1
|
Cersosimo LM, Worley JN, Bry L. Approaching pathogenic Clostridia from a One Health perspective. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.08.574718. [PMID: 38260382 PMCID: PMC10802438 DOI: 10.1101/2024.01.08.574718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Spore-forming pathogens have a unique capacity to thrive in diverse environments, and with temporal persistence afforded through their ability to sporulate. These behaviors require a One Health approach to identify critical reservoirs and outbreak-associated transmission chains, given their capacity to freely move across soils, waterways, foodstuffs, and as commensals or infecting pathogens in human and veterinary populations. Among anaerobic spore-formers, genomic resources for pathogens including C. botulinum, C. difficile, and C. perfringens enable our capacity to identify common and unique factors that support their persistence in diverse reservoirs and capacity to cause disease. Publicly available genomic resources for spore-forming pathogens at NCBI's Pathogen Detection program aid outbreak investigations and longitudinal monitoring in national and international programs in public health and food safety, as well as for local healthcare systems. These tools also enable research to derive new knowledge regarding disease pathogenesis, and to inform strategies in disease prevention and treatment. As global community resources, the continued sharing of strain genomic data and phenotypes further enhances international resources and means to develop impactful applications. We present examples showing use of these resources in surveillance, including capacity to assess linkages among clinical, environmental, and foodborne reservoirs and to further research investigations into factors promoting their persistence and virulence in different settings.
Collapse
Affiliation(s)
- Laura M. Cersosimo
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
| | - Jay N. Worley
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
- National Center for Biotechnology Information, NIH, Bethesda, MD
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Dept. Pathology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA
- Clinical Microbiology Laboratory, Dept. Pathology, Brigham & Women's Hospital, Boston, MA
| |
Collapse
|
2
|
Punchihewage-Don AJ, Hasan NA, Rashed SM, Parveen S. Microbiome Analysis of Organic and Conventional Chickens Processed Using Whole Carcass Enrichment and Rinse Methods. J Food Prot 2023; 86:100176. [PMID: 37805044 DOI: 10.1016/j.jfp.2023.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
Abstract
Investigating the chicken microbiome is important to establish control measures for pathogens to protect consumers. This study aimed at evaluating the comparative efficiency of human pathogen detection through 16S rRNA sequencing of organic and conventional chickens processed using whole carcass enrichment (WCE) and rinse (WCR) methods. Organic and conventional whole broiler carcasses (n = 31) were vigorously shaken with 500 mL buffered peptone water (BPW). For the rinse method, a 30 mL aliquot was mixed with 30 mL of BPW. The rest of the sample, including the carcass, was used for the enrichment method. All samples were incubated at 37°C for 24 h. The samples were divided into five groups [Negative Control: only BPW without chicken (n = 5), Organic-Rinsed (n = 7), -Enriched (n = 8), Conventional-Rinsed (n = 7), and -Enriched (n = 9)]. Fifty milliliters of each sample were subjected to DNA extraction followed by 16S rRNA sequencing. Proteobacteria and Firmicutes predominated the microbiota of both conventional and organic chickens, followed by low abundances of Bacteroidetes and Fusobacterium. While the abundance of Proteobacteria and Firmicutes remained unchanged in organic chicken irrespective of the methods used, a noticeable shift in the Proteobacteria and Firmicutes ratio (59%:39% in rinsed to 38%:60% in enriched) was observed in conventional chicken. Furthermore, the choice of method did not yield any differences in Abundance-Based Coverage Estimator, and Jackknife, among conventional and organic chickens but resulted in a statistically significant difference in the Shannon, Simpson, Chao1, and phylogenetic diversity indices (p < 0.05). The relative abundance of Salmonella and Campylobacter was less than 0.1%. The results suggested the WCE method provides a broad range of information on the chicken microbiome.
