1
|
Kadry MO, Abd-Ellatef GEF, Ammar NM, Hassan HA, Hussein NS, Kamel NN, Soltan MM, Abdel-Megeed RM, Abdel-Hamid AHZ. Metabolomics integrated genomics approach: Understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin and ABCA1/EGFR/PI3k/PTEN crosstalk. Toxicol Rep 2025; 14:101884. [PMID: 39886047 PMCID: PMC11780168 DOI: 10.1016/j.toxrep.2024.101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 02/01/2025] Open
Abstract
Resistance of cancer cells, especially breast cancer, to therapeutic medicines represents a major clinical obstacle that impedes the stages of treatment. Carcinoma cells that acquire resistance to therapeutic drugs can reprogram their own metabolic processes as a way to overcome the effectiveness of treatment and continue their reproduction processes. Despite the recent developments in medical research in the field of drug resistance, which showed some explanations for this phenomenon, the real explanation, along with the ability to precisely predict the possibility of its occurrence in breast cancer cells, still necessitates a deep consideration of the dynamics of the tumor's response to treatment. For this purpose the current study, combined both in vitro metabolomics and in vivo genomics analysis as the most advanced omics technologies that can provide a potential en route for inventing novel strategies to perform prospective, prognostic and diagnostic biomarkers for drug resistance phenomena in mammary cancer. Doxorubicin is the currently available breast cancer chemotherapeutic medication nevertheless; it was demonstrated to cause drug resistance, which impairs patient survival and prognosis by prompting proliferation, cell cycle progression, and preventing apoptosis, interactions between signaling pathways triggered drug resistance. In this research, in vitro metabolomics analysis based on GC-MS coupled with multivariable analysis was performed on MCF-7 and DOX resistant cell lines; MCF-7/adr cultured cells in addition to, further in vivo confirmation via inducing mammary cancer in rats via two doses of 7,12-dimethylbenz(a) anthracene (DMBA) (50 mg/kg and 25 mg/kg) proceeded by doxorubicin (5 mg/kg) treatment for one month. The metabolomics in vitro results pointed out that mannitol, myoinositol, glycine, α-linolenic acid, oleic acid and stearic acid have AUC values: 0.14, 0.5, 0.7, 0.1, 0.02, -0.02 (1, 1) respectively. Glycine and myoinositol metabolites provided the best discriminative power in the wild and resistance MCF-7 phenotypes. Meanwhile, in vivo results revealed a significant crosstalk between the alternation in oxidative stress biomarkers as well as Arginase II tumor biomarker and the molecular assessment of ABCA1 and P53 gene expression that displayed a marked reduction in addition to, the obvious elevation in resistance and apoptotic biomarkers EGFR/PI3k/AKT/PTEN signaling pathway upon DMBA administration. Data revealed a significant alternation in signaling pathways related to resistance upon doxorubicin administration that affect lipid metabolism in breast cancer. In conclusion, Metabolomics integrated genomics analysis may be promising in understanding multidrug resistance phenotype in MCF-7 breast cancer cells exposed to doxorubicin through modulating ABCA1/EGFR/P53/PI3k/PTEN signaling pathway thus metabolic biomarkers in addition to molecular biomarkers elucidate the challenges fronting profitable therapy of mammary cancer and an pioneering approaches that metabolomics compromises to improve recognizing drug resistance in breast carcinoma.
Collapse
Affiliation(s)
- Mai O. Kadry
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | | | - Naglaa M. Ammar
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Heba A. Hassan
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Noha S. Hussein
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Nahla N. Kamel
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | - Maha M. Soltan
- National Research Center, Biology Unit, Central Laboratory for Pharmaceutical and drug industries Research Institute, Chemistry of Medicinal Plants Department, Al Bohouth Street, Dokki, Egypt
| | - Rehab M. Abdel-Megeed
- National Research Center, Therapeutic Chemistry Department, Al Bohouth Street, Egypt
| | | |
Collapse
|
2
|
Nazari S, Mosaffa F, Poustforoosh A, Saso L, Firuzi O, Moosavi F. c-MET tyrosine kinase inhibitors reverse multidrug resistance in breast cancer cells by targeting ABCG2 transporter. J Pharm Pharmacol 2025:rgaf008. [PMID: 40053482 DOI: 10.1093/jpp/rgaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
BACKGROUND Overcoming multidrug resistance (MDR), which is often caused by the overexpression of ATP binding cassette (ABC) transporters in cancer cells remains a major challenge for cancer treatment. Receptor tyrosine kinase inhibitors have demonstrated potential in reversing MDR. This study aimed to investigate the effects of c-MET RTKIs on the reversal of MDR induced by ABCG2 in breast cancer cells. METHODS MTT assay was employed to assess antiproliferative activity of c-MET inhibitors, including cabozantinib, crizotinib, and PHA665752. The accumulation of the fluorescent probe mitoxantrone was evaluated by flow cytometry. The drug-drug interaction in combination treatments was analyzed using CalcuSyn software. RESULTS The combination of cabozantinib, crizotinib, and PHA665752 with mitoxantrone resulted in synergistic effects in MDR cells. This was demonstrated by the mean CI values of 0.32 ± 0.07, 0.53 ± 0.05, and 0.59 ± 0.03, respectively. In the same cells, c-MET inhibitors enhanced the accumulation of mitoxantrone, with accumulation ratios ranging from 1.6 to 3.8, while no change was found in parental MCF-7 cells. Computational analysis revealed that the drug-binding region of ABCG2 transporters could be a viable target for these compounds. CONCLUSION c-MET inhibitors hold potential as effective agents for reversing MDR in ABCG2-medicated drug-resistant cancer cells.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Radhakrishnan A, Shanmukhan NK, Samuel LC. Pharmacogenomics influence on MDR1-associated cancer resistance and innovative drug delivery approaches: advancing precision oncology. Med Oncol 2025; 42:67. [PMID: 39913003 DOI: 10.1007/s12032-025-02611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 02/07/2025]
Abstract
Currently, there is a growing concern surrounding the treatment of cancer, a formidable disease. Pharmacogenomics and personalized medicine have emerged as significant areas of interest in cancer management. The efficacy of many cancer drugs is hindered by resistance mechanisms, particularly P-glycoprotein (P-gp) efflux, leading to reduced therapeutic outcomes. Efforts have intensified to inhibit P-gp efflux, thereby enhancing the effectiveness of resistant drugs. P-gp, a member of the ATP-binding cassette (ABC) superfamily, specifically the multidrug resistance (MDR)/transporter associated with antigen processing (TAP) sub-family B, member 1, utilizes energy derived from ATP hydrolysis to drive efflux. This review focuses on genetic polymorphisms associated with P-gp efflux and explores various novel pharmaceutical strategies to address this challenge. These strategies encompass SEDDS/SNEDDS, liposomes, immunoliposomes, solid lipid nanoparticles, lipid core nanocapsules, microemulsions, dendrimers, hydrogels, polymer-drug conjugates, and polymeric nanoparticles. The article aims to elucidate the interplay between pharmacogenomics, P-gp-mediated drug resistance in cancer, and formulation strategies to improve cancer therapy by tailoring formulations to genetically susceptible patients.
Collapse
Affiliation(s)
- Arun Radhakrishnan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India.
| | - Nikhitha K Shanmukhan
- Department of Pharmaceutics, JKKN College of Pharmacy, Kumarapalayam, Tamil Nadu, 638183, India
| | - Linda Christabel Samuel
- Department of Conservative Dentistry and Endodontics, JKKN Dental College and Hospitals, Kumarapalayam, 638183, India
| |
Collapse
|
4
|
Scott NR, Kang S, Parekh SH. Mechanosensitive nuclear uptake of chemotherapy. SCIENCE ADVANCES 2024; 10:eadr5947. [PMID: 39693448 DOI: 10.1126/sciadv.adr5947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/14/2024] [Indexed: 12/20/2024]
Abstract
The nucleus is at the nexus of mechanotransduction and the final barrier for most first line chemotherapeutics. Here, we study the intersection between nuclear-cytoskeletal coupling and chemotherapy nuclear internalization. We find that chronic and acute modulation of intracellular filaments changes nuclear influx of doxorubicin (DOX). Rapid changes in cell strain by disruption of cytoskeletal and nuclear filaments sensitize nuclei to DOX, whereas chronic reduction of cell strain desensitize nuclei to DOX. Extracted nuclei from invasive cancer cells lines from different tissues have distinct nuclear permeability to DOX. Last, we show that mechano-priming of cells by paclitaxel markedly improves DOX nuclear internalization, rationalizing the observed drug synergies. Our findings reveal that nuclear uptake is a critical, previously unquantified aspect of drug resistance. With nuclear permeability to chemotherapy being tunable via modulation of nuclear mechanotransduction, mechano-priming may be useful to help overcome drug resistance in the future.
