1
|
Es-Haghi A, Soltani M, Tabrizi MH, Noghondar MK, Khatamian N, Naeeni NB, Kharaghani M. The effect of EGCG/tyrosol-loaded chitosan/lecithin nanoparticles on hyperglycemia and hepatic function in streptozotocin-induced diabetic mice. Int J Biol Macromol 2024; 267:131496. [PMID: 38626839 DOI: 10.1016/j.ijbiomac.2024.131496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 04/01/2024] [Accepted: 04/08/2024] [Indexed: 04/21/2024]
Abstract
We aimed to study the potential of epigallocatechin-3-gallate/tyrosol-loaded chitosan/lecithin nanoparticles (EGCG/tyrosol-loaded C/L NPs) in streptozotocin-induced type 2 diabetes mellitus (T2DM) mice. The EGCG/tyrosol-loaded C/L NPs were created using the self-assembly method. Dynamic light scattering, Field Emission Scanning Electron Microscopy, and Fourier transform infrared spectroscopy were utilized to characterize the nanoparticle. Furthermore, in streptozotocin-induced T2DM mice, treatment with EGCG/tyrosol-loaded C/L NPs on fasting blood sugar levels, the expression of PCK1 and G6Pase, and IL-1β in the liver, liver glutathione content, nanoparticle toxicity on liver cells, and liver reactive oxygen species were measured. Our findings showed that EGCG/tyrosol-loaded C/L NPs had a uniform size distribution, and encapsulation efficiencies of 84 % and 89.1 % for tyrosol and EGCG, respectively. The nanoparticles inhibited PANC-1 cells without affecting normal HFF cells. Furthermore, EGCG/tyrosol-loaded C/L NP treatment reduced fasting blood sugar levels, elevated hepatic glutathione levels, enhanced liver cell viability, and decreased reactive oxygen species levels in diabetic mice. The expression of gluconeogenesis-related genes (PCK1 and G6 Pase) and the inflammatory gene IL-1β was downregulated by EGCG/tyrosol-loaded C/L NPs. In conclusion, the EGCG/tyrosol-loaded C/L NPs reduced hyperglycemia, oxidative stress, and inflammation in diabetic mice. These findings suggest that EGCG/tyrosol-loaded C/L NPs could be a promising therapeutic option for type 2 diabetes management.
Collapse
Affiliation(s)
- Ali Es-Haghi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Mozhgan Soltani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Maryam Karimi Noghondar
- Department of Nursing, Faculty of Nursing and Midwifery, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Niloufar Khatamian
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Matin Kharaghani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
2
|
Kurosaka C, Tagata C, Nakagawa S, Kobayashi M, Miyake S. Effects of green tea and roasted green tea on human responses. Sci Rep 2024; 14:8588. [PMID: 38615105 PMCID: PMC11016062 DOI: 10.1038/s41598-024-59383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Our objective was to elucidate the effects of tea consumption on refreshment and stress reduction/recovery through examining the multiple associations among factors such as various physiological responses and task performance. Participants included 20 healthy young men who performed a mental arithmetic task while 11 physiological responses were measured. The experiments were conducted twice under different beverage consumption conditions on separate days. The mental arithmetic task was executed six times in 1 day; participants ingested hot water, green tea, or roasted green tea (hojicha) before each task. Several subjective assessments: subjective fatigue, stress, mental workload, and flow were evaluated after each task. The R-R intervals, heart rate variability spectral components, the Poincaré plot indices (SD1 and SD2) and plethysmogram amplitude tended to decrease during task periods compared to resting periods. Tissue blood volume/flow (TBV, TBF) and near-infrared spectroscopy responses (NIRS) were lower in the tea condition than in the hot water condition. By scrutinizing various indicators, we found that aromatic stimulation of Japanese tea beverages has the potential to induce positive effects, enhance mental task performance, promote refreshment, and alleviate feelings of fatigue. These positive effects were observed even in small quantities and within a short duration, mirroring responses observed in daily consumption.
