases Research, Shanghai, People's Republic of China
- WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai, People's Republic of China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025, People's Republic of China
| | - Prosper Chaki
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania
- The Pan-African Mosquito Control Association (PAMCA), KEMRI Headquarters, Mbagathi Road, Nairobi, 54840-00200, Kenya
| | - Yeromin P Mlacha
- Ifakara Health Institute, #5 Ifakara Street, Plot 463 Mikocheni, P.O. Box 78 373, Dar es Salaam, United Republic of Tanzania.
| |
Collapse
|
4
|
Okanda D, Ndwiga L, Osoti V, Achieng N, Wambua J, Ngetsa C, Lubell-Doughtie P, Shankar A, Bejon P, Ochola-Oyier LI. Low frequency of Plasmodium falciparum hrp2/3 deletions from symptomatic infections at a primary healthcare facility in Kilifi, Kenya. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1083114. [PMID: 38455911 PMCID: PMC10910971 DOI: 10.3389/fepid.2023.1083114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2024]
Abstract
There is a growing concern for malaria control in the Horn of Africa region due to the spread and rise in the frequency of Plasmodium falciparum Histidine-rich Protein (hrp) 2 and 3 deletions. Parasites containing these gene deletions escape detection by the major PfHRP2-based rapid diagnostic test. In this study, the presence of Pfhrp2/3 deletions was examined in uncomplicated malaria patients in Kilifi County, from a region of moderate-high malaria transmission. 345 samples were collected from the Pingilikani dispensary in 2019/2020 during routine malaria care for patients attending this primary health care facility. The Carestart™ RDT and microscopy were used to test for malaria. In addition, qPCR was used to confirm the presence of parasites. In total, 249 individuals tested positive for malaria by RDT, 242 by qPCR, and 170 by microscopy. 11 samples that were RDT-negative and microscopy positive and 25 samples that were qPCR-positive and RDT-negative were considered false negative tests and were examined further for Pfhrp2/3 deletions. Pfhrp2/3-negative PCR samples were further genotyped at the dihydrofolate reductase (Pfdhfr) gene which served to further confirm that parasite DNA was present in the samples. The 242 qPCR-positive samples (confirmed the presence of DNA) were also selected for Pfhrp2/3 genotyping. To determine the frequency of false negative results in low parasitemia samples, the RDT- and qPCR-negative samples were genotyped for Pfdhfr before testing for Pfhrp2/3. There were no Pfhrp2 and Pfhrp3 negative but positive for dhfr parasites in the 11 (RDT negative and microscopy positive) and 25 samples (qPCR-positive and RDT-negative). In the larger qPCR-positive sample set, only 5 samples (2.1%) were negative for both hrp2 and hrp3, but positive for dhfr. Of the 5 samples, there were 4 with more than 100 parasites/µl, suggesting true hrp2/3 deletions. These findings revealed that there is currently a low prevalence of Pfhrp2 and Pfhrp3 deletions in the health facility in Kilifi. However, routine monitoring in other primary health care facilities across the different malaria endemicities in Kenya is urgently required to ensure appropriate use of malaria RDTs.
Collapse
Affiliation(s)
- Dorcas Okanda
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Leonard Ndwiga
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Victor Osoti
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nicole Achieng
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Juliana Wambua
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline Ngetsa
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Anuraj Shankar
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
5
|
Comparison of Rapid Diagnostic Test, Microscopy, and Polymerase Chain Reaction for the Detection of Plasmodium falciparum Malaria in a Low-Transmission Area, Jazan Region, Southwestern Saudi Arabia. Diagnostics (Basel) 2022; 12:diagnostics12061485. [PMID: 35741295 PMCID: PMC9222139 DOI: 10.3390/diagnostics12061485] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
This cross-sectional study aimed to assess the performances of a rapid diagnostic test (RDT)—the AllTest Malaria p.f./p.v., microscopy, and nested polymerase chain reaction (PCR) for diagnosing Plasmodium falciparum malaria in 400 febrile patients from a low-transmission region (Jazan) in southwestern Saudi Arabia. Diagnostic performance of all three methods was compared using microscopy and nested PCR as reference methods. Overall, 42 (10.5%), 48 (12.0%), and 57 (14.3%) samples were found positive by microscopy, RDT, and PCR, respectively. With PCR as reference method, the RDT showed higher sensitivity (79% vs. 71.9%), similar specificity (99.1% vs. 99.7%), and better NLR (0.20 vs. 0.27) and area under the curve (89.0% vs. 85.8%) than microscopy. The sensitivity of RDT and microscopy decreased as age increased, and false negatives were associated with low parasite density. In addition, the sensitivity of RDT and microscopy was higher in non-Saudi than in Saudi participants. Against microscopy, both RDT and PCR showed high sensitivity (83.3% vs. 97.6%), specificity (96.4% vs. 95.5%), and NPVs (98.0% vs. 99.7%), but reduced PPVs (72.9% vs. 71.9%), respectively. The results showed that the performance of the AllTest Malaria p.f./p.v RDT was better than that of microscopy in diagnosing P. falciparum malaria among febrile patients in the Jazan region when nested PCR was used as the reference. However, further studies are required to assess malaria diagnostic methods among asymptomatic individuals in the region.