Collapse
Affiliation(s)
- Nicholas R Scott
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sowon Kang
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Sapun H Parekh
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
5
|
Thiruvengadam R, Dareowolabi BO, Moon EY, Kim JH. Nanotherapeutic strategy against glioblastoma using enzyme inhibitors. Biomed Pharmacother 2024; 181:117713. [PMID: 39615164 DOI: 10.1016/j.biopha.2024.117713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Glioblastoma is the most aggressive brain cancer and thus patients with glioblastoma have a severely low 5-year survival rate (<5 %). Glioblastoma damages neural centers, causing severe depression, anxiety, and cognitive disorders. Glioblastoma is highly resistant to most of available anti-tumor medications, due to heterogeneity of glioblastoma as well as the presence of stem-like cells. To overcome the challenges in the current medications against glioblastoma, novel medications that are effective in treating the aggressive and heterogenous glioblastoma should be developed. Enzyme inhibitor and nanomedicine have been getting attention because of effective anticancer efficacies of enzyme inhibitors and a role of nanomedicine as effective carrier of chemotherapeutic drugs by targeting specific tumor areas. Furthermore, a tumor-initiating neuroinflammatory microenvironment, which is crucial for glioblastoma progression, was linked with several carcinogenesis pathways. Therefore, in this review, first we summarize neuroinflammation and glioblastoma-related neuropathways. Second, we discuss the importance of enzyme inhibitors targeting specific proteins in relation with neuroinflammation and glioblastoma-related molecular mechanisms. Third, we summarize recent findings on the significance of nanotherapeutic anticancer drugs developed using natural or synthetic enzyme inhibitors against glioblastoma as well as currently available Food and Drug Administration (FDA)-approved drugs against glioblastoma.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | | | - Eun-Yi Moon
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
6
|
Moralev AD, Salomatina OV, Salakhutdinov NF, Zenkova MA, Markov AV. Soloxolone N-3-(Dimethylamino)propylamide Restores Drug Sensitivity of Tumor Cells with Multidrug-Resistant Phenotype via Inhibition of P-Glycoprotein Efflux Function. Molecules 2024; 29:4939. [PMID: 39459307 PMCID: PMC11510211 DOI: 10.3390/molecules29204939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Multidrug resistance (MDR) remains a significant challenge in cancer therapy, primarily due to the overexpression of transmembrane drug transporters, with P-glycoprotein (P-gp) being a central focus. Consequently, the development of P-gp inhibitors has emerged as a promising strategy to combat MDR. Given the P-gp targeting potential of soloxolone amides previously predicted by us by an absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis, the aim of the current study was to experimentally verify their P-gp inhibitory and MDR reversing activities in vitro. Screening of soloxolone amides as modulators of P-gp using molecular docking and cellular P-gp substrate efflux assays revealed the ability of compound 4 bearing a N-3-(dimethylamino)propylamide group to interact with the active site of P-gp and inhibit its transport function. Blind and site-specific molecular docking accompanied by a kinetic assay showed that 4 directly binds to the P-gp transmembrane domain with a binding energy similar to that of zosuquidar, a third-generation P-gp inhibitor (ΔG = -10.3 kcal/mol). In vitro assays confirmed that compound 4 enhanced the uptake of Rhodamine 123 (Rho123) and doxorubicin (DOX) by the P-gp-overexpressing human cervical carcinoma KB-8-5 (by 10.2- and 1.5-fold, respectively (p < 0.05, unpaired t-test)) and murine lymphosarcoma RLS40 (by 15.6- and 1.75-fold, respectively (p < 0.05, unpaired t-test)) cells at non-toxic concentrations. In these cell models, 4 showed comparable or slightly higher activity than the reference inhibitor verapamil (VPM), with the most pronounced effect of the hit compound in Rho123-loaded RLS40 cells, where 4 was 2-fold more effective than VPM. Moreover, 4 synergistically restored the sensitivity of KB-8-5 cells to the cytotoxic effect of DOX, demonstrating MDR reversal activity. Based on the data obtained, 4 can be considered as a drug candidate to combat the P-gp-mediated MDR of tumor cells and semisynthetic triterpenoids, with amide moieties in general representing a promising scaffold for the development of novel therapeutics for tumors with low susceptibility to antineoplastic agents.
Collapse
Affiliation(s)
- Arseny D. Moralev
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
| | - Oksana V. Salomatina
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (A.D.M.); (O.V.S.); (M.A.Z.)
| |
Collapse
|
7
|
O’Hara BA, Lukacher AS, Garabian K, Kaiserman J, MacLure E, Ishikawa H, Schroten H, Haley SA, Atwood WJ. Highly restrictive and directional penetration of the blood cerebral spinal fluid barrier by JCPyV. PLoS Pathog 2024; 20:e1012335. [PMID: 39038049 PMCID: PMC11293668 DOI: 10.1371/journal.ppat.1012335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
The human polyomavirus JCPyV is an opportunistic pathogen that infects greater than 60% of the world's population. The virus establishes a persistent and asymptomatic infection in the urogenital system but can cause a fatal demyelinating disease in immunosuppressed or immunomodulated patients following invasion of the CNS. The mechanisms responsible for JCPyV invasion into CNS tissues are not known but direct invasion from the blood to the cerebral spinal fluid via the choroid plexus has been hypothesized. To study the potential of the choroid plexus as a site of neuroinvasion, we used an adult human choroid plexus epithelial cell line to model the blood-cerebrospinal fluid (B-CSF) barrier in a transwell system. We found that these cells formed a highly restrictive barrier to virus penetration either as free virus or as virus associated with extracellular vesicles (EVJC+). The restriction was not absolute and small amounts of virus or EVJC+ penetrated and were able to establish foci of infection in primary astrocytes. Disruption of the barrier with capsaicin did not increase virus or EVJC+ penetration leading us to hypothesize that virus and EVJC+ were highly cell-associated and crossed the barrier by an active process. An inhibitor of macropinocytosis increased virus penetration from the basolateral (blood side) to the apical side (CSF side). In contrast, inhibitors of clathrin and raft dependent transcytosis reduced virus transport from the basolateral to the apical side of the barrier. None of the drugs inhibited apical to basolateral transport suggesting directionality. Pretreatment with cyclosporin A, an inhibitor of P-gp, MRP2 and BCRP multidrug resistance transporters, restored viral penetration in cells treated with raft and clathrin dependent transcytosis inhibitors. Because choroid plexus epithelial cells are known to be susceptible to JCPyV infection both in vitro and in vivo we also examined the release of infectious virus from the barrier. We found that virus was preferentially released from the cells into the apical (CSF) chamber. These data show clearly that there are two mechanisms of penetration, direct transcytosis which is capable of seeding the CSF with small amounts of virus, and infection followed by directional release of infectious virions into the CSF compartment.
Collapse
Affiliation(s)
- Bethany A. O’Hara
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Avraham S. Lukacher
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Kaitlin Garabian
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Jacob Kaiserman
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Evan MacLure
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | | | - Horst Schroten
- Department of Pediatrics, Medical Faculty Mannheim, Mannheim, Germany
| | - Sheila A. Haley
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| | - Walter J. Atwood
- Department of Cell Biology, Biochemistry, and Molecular Biology, The Warren Alpert Medical School, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
8
|
Gao Y, Deng H, Zhao Y, Li M, Wang L, Zhang Y. Gene Expression of Abcc2 and Its Regulation by Chicken Xenobiotic Receptor. TOXICS 2024; 12:55. [PMID: 38251011 PMCID: PMC10818656 DOI: 10.3390/toxics12010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Membrane transporter multidrug resistance-associated protein 2 (MRP2/Abcc2) exhibits high pharmaco-toxicological relevance because it exports multiple cytotoxic compounds from cells. However, no detailed information about the gene expression and regulation of MRP2 in chickens is yet available. Here, we sought to investigate the expression distribution of Abcc2 in different tissues of chicken and then determine whether Abcc2 expression is induced by chicken xenobiotic receptor (CXR). The bioinformatics analyses showed that MRP2 transporters have three transmembrane structural domains (MSDs) and two highly conserved nucleotide structural domains (NBDs), and a close evolutionary relationship with turkeys. Tissue distribution analysis indicated that Abcc2 was highly expressed in the liver, kidney, duodenum, and jejunum. When exposed to metyrapone (an agonist of CXR) and ketoconazole (an antagonist of CXR), Abcc2 expression was upregulated and downregulated correspondingly. We further confirmed that Abcc2 gene regulation is dependent on CXR, by overexpressing and interfering with CXR, respectively. We also demonstrated the induction of Abcc2 expression and the activity of ivermectin, with CXR being a likely mediator. Animal experiments demonstrated that metyrapone and ivermectin induced Abcc2 in the liver, kidney, and duodenum of chickens. Together, our study identified the gene expression of Abcc2 and its regulation by CXR in chickens, which may provide novel targets for the reasonable usage of veterinary drugs.
Collapse
Affiliation(s)
- Yanhong Gao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Huacheng Deng
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Yuying Zhao
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Mei Li
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| | - Liping Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China;
| | - Yujuan Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.G.); (H.D.); (Y.Z.); (M.L.)
| |
Collapse
|
9
|
Saleh RO, Al-Ouqaili MTS, Ali E, Alhajlah S, Kareem AH, Shakir MN, Alasheqi MQ, Mustafa YF, Alawadi A, Alsaalamy A. lncRNA-microRNA axis in cancer drug resistance: particular focus on signaling pathways. Med Oncol 2024; 41:52. [PMID: 38195957 DOI: 10.1007/s12032-023-02263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/20/2023] [Indexed: 01/11/2024]
Abstract
Cancer drug resistance remains a formidable challenge in modern oncology, necessitating innovative therapeutic strategies. The convergence of intricate regulatory networks involving long non-coding RNAs, microRNAs, and pivotal signaling pathways has emerged as a crucial determinant of drug resistance. This review underscores the multifaceted roles of lncRNAs and miRNAs in orchestrating gene expression and cellular processes, mainly focusing on their interactions with specific signaling pathways. Dysregulation of these networks leads to the acquisition of drug resistance, dampening the efficacy of conventional treatments. The review highlights the potential therapeutic avenues unlocked by targeting these non-coding RNAs. Developing specific inhibitors or mimics for lncRNAs and miRNAs, alone or in combination with conventional chemotherapy, emerges as a promising strategy. In addition, epigenetic modulators, immunotherapies, and personalized medicine present exciting prospects in tackling drug resistance. While substantial progress has been made, challenges, including target validation and safety assessment, remain. The review emphasizes the need for continued research to overcome these hurdles and underscores the transformative potential of lncRNA-miRNA interplay in revolutionizing cancer therapy.
Collapse
Affiliation(s)
- Raed Obaid Saleh
- Department of Medical Laboratory Techniques, Al-Maarif University College, Al-Anbar, Iraq.
| | - Mushtak T S Al-Ouqaili
- Department of Microbiology, College of Medicine, University of Anbar, Ramadi, Anbar, Iraq
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, 11961, Shaqra, Saudi Arabia.
| | | | - Maha Noori Shakir
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Alawadi
- College of Technical Engineering, The Islamic University, Najaf, Iraq
- College of Technical Engineering, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, 66002, Iraq
| |
Collapse
|
10
|
Laiolo J, Graikioti DG, Barbieri CL, Joray MB, Antoniou AI, Vera DMA, Athanassopoulos CM, Carpinella MC. Novel betulin derivatives as multidrug reversal agents targeting P-glycoprotein. Sci Rep 2024; 14:70. [PMID: 38167542 PMCID: PMC10762177 DOI: 10.1038/s41598-023-49939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Chemotherapy is a powerful means of cancer treatment but its efficacy is compromised by the emergence of multidrug resistance (MDR), mainly linked to the efflux transporter ABCB1/P-glycoprotein (P-gp). Based on the chemical structure of betulin, identified in our previous work as an effective modulator of the P-gp function, a series of analogs were designed, synthesized and evaluated as a source of novel inhibitors. Compounds 6g and 6i inhibited rhodamine 123 efflux in the P-gp overexpressed leukemia cells, K562/Dox, at concentrations of 0.19 µM and 0.39 µM, respectively, and increased the intracellular accumulation of doxorubicin at the submicromolar concentration of 0.098 µM. Compounds 6g and 6i were able to restore the sensitivity of K562/Dox to Dox at 0.024 µM and 0.19 µM, respectively. Structure-activity relationship analysis and molecular modeling revealed important information about the structural features conferring activity. All the active compounds fitted in a specific region involving mainly transmembrane helices (TMH) 4-6 from one homologous half and TMH 7 and 12 from the other, also showing close contacts with TMH 6 and 12. Compounds that bound preferentially to another region were inactive, regardless of their free energy of binding. It should be noted that compounds 6g and 6i were devoid of toxic effects against peripheral blood mononuclear normal cells and erythrocytes. The data obtained indicates that both compounds might be proposed as scaffolds for obtaining promising P-gp inhibitors for overcoming MDR.