Collapse
Affiliation(s)
- Chie Kurosaka
- Department of Human, Information and Life Sciences, School of Health Sciences, University of Occupational and Environmental Health, Japan, Kitakyushu, Fukuoka, Japan.
| | - Chika Tagata
- Central Research Institute, ITOEN, Ltd., Makinohara, Shizuoka, Japan
| | - Sae Nakagawa
- Central Research Institute, ITOEN, Ltd., Makinohara, Shizuoka, Japan
| | - Makoto Kobayashi
- Central Research Institute, ITOEN, Ltd., Makinohara, Shizuoka, Japan
| | - Shinji Miyake
- Graduate School of Science and Technology, Chitose Institute of Science and Technology, Chitose, Hokkaido, Japan
| |
Collapse
|
3
|
Salem MA, Aborehab NM, Abdelhafez MM, Ismail SH, Maurice NW, Azzam MA, Alseekh S, Fernie AR, Salama MM, Ezzat SM. Anti-Obesity Effect of a Tea Mixture Nano-Formulation on Rats Occurs via the Upregulation of AMP-Activated Protein Kinase/Sirtuin-1/Glucose Transporter Type 4 and Peroxisome Proliferator-Activated Receptor Gamma Pathways. Metabolites 2023; 13:871. [PMID: 37512578 PMCID: PMC10385210 DOI: 10.3390/metabo13070871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
White, green, and oolong teas are produced from the tea plant (Camellia sinensis (L.) Kuntze) and are reported to have anti-obesity and hypolipidemic effects. The current study aims to investigate the anti-obesity effects of a tea mixture nano-formulation by targeting the AMPK/Sirt-1/GLUT-4 axis in rats. In vitro lipase and α-amylase inhibition assays were used to determine the active sample, which was then incorporated into a nanoparticle formulation subjected to in vivo anti-obesity testing in rats by measuring the expression level of different genes implicated in adipogenesis and inflammation using qRT-PCR. Moreover, metabolomic analysis was performed for each tea extract using LC/ESI MS/MS coupled to chemometrics in an attempt to find a correlation between the constituents of the extracts and their biological activity. The in vitro pancreatic lipase and α-amylase inhibition assays demonstrated more effective activity in the tea mixture than the standards, orlistat and acarbose, respectively, and each tea alone. Thus, the herbal tea mixture and its nanoparticle formulation were evaluated for their in vivo anti-obesity activity. Intriguingly, the tea mixture significantly decreased the serum levels of glucose and triglycerides and increased the mRNA expression of GLUT-4, P-AMPK, Sirt-1, and PPAR-γ, which induce lipolysis while also decreasing the mRNA expression of TNF-α and ADD1/SREBP-1c, thereby inhibiting the inflammation associated with obesity. Our study suggests that the tea mixture nano-formulation is a promising therapeutic agent in the treatment of obesity and may also be beneficial in other metabolic disorders by targeting the AMPK/Sirt-1/Glut-4 pathway.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Gamal Abd El Nasr Street, Shibin Elkom 32511, Menoufia, Egypt
| | - Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Mai M Abdelhafez
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | - Sameh H Ismail
- Faculty of Nanotechnology for Postgraduate Studies, Sheikh Zayed Branch Campus, Cairo University, Sheikh Zayed, Giza 12588, Egypt
| | - Nadine W Maurice
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - May A Azzam
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- Center for Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Maha M Salama
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, El Sherouk City, Cairo 11837, Egypt
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Ainy Street, Cairo 11562, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| |
Collapse
|
4
|
Atia T, Sakr HI, Damanhory AA, Moawad K, Alsawy M. The protective effect of green tea on diabetes-induced hepato-renal pathological changes: a histological and biochemical study. Arch Physiol Biochem 2023; 129:168-179. [PMID: 32816576 DOI: 10.1080/13813455.2020.1806885] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/30/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023]
Abstract
We investigated the protective effect of green tea on diabetic hepato-renal complications. Thirty male Wistar rats were randomly divided into five equal groups: normal control, diabetic control, glibenclamide-treated, green tea-treated, and combined therapy-treated groups; ethical approval number "BERC-014-01-20." After eight weeks, animals were sacrificed by CO2 euthanasia method, liver and kidney tissues were processed and stained for pathological changes, and blood samples were collected for biochemical analysis. Diabetic rats showed multiple hepato-renal morphological and apoptotic changes associated with significantly increased some biochemical parameters, while serum albumin and HDL decreased significantly compared to normal control (p < .05). Monotherapy can induce significant improvements in pathological and biochemical changes but has not been able to achieve normal patterns. In conclusion, green tea alone has a poor hypoglycaemic effect but can reduce diabetic complications, whereas glibenclamide cannot prevent diabetic complications. The addition of green tea to oral hypoglycaemic therapy has shown a potent synergistic effect.