Collapse
|
6
|
Wambani J, Okoth P. Impact of Malaria Diagnostic Technologies on the Disease Burden in the Sub-Saharan Africa. J Trop Med 2022; 2022:7324281. [PMID: 35360189 PMCID: PMC8964171 DOI: 10.1155/2022/7324281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Worldwide, transmission of emerging and reemerging malaria infections poses a significant threat to human health in the Sub-Saharan Africa, one that can quickly overwhelm public health resources. While the disease burden of malaria in the Sub-Saharan Africa appears to be on a gradual decline, it is characterized by spatial and temporal variability occasioning a sorry state for the Global South Countries. New evidence on long-term complications of malaria heightens our awareness of its public health impact. Given the likelihood of misdiagnosis, and the unknown levels of malaria transmission across different landscapes, many missed opportunities for prevention occur. Africa's population growth, unplanned urbanization, habitat destruction, and trans-border travel are contributing to a rise in the calamitous epidemiology of malaria. Despite empirical statistics demonstrating a downward trend in the malaria disease burden attributable to the scale-up of multiple control strategies, including new diagnostic technologies, malaria remains a global threat to human health in Sub-Sahara Africa. Malaria is a severe public health threat globally, despite several advancements and innovations in its control. Six species of the genus Plasmodium including Plasmodium malariae, Plasmodium falciparum, Plasmodium cynomolgi, Plasmodium knowlesi, Plasmodium ovale, and Plasmodium vivax are known to infect humans. However, greatest disease burden and fatalities are caused by Plasmodium falciparum. Globally, about 3 billion individuals are at risk of contracting malaria disease every year, with over 400,000 fatalities reported in the Sub-Saharan Africa. World Health Organization (WHO) 2018 malaria report indicated that approximately 405,000 mortalities and 228 million cases were reported worldwide, with Africa carrying the highest disease burden. Over the last decade, there has been a significant decline in malaria deaths and infections, which may be related to the availability of effective diagnostic techniques. However, in certain areas, the rate of decline has slowed or even reversed the gains made so far. Accurate diagnosis, adequate treatment, and management of the disease are critical WHO-set goals of eliminating malaria by 2030. Microscopy, rapid diagnostic tests (RDTs), nucleic acid amplification tests (NAATs), and biosensors are all currently accessible diagnostic methods. These technologies have substantial flaws and triumphs that could stymie or accelerate malaria eradication efforts. The cost, ease, accessibility, and availability of skilled persons all influence the use of these technologies. These variables have a direct and indirect ramification on the entire management portfolio of patients. Despite the overall decline in the malaria disease burden driven partly by new diagnostic technologies, a sobering pattern marked by limited number of studies and spatial as well as temporal heterogeneity remains a concern. This review summarizes the principle, performance, gaps, accomplishments, and applicability of numerous malaria diagnostic techniques and their potential role in reducing the malaria disease burden in Sub-Saharan Africa.
Collapse
Affiliation(s)
- Josephine Wambani
- KEMRI HIV Laboratory, Kenya Medical Research Institute KEMRI, P.O. Box 3-50400, Busia, Kenya
- Department of Medical Laboratory Sciences, School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, School of Natural Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190, 50100 Kakamega, Kenya
| |
Collapse
|
7
|
Malaria Rapid Diagnostic Tests: Literary Review and Recommendation for a Quality Assurance, Quality Control Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050768. [PMID: 33922917 PMCID: PMC8145891 DOI: 10.3390/diagnostics11050768] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
Malaria rapid diagnostic tests (RDTs) have had an enormous global impact which contributed to the World Health Organization paradigm shift from empiric treatment to obtaining a parasitological diagnosis prior to treatment. Microscopy, the classic standard, requires significant expertise, equipment, electricity, and reagents. Alternatively, RDT’s lower complexity allows utilization in austere environments while achieving similar sensitivities and specificities. Worldwide, there are over 200 different RDT brands that utilize three antigens: Plasmodium histidine-rich protein 2 (PfHRP-2), Plasmodium lactate dehydrogenase (pLDH), and Plasmodium aldolase (pALDO). pfHRP-2 is produced exclusively by Plasmodium falciparum and is very Pf sensitive, but an alternative antigen or antigen combination is required for regions like Asia with significant Plasmodium vivax prevalence. RDT sensitivity also decreases with low parasitemia (<100 parasites/uL), genetic variability, and prozone effect. Thus, proper RDT selection and understanding of test limitations are essential. The Center for Disease Control recommends confirming RDT results by microscopy, but this is challenging, due to the utilization of clinical laboratory standards, like the College of American Pathologists (CAP) and the Clinical Lab Improvement Act (CLIA), and limited recourses. Our focus is to provide quality assurance and quality control strategies for resource-constrained environments and provide education on RDT limitations.
Collapse
|