Collapse
Affiliation(s)
- Jerónimo Laiolo
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Dafni G Graikioti
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - Cecilia L Barbieri
- Department of Chemistry and Biochemistry, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata - QUIAMM - INBIOTEC CONICET, Mar del Plata, Argentina
| | - Mariana B Joray
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC and CIDIE CONICET-UCC, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Antonia I Antoniou
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504, Patras, Greece
| | - D Mariano A Vera
- Department of Chemistry and Biochemistry, College of Exact and Natural Sciences, Universidad Nacional de Mar del Plata - QUIAMM - INBIOTEC CONICET, Mar del Plata, Argentina.
| | | | - María C Carpinella
- Fine Chemical and Natural Products Laboratory, IRNASUS CONICET-UCC and CIDIE CONICET-UCC, Universidad Católica de Córdoba, Córdoba, Argentina.
| |
Collapse
|
11
|
Werner P, Szemerédi N, Spengler G, Hilgeroth A. Evaluation of Novel Benzo-annelated 1,4-dihydropyridines as MDR Modulators in Cancer Cells. Anticancer Agents Med Chem 2024; 24:1047-1055. [PMID: 38706362 DOI: 10.2174/0118715206314406240502054139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Multidrug resistance (MDR) is the main problem in anticancer therapy today. Causative transmembrane efflux pumps in cancer cells have been reconsidered as promising anticancer target structures to restore anticancer drug sensitivity by various strategies, including MDR modulators. MDR modulators interfere with the efflux pumps and improve the cellular efficiency of chemotherapeutics. So far, only a few candidates have gone through clinical trials with disappointing results because of low specificity and toxic properties. AIM This study aimed to find novel MDR modulators to effectively combat multidrug resistance in cancer cells. OBJECTIVE We synthesized various novel benzo-annelated 1,4-dihydropyridines to evaluate them as MDR modulators towards ABCB1 in cancer cells. METHODS Synthesized compounds were purified by column chromatography. The MDR modulation of ABCB1 was determined in cellular efflux assays using the flow cytometry technique and cellular fluorescent measurements by the use of each fluorescent substrate. RESULTS Compounds were yielded in a two-step reaction with structurally varied components. Further, substituent- dependent effects on the determined MDR inhibiting properties towards ABCB1 were discussed. Cellular studies prove that there is no toxicity and restoration of cancer cell sensitivity towards the used anticancer drug. CONCLUSION Novel MDR modulators could be identified with favorable methoxy and ester group functions. Their use in both ABCB1 non-expressing and overexpressing cells proves a selective toxicity-increasing effect of the applied anticancer agent in the ABCB1 overexpressing cells, whereas the toxicity effect of the anticancer drug was almost unchanged in the non-expressing cells. These results qualify our novel compounds as perspective anticancer drugs compared to MDR modulators with nonselective toxicity properties.
Collapse
Affiliation(s)
- Peter Werner
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle, Germany
| | - Nikolétta Szemerédi
- Department of Medical Microbiology, University of Szeged, Dóm tér 10, 6720 Szeged, Hungary
| | - Gabriella Spengler
- Department of Medical Microbiology, University of Szeged, Dóm tér 10, 6720 Szeged, Hungary
| | - Andreas Hilgeroth
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, 06120 Halle, Germany
| |
Collapse
|
12
|
Li X, Peng X, Zoulikha M, Boafo GF, Magar KT, Ju Y, He W. Multifunctional nanoparticle-mediated combining therapy for human diseases. Signal Transduct Target Ther 2024; 9:1. [PMID: 38161204 PMCID: PMC10758001 DOI: 10.1038/s41392-023-01668-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/14/2023] [Accepted: 10/10/2023] [Indexed: 01/03/2024] Open
Abstract
Combining existing drug therapy is essential in developing new therapeutic agents in disease prevention and treatment. In preclinical investigations, combined effect of certain known drugs has been well established in treating extensive human diseases. Attributed to synergistic effects by targeting various disease pathways and advantages, such as reduced administration dose, decreased toxicity, and alleviated drug resistance, combinatorial treatment is now being pursued by delivering therapeutic agents to combat major clinical illnesses, such as cancer, atherosclerosis, pulmonary hypertension, myocarditis, rheumatoid arthritis, inflammatory bowel disease, metabolic disorders and neurodegenerative diseases. Combinatorial therapy involves combining or co-delivering two or more drugs for treating a specific disease. Nanoparticle (NP)-mediated drug delivery systems, i.e., liposomal NPs, polymeric NPs and nanocrystals, are of great interest in combinatorial therapy for a wide range of disorders due to targeted drug delivery, extended drug release, and higher drug stability to avoid rapid clearance at infected areas. This review summarizes various targets of diseases, preclinical or clinically approved drug combinations and the development of multifunctional NPs for combining therapy and emphasizes combinatorial therapeutic strategies based on drug delivery for treating severe clinical diseases. Ultimately, we discuss the challenging of developing NP-codelivery and translation and provide potential approaches to address the limitations. This review offers a comprehensive overview for recent cutting-edge and challenging in developing NP-mediated combination therapy for human diseases.
Collapse
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Xiuju Peng
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Makhloufi Zoulikha
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - George Frimpong Boafo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, PR China
| | - Kosheli Thapa Magar
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China
| | - Yanmin Ju
- School of Pharmacy, China Pharmaceutical University, Nanjing, 2111198, PR China.
| | - Wei He
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, 200443, China.
| |
Collapse
|
13
|
Ahmadpour ST, Orre C, Bertevello PS, Mirebeau-Prunier D, Dumas JF, Desquiret-Dumas V. Breast Cancer Chemoresistance: Insights into the Regulatory Role of lncRNA. Int J Mol Sci 2023; 24:15897. [PMID: 37958880 PMCID: PMC10650504 DOI: 10.3390/ijms242115897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a subclass of noncoding RNAs composed of more than 200 nucleotides without the ability to encode functional proteins. Given their involvement in critical cellular processes such as gene expression regulation, transcription, and translation, lncRNAs play a significant role in organism homeostasis. Breast cancer (BC) is the second most common cancer worldwide and evidence has shown a relationship between aberrant lncRNA expression and BC development. One of the main obstacles in BC control is multidrug chemoresistance, which is associated with the deregulation of multiple mechanisms such as efflux transporter activity, mitochondrial metabolism reprogramming, and epigenetic regulation as well as apoptosis and autophagy. Studies have shown the involvement of a large number of lncRNAs in the regulation of such pathways. However, the underlying mechanism is not clearly elucidated. In this review, we present the principal mechanisms associated with BC chemoresistance that can be directly or indirectly regulated by lncRNA, highlighting the importance of lncRNA in controlling BC chemoresistance. Understanding these mechanisms in deep detail may interest the clinical outcome of BC patients and could be used as therapeutic targets to overcome BC therapy resistance.
Collapse
Affiliation(s)
- Seyedeh Tayebeh Ahmadpour
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | - Charlotte Orre
- Inserm U1083, UMR CNRS 6214, Angers University, 49933 Angers, France; (C.O.); (D.M.-P.)
| | - Priscila Silvana Bertevello
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | | - Jean-François Dumas
- Nutrition, Croissance et Cancer, Inserm, UMR1069, Université de Tours, 37032 Tours, France; (P.S.B.); (J.-F.D.)
| | | |
Collapse
|
14
|
Sanati M, Afshari AR, Ahmadi SS, Kesharwani P, Sahebkar A. Aptamers against cancer drug resistance: Small fighters switching tactics in the face of defeat. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166720. [PMID: 37062453 DOI: 10.1016/j.bbadis.2023.166720] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 04/18/2023]
Abstract
Discovering novel cancer therapies has attracted extreme interest in the last decade. In this regard, multidrug resistance (MDR) to chemotherapies is a key challenge in cancer treatment. Cancerous cells are growingly become resistant to existing chemotherapeutics by employing diverse mechanisms, highlighting the significance of discovering approaches to overcome MDR. One promising strategy is utilizing aptamers as unique tools to target elements or signaling pathways incorporated in resistance mechanisms, or develop actively targeted drug delivery systems or chimeras enabling the precise delivery of novel agents to inhibit the conventionally undruggable resistance elements. Furthermore, due to their advantages over their proteinaceous counterparts, particularly antibodies, including improved targeting action, enhanced thermal stability, easier production, and superior tumor penetration, aptamers are emerging and have frequently been considered for developing cancer therapeutics. Here, we highlighted significant chemoresistance pathways in cancer and discussed the use of aptamers as prospective tools to surmount cancer MDR.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
Farhana A, Alsrhani A, Khan YS, Rasheed Z. Cancer Bioenergetics and Tumor Microenvironments-Enhancing Chemotherapeutics and Targeting Resistant Niches through Nanosystems. Cancers (Basel) 2023; 15:3836. [PMID: 37568652 PMCID: PMC10416858 DOI: 10.3390/cancers15153836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/16/2023] [Indexed: 08/13/2023] Open
Abstract
Cancer is an impending bottleneck in the advanced scientific workflow to achieve diagnostic, prognostic, and therapeutic success. Most cancers are refractory to conventional diagnostic and chemotherapeutics due to their limited targetability, specificity, solubility, and side effects. The inherent ability of each cancer to evolve through various genetic and epigenetic transformations and metabolic reprogramming underlies therapeutic limitations. Though tumor microenvironments (TMEs) are quite well understood in some cancers, each microenvironment differs from the other in internal perturbations and metabolic skew thereby impeding the development of appropriate diagnostics, drugs, vaccines, and therapies. Cancer associated bioenergetics modulations regulate TME, angiogenesis, immune evasion, generation of resistant niches and tumor progression, and a thorough understanding is crucial to the development of metabolic therapies. However, this remains a missing element in cancer theranostics, necessitating the development of modalities that can be adapted for targetability, diagnostics and therapeutics. In this challenging scenario, nanomaterials are modular platforms for understanding TME and achieving successful theranostics. Several nanoscale particles have been successfully researched in animal models, quite a few have reached clinical trials, and some have achieved clinical success. Nanoparticles exhibit an intrinsic capability to interact with diverse biomolecules and modulate their functions. Furthermore, nanoparticles can be functionalized with receptors, modulators, and drugs to facilitate specific targeting with reduced toxicity. This review discusses the current understanding of different theranostic nanosystems, their synthesis, functionalization, and targetability for therapeutic modulation of bioenergetics, and metabolic reprogramming of the cancer microenvironment. We highlight the potential of nanosystems for enhanced chemotherapeutic success emphasizing the questions that remain unanswered.