Collapse
Affiliation(s)
- Tarek Atia
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences Prince, Sattam Bin Abdulaziz University, Al-Kharj, KSA
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Hader I Sakr
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| | - Ahmed A Damanhory
- Batterjee Medical College, Jeddah, KSA
- Department of Biochemistry, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Karim Moawad
- School of Biological Science, UCI, Irvine, CA, USA
| | - Moustfa Alsawy
- Department of Histology and Cytology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
- Batterjee Medical College, Jeddah, KSA
| |
Collapse
|
5
|
Bertoncini-Silva C, Zingg JM, Fassini PG, Suen VMM. Bioactive dietary components-Anti-obesity effects related to energy metabolism and inflammation. Biofactors 2022; 49:297-321. [PMID: 36468445 DOI: 10.1002/biof.1921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Obesity is the result of the long-term energy imbalance between the excess calories consumed and the few calories expended. Reducing the intake of energy dense foods (fats, sugars), and strategies such as fasting and caloric restriction can promote body weight loss. Not only energy in terms of calories, but also the specific composition of the diet can affect the way the food is absorbed and how its energy is stored, used or dissipated. Recent research has shown that bioactive components of food, such as polyphenols and vitamins, can influence obesity and its pathologic complications such as insulin resistance, inflammation and metabolic syndrome. Individual micronutrients can influence lipid turnover but for long-term effects on weight stability, dietary patterns containing several micronutrients may be required. At the molecular level, these molecules modulate signaling and the expression of genes that are involved in the regulation of energy intake, lipid metabolism, adipogenesis into white, beige and brown adipose tissue, thermogenesis, lipotoxicity, adipo/cytokine synthesis, and inflammation. Higher concentrations of these molecules can be reached in the intestine, where they can modulate the composition and action of the microbiome. In this review, the molecular mechanisms by which bioactive compounds and vitamins modulate energy metabolism, inflammation and obesity are discussed.
Collapse
Affiliation(s)
- Caroline Bertoncini-Silva
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Jean-Marc Zingg
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Priscila Giacomo Fassini
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | - Vivian Marques Miguel Suen
- Department of Internal Medicine, Division of Nutrology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Bagherniya M, Mahdavi A, Shokri-Mashhadi N, Banach M, Von Haehling S, Johnston TP, Sahebkar A. The beneficial therapeutic effects of plant-derived natural products for the treatment of sarcopenia. J Cachexia Sarcopenia Muscle 2022; 13:2772-2790. [PMID: 35961944 PMCID: PMC9745475 DOI: 10.1002/jcsm.13057] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/12/2022] [Accepted: 07/04/2022] [Indexed: 12/15/2022] Open
Abstract
Sarcopenia is an age-related muscle disorder typically associated with a poor quality of life. Its definition has evolved over time, and several underlying causes of sarcopenia in the elderly have been proposed. However, the exact mechanisms involved in sarcopenia, as well as effective treatments for this condition, are not fully understood. The purpose of this article was to conduct a comprehensive review of previous evidence regarding the definition, diagnosis, risk factors, and efficacy of plant-derived natural products for sarcopenia. The methodological approach for the current narrative review was performed using PubMed, Scopus, and Web of Science databases, as well as Google Scholar (up to March 2021) in order to satisfy our objectives. The substantial beneficial effects along with the safety of some plant-derived natural products including curcumin, resveratrol, catechin, soy protein, and ginseng on sarcopenia are reported in this review. Based on clinical studies, nutraceuticals and functional foods may have beneficial effects on physical performance, including handgrip and knee-extension strength, weight-lifting capacity, time or distance travelled before feeling fatigued, mitochondrial function, muscle fatigue, mean muscle fibre area, and total number of myonuclei. In preclinical studies, supplementation with herbs and natural bioactive compounds resulted in beneficial effects including increased plantaris mass, skeletal muscle mass and strength production, increased expression of anabolic factors myogenin, Myf5 and MyoD, enhanced mitochondrial capacity, and inhibition of muscle atrophy and sarcopenia. We found that several risk factors such as nutritional status, physical inactivity, inflammation, oxidative stress, endocrine system dysfunction, insulin resistance, history of chronic disease, mental health, and genetic factors are linked or associated with sarcopenia. The substantial beneficial effects of some nutraceuticals and functional foods on sarcopenia, including curcumin, resveratrol, catechin, soy protein, and ginseng, without any significant side effects, are reported in this review. Plant-derived natural products might have a beneficial effect on various components of sarcopenia. Nevertheless, due to limited human trials, the clinical benefits of plant-derived natural products remain inconclusive. It is suggested that comprehensive longitudinal clinical studies to better understand risk factors over time, as well as identifying a treatment strategy for sarcopenia that is based on its pathophysiology, be undertaken in future investigations.