Collapse
Affiliation(s)
| | | | | | - Salina Parveen
- University of Maryland Eastern Shore, Princess Anne, MD 21853, USA.
| |
Collapse
|
3
|
Takeda S, Uchiyama J, Sugita K, Enomoto H, Ahhmed AM, Kinoshita Y, Mizunoya W, Arima Y, Sakata R. Functionality of liquid smoke as an antimicrobial in cooked meat products: liquid smoke suppresses spoilage-related lactic acid bacteria. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2021. [DOI: 10.3136/fstr.27.759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shiro Takeda
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| | - Jumpei Uchiyama
- Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University
| | - Kazutoshi Sugita
- Department of Veterinary Medicine, School of Veterinary Medicine, Azabu University
| | | | - Abdulatef M Ahhmed
- Chemical and Metallurgical Engineering Faculty, Yildiz Technical University
| | - Yuki Kinoshita
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| | - Wataru Mizunoya
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| | | | - Ryoichi Sakata
- Department of Animal Science and Biotechnology, School of Veterinary Medicine, Azabu University
| |
Collapse
|
4
|
Dressed chicken as potential vehicle for spread of methicillin-resistant Staphylococcus aureus in Sokoto, Nigeria. Future Sci OA 2020; 6:FSO619. [PMID: 33312697 PMCID: PMC7720375 DOI: 10.2144/fsoa-2020-0066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Aim To evaluate the role of dressed chicken in the spread of methicillin-resistant Staphylococcus aureus (MRSA) in Sokoto, Nigeria. Materials & methods 190 chicken carcass rinsates were subjected to culture and biochemical analyses to isolate and identify MRSA. PCR was used to amplify mecA gene that is responsible for methicillin resistance. Results & conclusion Culture and molecular analysis showed 19.5% (37/190) of the rinse had MRSA on oxacillin-resistance screening agar base (ORSAB) with 7.9% (15/190) possessing the mecA gene. Significant association (p = 0.044) exist between local-chicken and presence of MRSA, being twice more likely to have MRSA compared to exotic-chickens (odds ratio [OR] = 2.132). Results indicate possible role of dressed-chicken in the spread of MRSA. Authorities should regulate the sale and use of antibiotics by farmers, and enhance hygienic practices at slaughterhouses.
Collapse
|
5
|
Saenz-García CE, Castañeda-Serrano P, Mercado Silva EM, Alvarado CZ, Nava GM. Insights into the Identification of the Specific Spoilage Organisms in Chicken Meat. Foods 2020; 9:E225. [PMID: 32093245 PMCID: PMC7073905 DOI: 10.3390/foods9020225] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
Poultry meat deterioration is caused by environmental conditions, as well as proliferation of different bacterial groups, and their interactions. It has been proposed that meat spoilage involves two bacterial groups: one group that initiates the deterioration process, known as specific spoilage organisms (SSOs), and the other known as spoilage associated organisms (SAOs) which represents all bacteria groups recovered from meat samples before, during, and after the spoilage process. Numerous studies have characterized the diversity of chicken meat SAOs; nonetheless, the identification of the SSOs remains a long-standing question. Based on recent genomic studies, it is suggested that the SSOs should possess an extensive genome size to survive and proliferate in raw meat, a cold, complex, and hostile environment. To evaluate this hypothesis, we performed comparative genomic analyses in members of the meat microbiota to identify microorganisms with extensive genome size and ability to cause chicken meat spoilage. Our studies show that members of the Pseudomonadaceae family have evolved numerous biological features such as large genomic size, slow-growing potential, low 16S rRNA copy number, psychrotrophic, and oligotrophic metabolism to initiate the spoilage of poultry meat. Moreover, inoculation experiments corroborated that these biological traits are associated with the potential to cause chicken meat deterioration. Together, these results provide new insights into the identification of SSO. Further studies are in progress to elucidate the impact of the SSO on meat quality and microbiota diversity.
Collapse
Affiliation(s)
- Cinthia E. Saenz-García
- Departamento de Investigación y Posgrado de Alimentos, Universidad Autónoma de Querétaro, Querétaro 76010, QRO, Mexico; (C.E.S.-G.); (E.M.M.S.)
| | - Pilar Castañeda-Serrano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Tláhuac 13300, CDMX, Mexico;
| | - Edmundo M. Mercado Silva
- Departamento de Investigación y Posgrado de Alimentos, Universidad Autónoma de Querétaro, Querétaro 76010, QRO, Mexico; (C.E.S.-G.); (E.M.M.S.)
| | - Christine Z. Alvarado
- Department of Poultry Science, Texas A&M University, College Station, TX 77843, USA;
| | - Gerardo M. Nava
- Departamento de Investigación y Posgrado de Alimentos, Universidad Autónoma de Querétaro, Querétaro 76010, QRO, Mexico; (C.E.S.-G.); (E.M.M.S.)