Collapse
Affiliation(s)
- Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Yusuf Saleem Khan
- Department of Anatomy, College of Medicine, Jouf University, Sakaka 72388, Aljouf, Saudi Arabia
| | - Zafar Rasheed
- Department of Pathology, College of Medicine, Qassim University, P.O. Box 6655, Buraidah 51452, Qassim, Saudi Arabia
| |
Collapse
|
16
|
Abdul Hussein SA, Razzak Mahmood AA, Tahtamouni LH, Balakit AA, Yaseen YS, Al-Hasani RA. New Combretastatin Analogs as Anticancer Agents: Design, Synthesis, Microtubules Polymerization Inhibition, and Molecular Docking Studies. Chem Biodivers 2023; 20:e202201206. [PMID: 36890635 DOI: 10.1002/cbdv.202201206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/16/2023] [Indexed: 03/10/2023]
Abstract
A new series of 4-(4-methoxyphenyl)-5-(3,4,5-trimethoxyphenyl)-4H-1,2,4-triazole-3-thiol derivatives were synthesized as analogs for the anticancer drug combretastatin A-4 (CA-4) and characterized using FT-IR, 1 H-NMR, 13 CNMR, and HR-MS techniques. The new CA-4 analogs were designed to meet the structural requirements of the highest expected anticancer activity of CA-4 analogs by maintaining ring A 3,4,5-trimethoxyphenyl moiety, and at the same time varying the substituents effect of the triazole moiety (ring B). In silico analysis indicated that compound 3 has higher total energy and dipole moment than colchicine and the other analogs, and it has excellent distribution of electron density and is more stable, resulting in an increased binding affinity during tubulin inhibition. Additionally, compound 3 was found to interact with three apoptotic markers, namely p53, Bcl-2, and caspase 3. Compound 3 showed strong similarity to colchicine, and it has excellent pharmacokinetics properties and a good dynamic profile. The in vitro anti-proliferation studies showed that compound 3 is the most cytotoxic CA-4 analog against cancer cells (IC50 of 6.35 μM against Hep G2 hepatocarcinoma cells), and based on its selectivity index (4.7), compound 3 is a cancer cytotoxic-selective agent. As expected and similar to colchicine, compound 3-treated Hep G2 hepatocarcinoma cells were arrested at the G2/M phase resulting in induction of apoptosis. Compound 3 tubulin polymerization IC50 (9.50 μM) and effect on Vmax of tubulin polymerization was comparable to that of colchicine (5.49 μM). Taken together, the findings of the current study suggest that compound 3, through its binding to the colchicine-binding site at β-tubulin, is a promising microtubule-disrupting agent with excellent potential to be used as cancer therapeutic agent.
Collapse
Affiliation(s)
- Shaker A Abdul Hussein
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Babylon, 51001, Babylon, Iraq
| | - Ammar A Razzak Mahmood
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Baghdad, 10001, Baghdad, Iraq
| | - Lubna H Tahtamouni
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, 13133, Zarqa, Jordan
- Department of Biochemistry and Molecular Biology, College of Natural Sciences, Colorado State University, Fort Collins, 80523 Colorado, USA
| | - Asim A Balakit
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Babylon, 51001, Babylon, Iraq
| | - Yahya S Yaseen
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Tikrit, 34001, Tikrit, Iraq
| | - Rehab A Al-Hasani
- Department of Chemistry, College of Science, Al-Mustansiriyah University, 10052, Baghdad, Iraq
| |
Collapse
|
17
|
Abou-Salim MA, Shaaban MA, Abd El Hameid MK, Alanazi MM, Halaweish F, Elshaier YAMM. Utilizing Estra-1,3,5,16-Tetraene Scaffold: Design and Synthesis of Nitric Oxide Donors as Chemotherapeutic Resistance Combating Agents in Liver Cancer. Molecules 2023; 28:molecules28062754. [PMID: 36985726 PMCID: PMC10055446 DOI: 10.3390/molecules28062754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
A new series of nitric oxide-releasing estra-1,3,5,16-tetraene analogs (NO-∆-16-CIEAs) was designed and synthesized as dual inhibitors for EGFR and MRP2 based on our previous findings on estra-1,3,5-triene analog NO-CIEA 17 against both HepG2 and HepG2-R cell lines. Among the target compounds, 14a (R-isomer) and 14b (S-isomer) displayed potent anti-proliferative activity against both HepG2 and HepG2-R cell lines in comparison to the reference drug erlotinib. Remarkably, compound 14a resulted in a prominent reduction in EGFR phosphorylation at a concentration of 1.20 µM with slight activity on the phosphorylation of MEK1/2 and ERK1/2. It also inhibits MRP2 expression in a dose-dependent manner with 24% inhibition and arrested the cells in the S phase of the cell cycle. Interestingly, compound 14a (estratetraene core) exhibited a twofold increase in anti-proliferative activity against both HepG2 and HepG2-R in comparison with the lead estratriene analog, demonstrating the significance of the designed ∆-16 unsaturation. The results shed a light on compound 14a and support further investigations to combat multidrug resistance in chemotherapy of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Mahrous A Abou-Salim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A Shaaban
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed K Abd El Hameid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mohammed M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fathi Halaweish
- Department of Chemistry and Biochemistry, South Dakota State University, Box 2202, Brookings, SD 57007, USA
| | - Yaseen A M M Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32958, Egypt
| |
Collapse
|
18
|
Bhatia A, Upadhyay AK, Sharma S. miRNAs are now starring in "No Time to Die: Overcoming the chemoresistance in cancer". IUBMB Life 2023; 75:238-256. [PMID: 35678612 DOI: 10.1002/iub.2652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 12/24/2022]
Abstract
Cancer is a leading cause of death globally, with about 19.3 million new cases reported each year. Current therapies for cancer management include-chemotherapy, radiotherapy, and surgery. However, they are loaded with side effects and tend to cause toxicity in the patient's body posttreatment, ultimately hindering the response towards the treatment building up resistance. This is where noncoding RNAs such as miRNAs help provide us with a helping hand for taming the chemoresistance and providing potential holistic cancer management. MicroRNAs are promising targets for anticancer therapy as they perform critical regulatory roles in various signaling cascades related to cell proliferation, apoptosis, migration, and invasion. Combining miRNAs and anticancer drugs and devising a combination therapy has managed cancer well in various independent studies. This review aims to provide insights into how miRNAs play a mechanistic role in cancer development and progression and regulate drug resistance in various types of cancers. Furthermore, next-generation novel therapies using miRNAs in combination with anticancer treatments in multiple cancers have been put forth and how they improve the efficacy of the treatments. Exemplary studies currently in the preclinical and clinical models have been summarized. Ultimately, we briefly talk through the challenges that come forward with it and minimize them.
Collapse
Affiliation(s)
- Anmol Bhatia
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| | - Siddharth Sharma
- Department of Biotechnology, Thapar Institute of Engineering & Technology, Patiala, India
| |
Collapse
|
19
|
Nanoplatform-based cellular reactive oxygen species regulation for enhanced oncotherapy and tumor resistance alleviation. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
20
|
Rizvi N, Ademuyiwa FO, Cao ZA, Chen HX, Ferris RL, Goldberg SB, Hellmann MD, Mehra R, Rhee I, Park JC, Kluger H, Tawbi H, Sullivan RJ. Society for Immunotherapy of Cancer (SITC) consensus definitions for resistance to combinations of immune checkpoint inhibitors with chemotherapy. J Immunother Cancer 2023; 11:e005920. [PMID: 36918220 PMCID: PMC10016262 DOI: 10.1136/jitc-2022-005920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 03/15/2023] Open
Abstract
Although immunotherapy can offer profound clinical benefit for patients with a variety of difficult-to-treat cancers, many tumors either do not respond to upfront treatment with immune checkpoint inhibitors (ICIs) or progressive/recurrent disease occurs after an interval of initial control. Improved response rates have been demonstrated with the addition of ICIs to cytotoxic therapies, leading to approvals from the US Food and Drug Administration and regulatory agencies in other countries for ICI-chemotherapy combinations in a number of solid tumor indications, including breast, head and neck, gastric, and lung cancer. Designing trials for patients with tumors that do not respond or stop responding to treatment with immunotherapy combinations, however, is challenging without uniform definitions of resistance. Previously, the Society for Immunotherapy of Cancer (SITC) published consensus definitions for resistance to single-agent anti-programmed cell death protein 1 (PD-1). To provide guidance for clinical trial design and to support analyses of emerging molecular and cellular data surrounding mechanisms of resistance to ICI-based combinations, SITC convened a follow-up workshop in 2021 to develop consensus definitions for resistance to multiagent ICI combinations. This manuscript reports the consensus clinical definitions for combinations of ICIs and chemotherapies. Definitions for resistance to ICIs in combination with targeted therapies and with other ICIs will be published in companion volumes to this paper.