Collapse
Affiliation(s)
- Mohammad Bagherniya
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.,Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.,Anesthesia and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atena Mahdavi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maciej Banach
- Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland.,Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Stephan Von Haehling
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, Göttingen, Germany.,German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia
| |
Collapse
|
7
|
Kabeya Y, Goto A, Kato M, Takahashi Y, Isogawa A, Matsushita Y, Mizoue T, Inoue M, Sawada N, Kadowaki T, Tsugane S, Noda M. Cross-sectional associations between the types/amounts of beverages consumed and the glycemia status: The Japan public health center-based Prospective Diabetes study. Metabol Open 2022; 14:100185. [PMID: 35519420 PMCID: PMC9062413 DOI: 10.1016/j.metop.2022.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background The associations between the types/amounts of beverages consumed in daily life and measures of the glycemia status were investigated in a Japanese population-based cohort. Methods Data from the baseline survey of the Japan Public Health Center-based Prospective Diabetes cohort were used. A cross-sectional analysis was performed in 3852 men and 6003 women who were evaluated under the fasting condition. The daily consumptions of coffee, green tea, oolong tea, black tea, soft drinks, fruit juices, or plain water were assessed using a self-reported questionnaire. Multivariable-adjusted linear regression analyses were performed using measures of the glycemia status (fasting plasma glucose (FPG) and glycated hemoglobin (HbA1c) ) as dependent variables and the types/amounts of beverages consumed as the independent variables, to calculate the differences according to the types/amounts of beverages consumed. Results In the multivariable-adjusted models, coffee consumption of ≥240 mL/day was significantly associated with a change of the FPG level by −1.9 mg/dL in men (p = 0.013) and −1.4 mg/dL in women (p = 0.015), as compared to coffee consumption of 0 mL/day. No significant association of the FPG level was observed with any of the other types/amounts of beverages consumed. On the other hand, significant associations were found between the HbA1c levels and consumption of several types of beverages. Conclusions High coffee consumption was associated with lower FPG levels in this Japanese population. Some unexpected associations of the HbA1c levels with the consumption of some types of beverages were observed, which need to be further investigated.
Collapse
Affiliation(s)
- Yusuke Kabeya
- Sowa Clinic, Kanagawa, Japan
- Corresponding author. Sowa Clinic, 3-18-7 Higashi-Hashimoto, Midori-ku, Sagamihara, Kanagawa, 252-0144, Japan.
| | - Atsushi Goto
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
- Department of Health Data Science, Graduate School of Data Science, Yokohama City University, Kanagawa, Japan
| | - Masayuki Kato
- Health Management Center and Diagnostic Imaging Center, Toranomon Hospital, Tokyo, Japan
| | - Yoshihiko Takahashi
- Division of Diabetes and Metabolism, Iwate Medical University School of Medicine, Iwate, Japan
| | - Akihiro Isogawa
- Department of Internal Medicine, Mitsui Memorial Hospital, Tokyo, Japan
| | - Yumi Matsushita
- Department of Clinical Research, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Tetsuya Mizoue
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
| | - Manami Inoue
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Norie Sawada
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Shoichiro Tsugane
- Epidemiology and Prevention Group, Center for Public Health Sciences, National Cancer Center, Tokyo, Japan
| | - Mitsuhiko Noda
- Department of Epidemiology and Prevention, Center for Clinical Sciences, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, Chiba, Japan
- Corresponding author. Department of Diabetes, Metabolism and Endocrinology, Ichikawa Hospital, International University of Health and Welfare, 6-1-14 Kounodai, Ichikawa, Chiba, 272-0827, Japan.