| |
Collapse
|
6
|
Mantilla MJ, Torres Sáez RG. Enfoque metagenómico para la caracterización del microbioma de aves corral. Revisión. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2019. [DOI: 10.15446/rev.colomb.biote.v21n2.78390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El pollo y el huevo son una fuente importante de proteína para el ser humano a nivel mundial. La producción de estos alimentos se ha intensificado durante los últimos años y se prevé que se produzca alrededor de 150 millones de toneladas de carne de pollo en 2020 (OCDE / FAO, 2018). Sin embargo, uno de los mayores problemas ligados a los procesos de producción avícola lo constituyen las enfermedades infecciosas ocasionadas por microorganismos patógenos. Entre los más relevantes se encuentran microorganismos como Salmonella ssp, Campylobacter spp, y Escherichia coli. Por lo tanto, es importante comprender los mecanismos implicados en la colonización de microorganismos patógenos que afectan a las aves de corral y sus interacciones con la microbiota gastrointestinal las cuales son clave en la mejora de la absorción de nutrientes y el fortalecimiento del sistema inmune, que influye en el crecimiento, el bienestar y la salud de las aves de corral. Sin embargo, hay poca información relacionada con la microbiota gastrointestinal de pollos parrilleros y gallinas productoras de huevo. Hasta hace poco, la caracterización se limitaba a los microorganismos que podían recuperarse a través de cultivos tradicionales. Por lo anterior, en el último tiempo se ha intensificado el uso de técnicas moleculares, entre las que se destaca la metagenómica, la cual ofrece una alternativa para una mejor comprensión de las interacciones bacterianas, la identificación de genes de resistencia a los antibióticos, identificación de elementos genéticos móviles, y el diseño de estrategias para intervenciones más efectivas con el objetivo de romper la cadena de transmisión de microorganismos patógenos durante el ciclo de producción avícola. En esta revisión, se describen los principales enfoques metagenómicos para el estudio de microbiomas de aves de corral, las técnicas de secuenciación y herramientas bioinformáticas usadas para su caracterización.
Collapse
|
7
|
Rothrock MJ, Locatelli A. Importance of Farm Environment to Shape Poultry-Related Microbiomes Throughout the Farm-to-Fork Continuum of Pasture-Raised Broiler Flocks. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2019. [DOI: 10.3389/fsufs.2019.00048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
8
|
Wages JA, Feye KM, Park SH, Kim SA, Ricke SC. Comparison of 16S rDNA Next Sequencing of Microbiome Communities From Post-scalder and Post-picker Stages in Three Different Commercial Poultry Plants Processing Three Classes of Broilers. Front Microbiol 2019; 10:972. [PMID: 31214127 PMCID: PMC6558062 DOI: 10.3389/fmicb.2019.00972] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/17/2019] [Indexed: 01/11/2023] Open
Abstract
Poultry processing systems are a complex network of equipment and automation systems that require a proactive approach to monitoring in order to protect the food supply. Process oversight requires the use of multi-hurdle intervention systems to ensure that any undesirable microorganisms are reduced or eliminated by the time the carcasses are processed into final products. In the present study, whole bird carcass rinses (WBCR) collected at the post-scalder and post-picker locations from three different poultry processing facilities (Plant A: mid-weight broiler processing, B: large-weight broiler processing, C: young broiler (Cornish) processing) were subjected to next generation sequencing (NGS) and microbial quantification using direct plating methods to assess the microbial populations present during these stages of the poultry process. The quantification of aerobic plate counts (APC) and Enterobacteriaceae (EB) demonstrated that reductions for these microbial classes were not consistent between the two sampling locations for all facilities, but did not provide a clear picture of what microorganism(s) may be affecting those shifts. With the utilization of NGS, a more complete characterization of the microbial communities present including microorganisms that would not have been identified with the employed direct plating methodologies were identified. Although the foodborne pathogens typically associated with raw poultry, Salmonella and Campylobacter, were not identified, sequence analysis performed by Quantitative Insights of Microbiology Ecology (QIIME) indicated shifts of Erwinia, Serratia, and Arcobacter, which are microorganisms closely related to Salmonella and Campylobacter. Additionally, the presence of Chryseobacterium and Pseudomonas at both sampling locations and at all three facilities provides evidence that these microorganisms could potentially be utilized to assess the performance of multi-hurdle intervention systems.
Collapse
Affiliation(s)
- Jennifer A Wages
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Kristina M Feye
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Si Hong Park
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Sun Ae Kim
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C Ricke
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|