Collapse
Affiliation(s)
| | | | | | - Helen X Chen
- National Cancer Institute, Bethesda, Maryland, USA
| | | | | | | | - Ranee Mehra
- University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ina Rhee
- Genentech, South San Francisco, California, USA
| | - Jong Chul Park
- Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Hussein Tawbi
- University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
21
|
Kola P, Nagesh PKB, Roy PK, Deepak K, Reis RL, Kundu SC, Mandal M. Innovative nanotheranostics: Smart nanoparticles based approach to overcome breast cancer stem cells mediated chemo- and radioresistances. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023:e1876. [PMID: 36600447 DOI: 10.1002/wnan.1876] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 01/06/2023]
Abstract
The alarming increase in the number of breast cancer patients worldwide and the increasing death rate indicate that the traditional and current medicines are insufficient to fight against it. The onset of chemo- and radioresistances and cancer stem cell-based recurrence make this problem harder, and this hour needs a novel treatment approach. Competent nanoparticle-based accurate drug delivery and cancer nanotheranostics like photothermal therapy, photodynamic therapy, chemodynamic therapy, and sonodynamic therapy can be the key to solving this problem due to their unique characteristics. These innovative formulations can be a better cargo with fewer side effects than the standard chemotherapy and can eliminate the stability problems associated with cancer immunotherapy. The nanotheranostic systems can kill the tumor cells and the resistant breast cancer stem cells by novel mechanisms like local hyperthermia and reactive oxygen species and prevent tumor recurrence. These theranostic systems can also combine with chemotherapy or immunotherapy approaches. These combining approaches can be the future of anticancer therapy, especially to overcome the breast cancer stem cells mediated chemo- and radioresistances. This review paper discusses several novel theranostic systems and smart nanoparticles, their mechanism of action, and their modifications with time. It explains their relevance and market scope in the current era. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Prithwish Kola
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | | | - Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - K Deepak
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rui Luis Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimaraes, Portugal
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
22
|
Shivhare S, Das A. Cell density modulates chemoresistance in breast cancer cells through differential expression of ABC transporters. Mol Biol Rep 2023; 50:215-225. [PMID: 36319789 DOI: 10.1007/s11033-022-08028-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/12/2022] [Indexed: 01/29/2023]
Abstract
BACKGROUND Breast cancer patients undergoing chemotherapy encounter a significant challenge of chemoresistance because of drug efflux by ATP-binding cassette (ABC) transporters. Breast cancer cell density alters considerably throughout the early stages of primary and secondary tumor development. Although cell density in culture influences kinetics, the effects of varying cell densities on the chemoresistance of breast cancer cells remains largely unexplored. METHODS AND RESULTS We observed chemotherapeutics-induced differential gene and protein expression of ABC transporters in luminal and basal breast cancer cells cultured at low and high seeding densities. Low-density cultures depicted a significant increase in the mRNA expression of ABC transporters-ABCG2, ABCG1, ABCC4, ABCA2, ABCA3, ABCC2, ABCC3, ABCC6, ABCC7, and ABCC9 as compared with high-density cultures. Next, cells at both low and high seeding densities when pre-treated with cyclosporine A (CsA), a pan-inhibitor of ABC transporters, resulted in increased sensitization to chemotherapeutics-doxorubicin and tamoxifen at markedly low IC50 concentrations suggesting the role of ABC transporters. Finally, markedly high doxorubicin-drug accumulation, significantly increased expression of N-cadherin, and a significant decrease in chemotherapeutics-induced in vitro tumorigenesis was observed in low-density seeded breast cancer cells when pre-treated with CsA suggesting ABC transporters inhibition-mediated increased efficacy of chemotherapeutics. CONCLUSION These findings suggest that breast cancer cells grown at low seeding density imparts chemoresistance towards doxorubicin or tamoxifen by a differential increase in the expression of ABC transporters. Thus, a combinatorial treatment strategy including ABC transporter inhibitors and chemotherapeutics can be a way forward for overcoming the breast cancer chemoresistance.
Collapse
Affiliation(s)
- Surbhi Shivhare
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India.,Academy of Scientific and Innovative Research, Ghaziabad, UP, 201 002, India
| | - Amitava Das
- Department of Applied Biology, Council of Scientific & Industrial Research-Indian Institute of Chemical Technology (CSIR-IICT), Uppal Road, Tarnaka, Hyderabad, TS, 500 007, India. .,Academy of Scientific and Innovative Research, Ghaziabad, UP, 201 002, India.
| |
Collapse
|
23
|
Why Do Dietary Flavonoids Have a Promising Effect as Enhancers of Anthracyclines? Hydroxyl Substituents, Bioavailability and Biological Activity. Int J Mol Sci 2022; 24:ijms24010391. [PMID: 36613834 PMCID: PMC9820151 DOI: 10.3390/ijms24010391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Anthracyclines currently play a key role in the treatment of many cancers, but the limiting factor of their use is the widespread phenomenon of drug resistance and untargeted toxicity. Flavonoids have pleiotropic, beneficial effects on human health that, apart from antioxidant activity, are currently considered small molecules-starting structures for drug development and enhancers of conventional therapeutics. This paper is a review of the current and most important data on the participation of a selected series of flavonoids: chrysin, apigenin, kaempferol, quercetin and myricetin, which differ in the presence of an additional hydroxyl group, in the formation of a synergistic effect with anthracycline antibiotics. The review includes a characterization of the mechanism of action of flavonoids, as well as insight into the physicochemical parameters determining their bioavailability in vitro. The crosstalk between flavonoids and the molecular activity of anthracyclines discussed in the article covers the most important common areas of action, such as (1) disruption of DNA integrity (genotoxic effect), (2) modulation of antioxidant response pathways, and (3) inhibition of the activity of membrane proteins responsible for the active transport of drugs and xenobiotics. The increase in knowledge about the relationship between the molecular structure of flavonoids and their biological effect makes it possible to more effectively search for derivatives with a synergistic effect with anthracyclines and to develop better therapeutic strategies in the treatment of cancer.
Collapse
|
24
|
Feng D, Zhong G, Zuo Q, Wan Y, Xu W, He C, Lin C, Huang D, Chen F, Huang L. Knockout of ABC transporters by CRISPR/Cas9 contributes to reliable and accurate transporter substrate identification for drug discovery. Front Pharmacol 2022; 13:1015940. [PMID: 36386127 PMCID: PMC9649518 DOI: 10.3389/fphar.2022.1015940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/13/2022] [Indexed: 04/21/2024] Open
Abstract
It is essential to explore the relationship between drugs and transporters in the process of drug development. Strong background signals in nonhuman MDCK or LLC-PK1 cells and overlapping interference of inhibitors or RNAi in human Caco-2 cells mean that an ideal alternative could be to knock out specific transporter genes in Caco-2 cells. However, the application of gene knockout (KO) to Caco-2 cells is challenging because it is still inefficient to obtain rapidly growing Caco-2 subclones with double-allele KO through long-term monoclonal cultivation. Herein, CRISPR/Cas9, a low cost but more efficient and precise gene editing technology, was utilized to singly or doubly knockout the P-gp, BCRP, and MRP2 genes in Caco-2 cells. By combining this with single cell expansion, rapidly growing transporter-deficient subclones were successfully screened and established. Bidirectional transport assays with probe substrates and three protease inhibitors indicated that more reliable and detailed data could be drawn easily with these KO Caco-2 models. The six robust KO Caco-2 subclones could contribute to efficient in vitro drug transport research.
Collapse
Affiliation(s)
- Dongyan Feng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Guorui Zhong
- Bioinformatics Institute, Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Qingxia Zuo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yanbin Wan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Wanqing Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Changsheng He
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Cailing Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Dongchao Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Feng Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Lizhen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Kalave S, Hegde N, Juvale K. Applications of Nanotechnology-based Approaches to Overcome Multi-drug Resistance in Cancer. Curr Pharm Des 2022; 28:3140-3157. [PMID: 35366765 DOI: 10.2174/1381612828666220401142300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 02/27/2022] [Indexed: 01/28/2023]
Abstract
Cancer is one of the leading causes of death worldwide. Chemotherapy and radiation therapy are the major treatments used for the management of cancer. Multidrug resistance (MDR) is a major hindrance faced in the treatment of cancer and is also responsible for cancer relapse. To date, several studies have been carried out on strategies to overcome or reverse MDR in cancer. Unfortunately, the MDR reversing agents have been proven to have minimal clinical benefits, and eventually, no improvement has been made in therapeutic efficacy to date. Thus, several investigational studies have also focused on overcoming drug resistance rather than reversing the MDR. In this review, we focus primarily on nanoformulations regarded as a novel approach to overcome or bypass the MDR in cancer. The nanoformulation systems serve as an attractive strategy as these nanosized materials selectively get accumulated in tumor tissues, thereby improving the clinical outcomes of patients suffering from MDR cancer. In the current work, we present an overview of recent trends in the application of various nano-formulations, belonging to different mechanistic classes and functionalization like carbon nanotubes, carbon nanohorns, carbon nanospheres, liposomes, dendrimers, etc., to overcome MDR in cancer. A detailed overview of these techniques will help researchers in exploring the applicability of nanotechnologybased approaches to treat MDR.