| |
Collapse
|
8
|
Blahova J, Martiniakova M, Babikova M, Kovacova V, Mondockova V, Omelka R. Pharmaceutical Drugs and Natural Therapeutic Products for the Treatment of Type 2 Diabetes Mellitus. Pharmaceuticals (Basel) 2021; 14:806. [PMID: 34451903 PMCID: PMC8398612 DOI: 10.3390/ph14080806] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is the most widespread form of diabetes, characterized by chronic hyperglycaemia, insulin resistance, and inefficient insulin secretion and action. Primary care in T2DM is pharmacological, using drugs of several groups that include insulin sensitisers (e.g., biguanides, thiazolidinediones), insulin secretagogues (e.g., sulphonylureas, meglinides), alpha-glucosidase inhibitors, and the newest incretin-based therapies and sodium-glucose co-transporter 2 inhibitors. However, their long-term application can cause many harmful side effects, emphasising the importance of the using natural therapeutic products. Natural health substances including non-flavonoid polyphenols (e.g., resveratrol, curcumin, tannins, and lignans), flavonoids (e.g., anthocyanins, epigallocatechin gallate, quercetin, naringin, rutin, and kaempferol), plant fruits, vegetables and other products (e.g., garlic, green tea, blackcurrant, rowanberry, bilberry, strawberry, cornelian cherry, olive oil, sesame oil, and carrot) may be a safer alternative to primary pharmacological therapy. They are recommended as food supplements to prevent and/or ameliorate T2DM-related complications. In the advanced stage of T2DM, the combination therapy of synthetic agents and natural compounds with synergistic interactions makes the treatment more efficient. In this review, both pharmaceutical drugs and selected natural products, as well as combination therapies, are characterized. Mechanisms of their action and possible negative side effects are also provided.
Collapse
Affiliation(s)
- Jana Blahova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Monika Martiniakova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Martina Babikova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Veronika Kovacova
- Department of Zoology and Anthropology, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia;
| | - Vladimira Mondockova
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| | - Radoslav Omelka
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 949 74 Nitra, Slovakia; (J.B.); (M.B.); (V.M.)
| |
Collapse
|
9
|
Mortazavi F, Paknahad Z, Hasanzadeh A. Effect of green tea consumption on the metabolic syndrome indices in women: a clinical trial study. ACTA ACUST UNITED AC 2019. [DOI: 10.1108/nfs-03-2018-0091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PurposeMetabolic syndrome (MetS) is a complex disorder that exacerbates the risk of cardiovascular disease and diabetes mellitus; some studies have indicated the beneficial effects of green tea on human health. The purpose of this study is to investigate the effects of green tea consumption on the MetS indicators in women.Design/methodology/approachA randomized clinical trial was carried out on 70 eligible women with confirmed diagnosis of MetS who visited Shabani Diabetes Clinic (Isfahan, Iran). Participants were randomly divided into two groups. Participants in the Green Tea Group were asked to consume three 200 cc of green tea in the morning, at noon and at night for eight weeks, while people in the control group were asked to take identical amount of lukewarm water at the same schedule. Anthropometric indicators, blood pressure, blood sugar, lipid profile, diet and physical activity were assessed at the beginning and the end of the study.FindingsAn independentt-test showed that weight (p =0.001), body mass index (p =0.001), waist circumference (p< 0.001) and waist–hip ratio (p =0.02), systolic blood pressure (p =0.04), fasting blood glucose (p =0.01) and low density lipoprotein (p =0.03) changed significantly more in the Green Tea Group than in the control group; but no such inter-group difference was observed in diastolic blood pressure, triglyceride, total cholesterol and high density lipoprotein (HDL) values (p> 0.05).Originality/valueRegular consumption of green tea for eight weeks significantly improved anthropometric indices, blood pressure, blood sugar and lipid profile in women with MetS. Therefore, this beverage can serve as part of an effective dietary strategy to control MetS.
Collapse
|
10
|
Huang LH, Liu CY, Wang LY, Huang CJ, Hsu CH. Effects of green tea extract on overweight and obese women with high levels of low density-lipoprotein-cholesterol (LDL-C): a randomised, double-blind, and cross-over placebo-controlled clinical trial. Altern Ther Health Med 2018; 18:294. [PMID: 30400924 PMCID: PMC6218972 DOI: 10.1186/s12906-018-2355-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Background This study aims to examine the effects of green tea extract (GTE) supplement on overweight and obese women with high levels of low density lipoprotein-cholesterol (LDL-C). Methods The randomized, double-blind, crossover and placebo-controlled clinical trial was conducted from August 2012 to December 2013. Seventy-three out of 90 subjects aged between 18 and 65 years, with body mass index (BMI) ≥ 27 kg/m2 and LDL-C ≥ 130 mg/dl were included in the analysis. The subjects were randomly divided into Groups A and B. Group A received GTE supplement treatment for the first 6 weeks, while Group B received placebo daily. After 6 weeks of treatment and 14 days of washout period, Group A switched to placebo and Group B switched to GTE treatment for 6 weeks. The reduction of LDL-C level between treatments was assessed as the outcome. Additionally, anthropometric measurements, plasma lipoproteins and hormone peptides of both groups were measure at the beginning of weeks 6, 8, and 14 after treatment. Results Subjects treated with GTE (n = 73) for 6 weeks showed significant differences, with 4.8% (p = 0.048) reduction in LDL-C and 25.7% (p = 0.046) increase in leptin. However, there was no statistical difference in the levels of total cholesterol, triglyceride and high density lipoprotein between the GTE and placebo groups after treatments. Conclusions This study shows that green tea extract effectively increases leptin and reduces LDL in overweight and obese women after 6 weeks of treatment even though there were no significant changes in other biochemical markers related to overweight. Trial registration This clinical trial is registered with ClinicalTrials.gov: NCT02116517 on 17 April 2014. Retrospectively registered. The first patient enrolled in October 2012 and the study was completed December 2013. Electronic supplementary material The online version of this article (10.1186/s12906-018-2355-x) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Sheng L, Jena PK, Liu HX, Hu Y, Nagar N, Bronner DN, Settles ML, Bäumler AJ, Wan YJY. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J 2018; 32:fj201800370R. [PMID: 29882708 PMCID: PMC6219838 DOI: 10.1096/fj.201800370r] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Dysregulated bile acid (BA) synthesis is accompanied by dysbiosis, leading to compromised metabolism. This study analyzes the effect of epigallocatechin-3-gallate (EGCG) on diet-induced obesity through regulation of BA signaling and gut microbiota. The data revealed that EGCG effectively reduced diet-increased obesity, visceral fat, and insulin resistance. Gene profiling data showed that EGCG had a significant impact on regulating genes implicated in fatty acid uptake, adipogenesis, and metabolism in the adipose tissue. In addition, metabolomics analysis revealed that EGCG altered the lipid and sugar metabolic pathways. In the intestine, EGCG reduced the FXR agonist chenodeoxycholic acid, as well as the FXR-regulated pathway, suggesting intestinal FXR deactivation. However, in the liver, EGCG increased the concentration of FXR and TGR-5 agonists and their regulated signaling. Furthermore, our data suggested that EGCG activated Takeda G protein receptor (TGR)-5 based on increased GLP-1 release and elevated serum PYY level. EGCG and antibiotics had distinct antibacterial effects. They also differentially altered body weight and BA composition. EGCG, but not antibiotics, increased Verrucomicrobiaceae, under which EGCG promoted intestinal bloom of Akkermansia muciniphila. Excitingly, A. muciniphila was as effective as EGCG in treating diet-induced obesity. Together, EGCG shifts gut microbiota and regulates BA signaling thereby having a metabolic beneficial effect.-Sheng, L., Jena, P. K., Liu, H.-X., Hu, Y., Nagar, N., Bronner, D. N., Settles, M. L., Bäumler, A. J. Wan, Y.-J. Y. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Hui-Xin Liu
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Ying Hu
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Nidhi Nagar
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Denise N. Bronner
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Matthew L. Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
12
|
Fernando WMADB, Somaratne G, Goozee KG, Williams S, Singh H, Martins RN. Diabetes and Alzheimer's Disease: Can Tea Phytochemicals Play a Role in Prevention? J Alzheimers Dis 2018; 59:481-501. [PMID: 28582855 DOI: 10.3233/jad-161200] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Dementia and diabetes mellitus are prevalent disorders in the elderly population. While recognized as two distinct diseases, diabetes has more recently recognized as a significant contributor to risk for developing dementia, and some studies make reference to type 3 diabetes, a condition resulting from insulin resistance in the brain. Alzheimer's disease, the most common form of dementia, and diabetes, interestingly, share underlying pathological processes, commonality in risk factors, and, importantly, pathways for intervention. Tea has been suggested to possess potent antioxidant properties. It is rich in phytochemicals including, flavonoids, tannins, caffeine, polyphenols, boheic acid, theophylline, theobromine, anthocyanins, gallic acid, and finally epigallocatechin-3-gallate, which is considered to be the most potent active ingredient. Flavonoid phytochemicals, known as catechins, within tea offer potential benefits for reducing the risk of diabetes and Alzheimer's disease by targeting common risk factors, including obesity, hyperlipidemia, hypertension, cardiovascular disease, and stroke. Studies also show that catechins may prevent the formation of amyloid-β plaques and enhance cognitive functions, and thus may be useful in treating patients who have Alzheimer's disease or dementia. Furthermore, other phytochemicals found within tea offer important antioxidant properties along with innate properties capable of modulating intracellular neuronal signal transduction pathways and mitochondrial function.