Collapse
Affiliation(s)
- Sana Kalave
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle [W], Mumbai, India
| | - Namita Hegde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle [W], Mumbai, India
| | - Kapil Juvale
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle [W], Mumbai, India
| |
Collapse
|
26
|
Fashe MM, Fallon JK, Miner TA, Tiley JB, Smith PC, Lee CR. Impact of pregnancy related hormones on drug metabolizing enzyme and transport protein concentrations in human hepatocytes. Front Pharmacol 2022; 13:1004010. [PMID: 36210832 PMCID: PMC9532936 DOI: 10.3389/fphar.2022.1004010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Pregnancy alters the disposition and exposure to multiple drugs indicated for pregnancy-related complications. Previous in vitro studies have shown that pregnancy-related hormones (PRHs) alter the expression and function of certain cytochrome P450s (CYPs) in human hepatocytes. However, the impact of PRHs on hepatic concentrations of non-CYP drug-metabolizing enzymes (DMEs) and transport proteins remain largely unknown. In this study, sandwich-cultured human hepatocytes (SCHH) from five female donors were exposed to vehicle or PRHs (estrone, estradiol, estriol, progesterone, cortisol, and placental growth hormone), administered individually or in combination, across a range of physiologically relevant PRH concentrations for 72 h. Absolute concentrations of 33 hepatic non-CYP DMEs and transport proteins were quantified in SCHH membrane fractions using a quantitative targeted absolute proteomics (QTAP) isotope dilution nanoLC-MS/MS method. The data revealed that PRHs altered the absolute protein concentration of various DMEs and transporters in a concentration-, isoform-, and hepatocyte donor-dependent manner. Overall, eight of 33 (24%) proteins exhibited a significant PRH-evoked net change in absolute protein concentration relative to vehicle control (ANOVA p < 0.05) across hepatocyte donors: 1/11 UGTs (9%; UGT1A4), 4/6 other DMEs (67%; CES1, CES2, FMO5, POR), and 3/16 transport proteins (19%; OAT2, OCT3, P-GP). An additional 8 (24%) proteins (UGT1A1, UGT2B4, UGT2B10, FMO3, OCT1, MRP2, MRP3, ENT1) exhibited significant PRH alterations in absolute protein concentration within at least two individual hepatocyte donors. In contrast, 17 (52%) proteins exhibited no discernable impact by PRHs either within or across hepatocyte donors. Collectively, these results provide the first comprehensive quantitative proteomic evaluation of PRH effects on non-CYP DMEs and transport proteins in SCHH and offer mechanistic insight into the altered disposition of drug substrates cleared by these pathways during pregnancy.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - John K. Fallon
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Taryn A. Miner
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Jacqueline B. Tiley
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Philip C. Smith
- Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
27
|
The effect of ciprofloxacin on doxorubicin cytotoxic activity in the acquired resistance to doxorubicin in DU145 prostate carcinoma cells. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:194. [PMID: 36071289 DOI: 10.1007/s12032-022-01787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/28/2022] [Indexed: 10/14/2022]
Abstract
The present study aimed to assess the influence of ciprofloxacin (CIP) against the doxorubicin (DOX)-resistant androgen-independent prostate cancer DU145 cells. The DOX-resistant DU145 (DU145/DOX20) cells were established by exposing DU145 cells to the increasing concentrations of DOX. The antiproliferative effect of CIP was examined through employing MTT, colony formation, and 3D culture assays. DU145/DOX20 cells exhibited a twofold higher IC50 value for DOX, an increased ABCB1 transporter activity, and some morphological changes accompanied by a decrease in spheroid size, adhesive and migration potential compared to DU145 cells. CIP (5 and 25 µg mL-1) resulted in a higher reduction in the viability of DU145/DOX20 cells than in DU145 cells. DU145/DOX20 cells were more resistant to CIP in 3D culture compared to the 2D one. No spheroid formation was observed for DU145/DOX20 cells treated with DOX and CIP combination. CIP and DOX, alone or in combination, significantly reduced the growth of DU145 spheroids. CIP in combination with 20 nM DOX prevented the colony formation of DU145 cells. The clonogenicity of DU145/DOX20 cells could not be estimated due to their low adhesive potential. CIP alone caused a significant reduction in the migration of DU145 cells and resulted in a more severe decrease in the wound closure ability of DOX-exposed ones. We identified that CIP enhanced DOX sensitivity in DU145 and DU145/DOX20 cells. This study suggested the co-delivery of low concentrations of CIP and DOX may be a promising strategy in treating the DOX-resistant and -sensitive hormone-refractory prostate cancer.
Collapse
|
28
|
Sapio L, Ragone A, Spina A, Salzillo A, Naviglio S. AdipoRon and Pancreatic Ductal Adenocarcinoma: a future perspective in overcoming chemotherapy-induced resistance? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:625-636. [PMID: 36176754 PMCID: PMC9511794 DOI: 10.20517/cdr.2022.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 05/25/2022] [Indexed: 11/12/2022]
Abstract
The latest scientific knowledge has provided additional insights accountable for the worst prognosis for pancreatic ductal adenocarcinoma (PDAC). Among the causative factors, the aptitude to develop resistance towards approved medications denotes the master key for understanding the lack of improvement in PDAC survival over the years. Even though several compounds have achieved encouraging results at preclinical stage, no new adjuvant agents have reached the bedside of PDAC patients lately. The adiponectin receptor agonist AdipoRon is emerging as a promising anticancer drug in different cancer models, particularly in PDAC. Building on the existing findings, we recently reinforced its candidacy in PDAC cells, proposing AdipoRon either as a suitable partner in gemcitabine-based treatment or as an effective drug in resistant cells. Crossing the current state-of-the-art, herein we provide a critical perspective on AdipoRon to figure out whether this receptor agonist can potentially be considered a future therapeutic choice in overcoming chemotherapy-induced resistance, expressly in PDAC.
Collapse
Affiliation(s)
| | | | | | | | - Silvio Naviglio
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples 80138, Italy
| |
Collapse
|
29
|
Wang J, Zhao H, Song W, Gu M, Liu Y, Liu B, Zhan H. Gold Nanoparticle-Decorated Drug Nanocrystals for Enhancing Anticancer Efficacy and Reversing Drug Resistance Through Chemo-/Photothermal Therapy. Mol Pharm 2022; 19:2518-2534. [PMID: 35549267 DOI: 10.1021/acs.molpharmaceut.2c00150] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Limited chemotherapeutic efficiency, drug resistance, and side effects are primary obstacles for cancer treatment. The development of co-delivery systems with synergistic treatment modes should be a promising strategy. Here, we fabricated a multifunctionalized nanocarrier with a combination of chemotherapeutic agents and gold nanoparticles (AuNPs), which could integrate chemo-photothermal therapy, thus enhancing overall anticancer efficacy, sensitizing drug-resistant cancer cells, and diminishing cancer stem cells (CSCs). To be specific, camptothecin nanocrystals (CPT NCs) were prepared as a platform, on the surface of which AuNPs were decorated and a hyaluronic acid layer acted as capping, stabilizing, targeting, and hydrophilic agents for CPT NCs, and reducing agents for AuNPs, providing a bridge connecting AuNPs to CPT. These AuNP-decorated CPT NCs exhibited good physico-chemical properties such as optimal sizes, payload, stability, and photothermal efficiency. Compared to other CPT formulations, they displayed considerably improved biocompatibility, selectivity, intracellular uptake, cytotoxicity, apoptosis induction activity, Pgp inhibitory capability, and anti-CSC activity, owing to a synergistic/cooperative effect from AuNPs, CPT, near-infrared treatment, pH/photothermal-triggered drug release, and nanoscaled structure. A mitochondrial-mediated signaling pathway is the underlying mechanism for cytotoxic and apoptotic effects from AuNP-decorated CPT NCs, in terms of mitochondrial dysfunction, intensified oxidative stress, DNA fragmentation, caspase 3 activation, upregulation of proapoptotic genes such as p53, Bax, and caspase 3, and lower levels of antiapoptotic Bcl-2.
Collapse
Affiliation(s)
- Jihui Wang
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China.,School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan 523808, Guangzhou Province, P. R. China
| | - He Zhao
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Wenjing Song
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Mingyang Gu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Yujia Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Bingnan Liu
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| | - Honglei Zhan
- Department of Biotechnology, School of Bioengineering, Dalian Polytechnic University, Dalian 116034, Liaoning Province, P. R. China
| |
Collapse
|
30
|
Otręba M, Stojko J, Kabała‑Dzik A, Rzepecka‑Stojko A. Perphenazine and prochlorperazine decrease glioblastoma U‑87 MG cell migration and invasion: Analysis of the ABCB1 and ABCG2 transporters, E‑cadherin, α‑tubulin and integrins (α3, α5, and β1) levels. Oncol Lett 2022; 23:182. [PMID: 35527777 PMCID: PMC9073583 DOI: 10.3892/ol.2022.13302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/29/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme is the most frequent type of malignant brain tumor, and is one of the most lethal and untreatable human tumors with a very poor survival rate. Therefore, novel and effective strategies of treatment are required. Integrins play a crucial role in the regulation of cellular adhesion and invasion. Integrins and α-tubulin are very important in cell migration, whereas E-cadherin plays a main role in tumor metastasis. Notably, drugs serve a crucial role in glioblastoma treatment; however, they have to penetrate the blood-brain barrier (BBB) to be effective. ABC transporters, including ATP binding cassette subfamily B member 1 (ABCB1) and ATP binding cassette subfamily G member 2 (ABCG2), are localized in the brain endothelial capillaries of the BBB, have a crucial role in the development of multidrug resistance and are modulated by phenothiazine derivatives. The impact of perphenazine and prochlorperazine on the motility of human Uppsala 87 malignant glioma (U87-MG) cells was evaluated using a wound-healing assay, cellular migration and invasion were assessed by Transwell assay, and the protein expression levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins were determined by western blotting. The present study explored the effects of perphenazine and prochlorperazine on the levels of ABCB1, ABCG2, E-cadherin, α-tubulin and integrins (α3, α5, and β1), as well as on the migratory and invasive ability of U87-MG cells. The results suggested that perphenazine and prochlorperazine may modulate the expression levels of multidrug resistance proteins (they decreased ABCB1 and increased ABCG2 expression), E-cadherin, α-tubulin and integrins, and could impair the migration and invasion of U-87 MG cells. In conclusion, the decrease in migratory and invasive ability following treatment with phenothiazine derivatives due to the increase in ABCG2 and E-cadherin expression, and decrease in α-tubulin and integrins expression, may suggest that research on perphenazine and prochlorperazine in the treatment of glioblastoma is worth continuing.
Collapse
Affiliation(s)
- Michał Otręba
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Jerzy Stojko
- Department of Toxicology and Bioanalysis, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Agata Kabała‑Dzik
- Department of Pathology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| | - Anna Rzepecka‑Stojko
- Department of Drug Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41‑200 Sosnowiec, Poland
| |
Collapse
|
31
|
Cancer Stem Cell Markers for Urinary Carcinoma. Stem Cells Int 2022; 2022:3611677. [PMID: 35342431 PMCID: PMC8941535 DOI: 10.1155/2022/3611677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cancer stem cell (CSC) refers to cancer cells with stem cell properties, that is, they have the ability of “self-renewal” and “differentiation.” Cancer stem cells exist in cancer cells and are the “culprit” of cancer recurrence and metastasis. It is difficult to be found because of its small amount, and it is difficult for anticancer drugs to produce effects on it. At present, the isolation and identification of cancer stem cells from many solid tumors are still quite difficult, mainly due to the lack of specific molecular markers of cancer stem cells. In this review, cancer stem cell surface markers and functional markers in urinary system were summarized. These markers can provide molecular targets for cancer therapy.
Collapse
|
32
|
Weiss F, Lauffenburger D, Friedl P. Towards targeting of shared mechanisms of cancer metastasis and therapy resistance. Nat Rev Cancer 2022; 22:157-173. [PMID: 35013601 PMCID: PMC10399972 DOI: 10.1038/s41568-021-00427-0] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/22/2021] [Indexed: 02/07/2023]
Abstract
Resistance to therapeutic treatment and metastatic progression jointly determine a fatal outcome of cancer. Cancer metastasis and therapeutic resistance are traditionally studied as separate fields using non-overlapping strategies. However, emerging evidence, including from in vivo imaging and in vitro organotypic culture, now suggests that both programmes cooperate and reinforce each other in the invasion niche and persist upon metastatic evasion. As a consequence, cancer cell subpopulations exhibiting metastatic invasion undergo multistep reprogramming that - beyond migration signalling - supports repair programmes, anti-apoptosis processes, metabolic adaptation, stemness and survival. Shared metastasis and therapy resistance signalling are mediated by multiple mechanisms, such as engagement of integrins and other context receptors, cell-cell communication, stress responses and metabolic reprogramming, which cooperate with effects elicited by autocrine and paracrine chemokine and growth factor cues present in the activated tumour microenvironment. These signals empower metastatic cells to cope with therapeutic assault and survive. Identifying nodes shared in metastasis and therapy resistance signalling networks should offer new opportunities to improve anticancer therapy beyond current strategies, to eliminate both nodular lesions and cells in metastatic transit.
Collapse
Affiliation(s)
- Felix Weiss
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands
| | - Douglas Lauffenburger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Friedl
- Department of Cell Biology, RIMLS, Radboud University Medical Center, Nijmegen, Netherlands.
- David H. Koch Center for Applied Research of Genitourinary Cancers, Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Cancer Genomics Center, Utrecht, Netherlands.
| |
Collapse
|
33
|
Transport and metabolism of tyrosine kinase inhibitors associated with chronic myeloid leukemia therapy: a review. Mol Cell Biochem 2022; 477:1261-1279. [DOI: 10.1007/s11010-022-04376-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 01/27/2022] [Indexed: 12/14/2022]
|
34
|
Liu Y, Li H, Zhao Y, Li D, Zhang Q, Fu J, Fan S. Knockdown of ADORA2A antisense RNA 1 inhibits cell proliferation and enhances imatinib sensitivity in chronic myeloid leukemia. Bioengineered 2022; 13:2296-2307. [PMID: 35034552 PMCID: PMC8973732 DOI: 10.1080/21655979.2021.2024389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (LncRNAs) exert important regulatory roles in chronic myeloid leukemia (CML). In this study, we aimed to investigate the potential role and molecular mechanism of lncRNA ADORA2A antisense RNA 1 (ADORA2A-AS1) in CML. We found that the expression of ADORA2A-AS1 was upregulated in CML. Further, knockdown of ADORA2A-AS1 inhibited the proliferation, induced apoptosis, arrested cell cycle, and enhanced imatinib sensitivity in CML cells. Besides, ADORA2A-AS1 promoted the expression of transforming growth factor-beta receptor 1 (TGFBR1) and ATP binding cassette subfamily C member 2 (ABCC2) via sponging miR-665, thereby exerting a tumor-promoting activity. Collectively, our results confirmed the oncogenic effect of ADORA2A-AS1 in CML, indicating that ADORA2A-AS1 is a promosing therapeutic target for CML.
Collapse
Affiliation(s)
- Yabo Liu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huibo Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yanqiu Zhao
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Dandan Li
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Qian Zhang
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinyue Fu
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shengjin Fan
- Department of Hematology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
35
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
36
|
Ibrahim TS, Hawwas MM, Malebari AM, Taher ES, Omar AM, Neamatallah T, Abdel-Samii ZK, Safo MK, Elshaier YAMM. Discovery of novel quinoline-based analogues of combretastatin A-4 as tubulin polymerisation inhibitors with apoptosis inducing activity and potent anticancer effect. J Enzyme Inhib Med Chem 2021; 36:802-818. [PMID: 33730937 PMCID: PMC7993375 DOI: 10.1080/14756366.2021.1899168] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/27/2021] [Accepted: 02/27/2021] [Indexed: 02/08/2023] Open
Abstract
A new series of quinoline derivatives of combretastatin A-4 have been designed, synthesised and demonstrated as tubulin polymerisation inhibitors. These novel compounds showed significant antiproliferative activities, among them, 12c exhibited the most potent inhibitory activity against different cancer cell lines (MCF-7, HL-60, HCT-116 and HeLa) with IC50 ranging from 0.010 to 0.042 µM, and with selectivity profile against MCF-10A non-cancer cells. Further mechanistic studies suggest that 12c can inhibit tubulin polymerisation and cell migration, leading to G2/M phase arrest. Besides, 12c induces apoptosis via a mitochondrial-dependant apoptosis pathway and caused reactive oxygen stress generation in MCF-7 cells. These results provide guidance for further rational development of potent tubulin polymerisation inhibitors for the treatment of cancer.HighlightsA novel series of quinoline derivatives of combretastatin A-4 have been designed and synthesised.Compound 12c showed significant antiproliferative activities against different cancer cell lines.Compound 12c effectively inhibited tubulin polymerisation and competed with [3H] colchicine in binding to tubulin.Compound 12c arrested the cell cycle at G2/M phase, effectively inducing apoptosis and inhibition of cell migration.
Collapse
Affiliation(s)
- Tarek S. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Mohamed M. Hawwas
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab S. Taher
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Abdelsattar M. Omar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Thikryat Neamatallah
- Department of Pharmacology and toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Zakaria K. Abdel-Samii
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Martin K. Safo
- Institute for Structural Biology, Drug Discovery and Development, Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| |
Collapse
|
37
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
38
|
Werner P, Hilgeroth A. Arise of MDR Inhibitors for Anticancer Therapy. Anticancer Agents Med Chem 2021; 22:1242-1243. [PMID: 34551702 DOI: 10.2174/1871520621666210922112404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 11/22/2022]
Affiliation(s)
- Peter Werner
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle. Germany
| | - Andreas Hilgeroth
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck Str. 4, 06120 Halle. Germany
| |
Collapse
|
39
|
Ramos A, Sadeghi S, Tabatabaeian H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int J Mol Sci 2021; 22:9451. [PMID: 34502361 PMCID: PMC8430957 DOI: 10.3390/ijms22179451] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 02/07/2023] Open
Abstract
With nearly 10 million deaths, cancer is the leading cause of mortality worldwide. Along with major key parameters that control cancer treatment management, such as diagnosis, resistance to the classical and new chemotherapeutic reagents continues to be a significant problem. Intrinsic or acquired chemoresistance leads to cancer recurrence in many cases that eventually causes failure in the successful treatment and death of cancer patients. Various determinants, including tumor heterogeneity and tumor microenvironment, could cause chemoresistance through a diverse range of mechanisms. In this review, we summarize the key determinants and the underlying mechanisms by which chemoresistance appears. We then describe which strategies have been implemented and studied to combat such a lethal phenomenon in the management of cancer treatment, with emphasis on the need to improve the early diagnosis of cancer complemented by combination therapy.
Collapse
Affiliation(s)
- Alisha Ramos
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117545, Singapore;
| | - Samira Sadeghi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| |
Collapse
|
40
|
Penning TM, Jonnalagadda S, Trippier PC, Rižner TL. Aldo-Keto Reductases and Cancer Drug Resistance. Pharmacol Rev 2021; 73:1150-1171. [PMID: 34312303 PMCID: PMC8318518 DOI: 10.1124/pharmrev.120.000122] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human aldo-keto reductases (AKRs) catalyze the NADPH-dependent reduction of carbonyl groups to alcohols for conjugation reactions to proceed. They are implicated in resistance to cancer chemotherapeutic agents either because they are directly involved in their metabolism or help eradicate the cellular stress created by these agents (e.g., reactive oxygen species and lipid peroxides). Furthermore, this cellular stress activates the Nuclear factor-erythroid 2 p45-related factor 2 (NRF2)-Kelch-like ECH-associated protein 1 pathway. As many human AKR genes are upregulated by the NRF2 transcription factor, this leads to a feed-forward mechanism to enhance drug resistance. Resistance to major classes of chemotherapeutic agents (anthracyclines, mitomycin, cis-platin, antitubulin agents, vinca alkaloids, and cyclophosphamide) occurs by this mechanism. Human AKRs also catalyze the synthesis of androgens and estrogens and the elimination of progestogens and are involved in hormonal-dependent malignancies. They are upregulated by antihormonal therapy providing a second mechanism for cancer drug resistance. Inhibitors of the NRF2 system or pan-AKR1C inhibitors offer promise to surmount cancer drug resistance and/or synergize the effects of existing drugs. SIGNIFICANCE STATEMENT: Aldo-keto reductases (AKRs) are overexpressed in a large number of human tumors and mediate resistance to cancer chemotherapeutics and antihormonal therapies. Existing drugs and new agents in development may surmount this resistance by acting as specific AKR isoforms or AKR pan-inhibitors to improve clinical outcome.
Collapse
Affiliation(s)
- Trevor M Penning
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Sravan Jonnalagadda
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Paul C Trippier
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| | - Tea Lanišnik Rižner
- Center of Excellence in Environmental Toxicology, Department of Systems Pharmacology & Translational Therapeutics, Philadelphia, Pennsylvania (T.M.P.); Department of Pharmaceutical Science (S.J., P.C.T.) and Fred and Pamela Buffett Cancer Center (P.C.T.), University of Nebraska Medical Center and UNMC Center for Drug Discovery, Omaha, Nebraska; and Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia (T.L.R.)
| |
Collapse
|
41
|
Estevinho MM, Fernandes C, Silva JC, Gomes AC, Afecto E, Correia J, Carvalho J. Role of ATP-binding Cassette Transporters in Sorafenib Therapy for Hepatocellular Carcinoma: an overview. Curr Drug Targets 2021; 23:21-32. [PMID: 33845738 DOI: 10.2174/1389450122666210412125018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Molecular therapy with sorafenib remains the mainstay for advanced-stage hepatocellular carcinoma. Notwithstanding, treatment efficacy is low, with few patients obtaining long-lasting benefits due to the high chemoresistance rate. OBJECTIVE To perform, for the first time, an overview of the literature concerning the role of adenosine triphosphate-binding cassette (ABC) transporters in sorafenib therapy for hepatocellular carcinoma. METHODS Three online databases (PubMed, Web of Science and Scopus) were searched, from inception to October 2020. Studies selection, analysis and data collection was independently performed by two authors. RESULTS The search yielded 224 results; 29 were selected for inclusion. Most studies were pre-clinical, using HCC cell lines; three used human samples. Studies highlight the effect of sorafenib in decreasing ABC transporters expression. Conversely, it is described the role of ABC transporters, particularly multidrug resistance protein 1 (MDR-1), multidrug resistance-associated proteins 1 and 2 (MRP-1 and MRP-2) and ABC subfamily G member 2 (ABCG2) in sorafenib pharmacokinetics and pharmacodynamics, being key resistance factors. Combination therapy with naturally available or synthetic compounds that modulate ABC transporters may revert sorafenib resistance, by increasing absorption and intracellular concentration. CONCLUSION A deeper understanding of ABC transporters' mechanisms may provide guidance for developing innovative approaches for hepatocellular carcinoma. Further studies are warranted to translate the current knowledge into practice and paving the way to individualized therapy.