Collapse
Affiliation(s)
- Warnakulasuriya M A D B Fernando
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia
| | - Geeshani Somaratne
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Kathryn G Goozee
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| | - Shehan Williams
- Faculty of Medicine, University of Kelaniya, Colombo, Sri Lanka
| | - Harjinder Singh
- Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.,Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Ralph N Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, Joondalup, Australia.,School of Biomedical Science, Macquarie University, Sydney, NSW, Australia.,KARVIAH Research Centre, Anglicare, Castle Hill, NSW, Australia.,School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA, Australia.,Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,KaRa Institute of Neurological Diseases, Sydney, NSW, Australia
| |
Collapse
|
13
|
Cialdella-Kam L, Ghosh S, Meaney MP, Knab AM, Shanely RA, Nieman DC. Quercetin and Green Tea Extract Supplementation Downregulates Genes Related to Tissue Inflammatory Responses to a 12-Week High Fat-Diet in Mice. Nutrients 2017; 9:nu9070773. [PMID: 28753942 PMCID: PMC5537887 DOI: 10.3390/nu9070773] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/11/2022] Open
Abstract
Quercetin (Q) and green tea extract (E) are reported to counter insulin resistance and inflammation and favorably alter fat metabolism. We investigated whether a mixture of E + Q (EQ) could synergistically influence metabolic and inflammation endpoints in a high-fat diet (HFD) fed to mice. Male C57BL/6 mice (n = 40) were put on HFD (fat = 60%kcal) for 12 weeks and randomly assigned to Q (25 mg/kg of body weight (BW)/day), E (3 mg of epigallocatechin gallate/kg BW/day), EQ, or control groups for four weeks. At 16 weeks, insulin sensitivity was measured via the glucose tolerance test (GTT), followed by area-under-the-curve (AUC) estimations. Plasma cytokines and quercetin were also measured, along with whole genome transcriptome analysis and real-time polymerase chain reaction (qPCR) on adipose, liver, and skeletal muscle tissues. Univariate analyses were conducted via analysis of variance (ANOVA), and whole-genome expression profiles were examined via gene set enrichment. At 16 weeks, plasma quercetin levels were higher in Q and EQ groups vs. the control and E groups (p < 0.05). Plasma cytokines were similar among groups (p > 0.05). AUC estimations for GTT was 14% lower for Q vs. E (p = 0.0311), but non-significant from control (p = 0.0809). Genes for cholesterol metabolism and immune and inflammatory response were downregulated in Q and EQ groups vs. control in adipose tissue and soleus muscle tissue. These data support an anti-inflammatory role for Q and EQ, a result best captured when measured with tissue gene downregulation in comparison to changes in plasma cytokine levels.
Collapse
Affiliation(s)
- Lynn Cialdella-Kam
- Department of Nutrition, School of Medicine-WG 48, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.
| | - Sujoy Ghosh
- Program in Cardiovascular & Metabolic Diseases and Center for Computational Biology, Duke NUS Medical School, 8 College Road, Singapore 169857, Singapore.
| | - Mary Pat Meaney
- Department of Exercise Physiology, School of Health Sciences, Winston-Salem State University, 601 S. Martin Luther King Jr. Drive, Winston-Salem, NC 27110, USA.
| | - Amy M Knab
- Levine Center for Health and Wellness, Queens University of Charlotte, 1900 Selwyn Avenue, Charlotte, NC 28274, USA.