Collapse
Affiliation(s)
- Maria Manuela Estevinho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Carlos Fernandes
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Carlos Silva
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Ana Catarina Gomes
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - Edgar Afecto
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Correia
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| | - João Carvalho
- Department of Gastroenterology, Vila Nova de Gaia/Espinho Hospital Center, Vila Nova de Gaia, Portugal. b Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto. Portugal
| |
Collapse
|
42
|
Kalhori MR, Khodayari H, Khodayari S, Vesovic M, Jackson G, Farzaei MH, Bishayee A. Regulation of Long Non-Coding RNAs by Plant Secondary Metabolites: A Novel Anticancer Therapeutic Approach. Cancers (Basel) 2021; 13:cancers13061274. [PMID: 33805687 PMCID: PMC8001769 DOI: 10.3390/cancers13061274] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Cancer is caused by the rapid and uncontrolled growth of cells that eventually lead to tumor formation. Genetic and epigenetic alterations are among the most critical factors in the onset of carcinoma. Phytochemicals are a group of natural compounds that play an essential role in cancer prevention and treatment. Long non-coding RNAs (lncRNAs) are potential therapeutic targets of bioactive phytochemicals, and these compounds could regulate the expression of lncRNAs directly and indirectly. Here, we critically evaluate in vitro and in vivo anticancer effects of phytochemicals in numerous human cancers via regulation of lncRNA expression and their downstream target genes. Abstract Long non-coding RNAs (lncRNAs) are a class of non-coding RNAs that play an essential role in various cellular activities, such as differentiation, proliferation, and apoptosis. Dysregulation of lncRNAs serves a fundamental role in the progression and initiation of various diseases, including cancer. Precision medicine is a suitable and optimal treatment method for cancer so that based on each patient’s genetic content, a specific treatment or drug is prescribed. The rapid advancement of science and technology in recent years has led to many successes in this particular treatment. Phytochemicals are a group of natural compounds extracted from fruits, vegetables, and plants. Through the downregulation of oncogenic lncRNAs or upregulation of tumor suppressor lncRNAs, these bioactive compounds can inhibit metastasis, proliferation, invasion, migration, and cancer cells. These natural products can be a novel and alternative strategy for cancer treatment and improve tumor cells’ sensitivity to standard adjuvant therapies. This review will discuss the antineoplastic effects of bioactive plant secondary metabolites (phytochemicals) via regulation of expression of lncRNAs in various human cancers and their potential for the treatment and prevention of human cancers.
Collapse
Affiliation(s)
- Mohammad Reza Kalhori
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6714415185, Iran;
| | - Hamid Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Saeed Khodayari
- International Center for Personalized Medicine, 40235 Düsseldorf, Germany; (H.K.); (S.K.)
- Breast Disease Research Center, Tehran University of Medical Sciences, Tehran 1419733141, Iran
| | - Miko Vesovic
- Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Gloria Jackson
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6718874414, Iran
- Correspondence: (M.H.F.); or (A.B.)
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA;
- Correspondence: (M.H.F.); or (A.B.)
| |
Collapse
|
43
|
Rigon L, De Filippis C, Napoli B, Tomanin R, Orso G. Exploiting the Potential of Drosophila Models in Lysosomal Storage Disorders: Pathological Mechanisms and Drug Discovery. Biomedicines 2021; 9:biomedicines9030268. [PMID: 33800050 PMCID: PMC8000850 DOI: 10.3390/biomedicines9030268] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/18/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Lysosomal storage disorders (LSDs) represent a complex and heterogeneous group of rare genetic diseases due to mutations in genes coding for lysosomal enzymes, membrane proteins or transporters. This leads to the accumulation of undegraded materials within lysosomes and a broad range of severe clinical features, often including the impairment of central nervous system (CNS). When available, enzyme replacement therapy slows the disease progression although it is not curative; also, most recombinant enzymes cannot cross the blood-brain barrier, leaving the CNS untreated. The inefficient degradative capability of the lysosomes has a negative impact on the flux through the endolysosomal and autophagic pathways; therefore, dysregulation of these pathways is increasingly emerging as a relevant disease mechanism in LSDs. In the last twenty years, different LSD Drosophila models have been generated, mainly for diseases presenting with neurological involvement. The fruit fly provides a large selection of tools to investigate lysosomes, autophagy and endocytic pathways in vivo, as well as to analyse neuronal and glial cells. The possibility to use Drosophila in drug repurposing and discovery makes it an attractive model for LSDs lacking effective therapies. Here, ee describe the major cellular pathways implicated in LSDs pathogenesis, the approaches available for their study and the Drosophila models developed for these diseases. Finally, we highlight a possible use of LSDs Drosophila models for drug screening studies.
Collapse
Affiliation(s)
- Laura Rigon
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Correspondence:
| | - Concetta De Filippis
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Barbara Napoli
- Laboratory of Molecular Biology, Scientific Institute, IRCCS Eugenio Medea, Via Don Luigi Monza 20, Bosisio Parini, 23842 Lecco, Italy;
| | - Rosella Tomanin
- Fondazione Istituto di Ricerca Pediatrica “Città della Speranza”, Corso Stati Uniti 4, 35127 Padova, Italy; (C.D.F.); (R.T.)
- Laboratory of Diagnosis and Therapy of Lysosomal Disorders, Department of Women’s and Children’s Health, University of Padova, Via Giustiniani 3, 35128 Padova, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy;
| |
Collapse
|
44
|
Zhao W, Ning L, Wang L, Ouyang T, Qi L, Yang R, Wu Y. miR-21 inhibition reverses doxorubicin-resistance and inhibits PC3 human prostate cancer cells proliferation. Andrologia 2021; 53:e14016. [PMID: 33598946 DOI: 10.1111/and.14016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/31/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Many approaches have been examined to reversing multidrug resistance (MDR), but sub-optimal target-based strategies have limited their efficacy. Herein, we investigate microRNA (miR-21) suppression on the doxorubicin (DOX)-sensitisation of the DOX-resistant (PC3/DOX) cell line in prostate cancer (PCa). Expression levels of miR-21, P-glycoprotein (P-gp), MDR-1 and PTEN evaluated in PC3/DOX cancer cells by qRT-PCR and western blot analyses. The cytotoxic effects of transfected of miR-21 were assessed by MTT assay for 72 hr. Rhodamine123 (Rh123) assay was employed to define the activity of P-gp. Apoptosis was detected by Flow cytometry. As expected, miR-21 was expressed highly in PC3/DOX cells (p < 0.05). It was shown that miRNA-21 suppression considerably hindered PC3/DOX cell viability. miR-21 suppression dramatically downregulated P-gp expression and activity in DOX-resistance cells and abolished MDR by an increment of intracellular accumulation of DOX in PC3/DOX cells (p < 0.05). PTEN is a key modulator of the PI3K/Akt/P-gp cascade, which miR-21 suppression led to the upregulation of PTEN and sequentially lower-expression of P-gp that reversed MDR. Also, miR-21 repression enhanced the apoptosis rate of PC3/DOX cells. The findings of this paper contribute to the current understanding of the functions of miR-21 in MDR-reversing in PCa.
Collapse
Affiliation(s)
- Weichong Zhao
- Department of Oncology, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Lei Ning
- Department of Clinical Laboratory, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Lihui Wang
- Health Physical Examination Department, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Tao Ouyang
- Department of Urology Surgery, Pingyin County Hospital of Traditional Chinese Medicine, Jinan, Shandong Province, China
| | - Lei Qi
- Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ruihong Yang
- Intensive Care Unit, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Yanlin Wu
- Department of Urology Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| |
Collapse
|
45
|
Wu ZX, Mai Q, Yang Y, Wang JQ, Ma H, Zeng L, Chen ZS, Pan Y. Overexpression of human ATP-binding cassette transporter ABCG2 contributes to reducing the cytotoxicity of GSK1070916 in cancer cells. Biomed Pharmacother 2021; 136:111223. [PMID: 33450491 DOI: 10.1016/j.biopha.2021.111223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/26/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence of multidrug resistance (MDR) is one of the main factors that impair therapeutic outcome in cancer therapy. Among all the factors that contribute to MDR, overexpression of ABCG2 transporter has been described as a key factor. GSK1070916 is a potent Aurora kinase inhibitor with broad anticancer effects. The robust efficacy shown in preclinical studies allowed the drug progress to clinical investigation. However, the potential mechanisms of acquired resistance to GSK1070916 remain inconclusive. Since several Aurora kinase inhibitors were reported to be transported substrates of ABCG2, we aimed to identify the potential interaction of GSK1070916 with ABCG2. Our data showed that ABCG2-overexpressing cells demonstrated high resistance-fold to GSK1070916 compared to the parental cells. In addition, combination of GSK1070916 with an ABCG2 inhibitor was able to restore its sensitivity. The multicellular tumor spheroid assay supported this finding by demonstrating attenuated growth inhibition in ABCG2-overexpressing tumor spheroids. In addition, the ABCG2 ATPase assay and computational modeling suggested that GSK1070916 could bind to ABCG2 substrate-binding site. The HPLC assay provided another direct evidence that ABCG2-overexpressing cells showed attenuated intracellular accumulation of GSK1070916, and such phenomenon was abolished by Ko143, a known ABCG2 inhibitor. Furthermore, GSK1070916 was able to hinder the efflux activity of ABCG2, indicating possible drug-drug interactions with other ABCG2 substrate drugs. In summary, we revealed that overexpression of ABCG2 can cause GSK1070916 resistance in cancer cells. The combination of an ABCG2 inhibitor with GSK1070916 may be a rational strategy to overcome the drug resistance and should be considered for clinical investigation.
Collapse
Affiliation(s)
- Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qiuyan Mai
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Hansu Ma
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Leli Zeng
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Yihang Pan
- Precision Medicine Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, PR China.
| |
Collapse
|