| | - R Andrew Shanely
- Department of Health & Exercise Science, Appalachian State University, ASU Box 32071, 111 Rivers Street, 050 Convocation Center, Boone, NC 28608, USA.
| | - David C Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalachian State University, 600 Laureate Way, Kannapolis, NC 28081, USA.
| |
Collapse
|
14
|
Leow SS, Bolsinger J, Pronczuk A, Hayes KC, Sambanthamurthi R. Hepatic transcriptome implications for palm fruit juice deterrence of type 2 diabetes mellitus in young male Nile rats. GENES AND NUTRITION 2016; 11:29. [PMID: 27795741 PMCID: PMC5075206 DOI: 10.1186/s12263-016-0545-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/14/2016] [Indexed: 12/18/2022]
Abstract
Background The Nile rat (NR, Arvicanthis niloticus) is a model of carbohydrate-induced type 2 diabetes mellitus (T2DM) and the metabolic syndrome. A previous study found that palm fruit juice (PFJ) delayed or prevented diabetes and in some cases even reversed its early stages in young NRs. However, the molecular mechanisms by which PFJ exerts these anti-diabetic effects are unknown. In this study, the transcriptomic effects of PFJ were studied in young male NRs, using microarray gene expression analysis. Methods Three-week-old weanling NRs were fed either a high-carbohydrate diet (%En from carbohydrate/fat/protein = 70:10:20, 16.7 kJ/g; n = 8) or the same high-carbohydrate diet supplemented with PFJ (415 ml of 13,000-ppm gallic acid equivalent (GAE) for a final concentration of 5.4 g GAE per kg diet or 2.7 g per 2000 kcal; n = 8). Livers were obtained from these NRs for microarray gene expression analysis using Illumina MouseRef-8 Version 2 Expression BeadChips. Microarray data were analysed along with the physiological parameters of diabetes. Results Compared to the control group, 71 genes were up-regulated while 108 were down-regulated in the group supplemented with PFJ. Among hepatic genes up-regulated were apolipoproteins related to high-density lipoproteins (HDL) and genes involved in hepatic detoxification, while those down-regulated were related to insulin signalling and fibrosis. Conclusion The results obtained suggest that the anti-diabetic effects of PFJ may be due to mechanisms other than an increase in insulin secretion.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| | - Julia Bolsinger
- Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | | | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000 Kajang, Selangor Malaysia
| |
Collapse
|
15
|
De B, Bhandari K, Singla RK, Katakam P, Samanta T, Kushwaha DK, Gundamaraju R, Mitra A. Chemometrics Optimized Extraction Procedures, Phytosynergistic Blending and in vitro Screening of Natural Enzyme Inhibitors Amongst Leaves of Tulsi, Banyan and Jamun. Pharmacogn Mag 2016; 11:S522-32. [PMID: 27013789 PMCID: PMC4787083 DOI: 10.4103/0973-1296.172956] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Background: Tulsi, Banyan, and Jamun are popular Indian medicinal plants with notable hypoglycemic potentials. Now the work reports chemo-profiling of the three species with in-vitro screening approach for natural enzyme inhibitors (NEIs) against enzymes pathogenic for type 2 diabetes. Further along with the chemometrics optimized extraction process technology, phyto-synergistic studies of the composite polyherbal blends have also been reported. Objective: Chemometrically optimized extraction procedures, ratios of polyherbal composites to achieve phyto-synergistic actions, and in-vitro screening of NEIs amongst leaves of Tulsi, Banyan, and Jamun. Materials and Methods: The extraction process parameters of the leaves of three plant species (Ficus benghalensis, Syzigium cumini and Ocimum sanctum) were optimized by rotatable central composite design of chemometrics so as to get maximal yield of bio-actives. Phyto-blends of three species were prepared so as to achieve synergistic antidiabetic and antioxidant potentials and the ratios were optimized by chemometrics. Next, for in vitro screening of natural enzyme inhibitors the individual leaf extracts as well as composite blends were subjected to assay procedures to see their inhibitory potentials against the enzymes pathogenic in type 2 diabetes. The antioxidant potentials were also estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Results: Considering response surface methodology studies and from the solutions obtained using desirability function, it was found that hydro-ethanolic or methanolic solvent ratio of 52.46 ± 1.6 and at a temperature of 20.17 ± 0.6 gave an optimum yield of polyphenols with minimal chlorophyll leaching. The species also showed the presence of glycosides, alkaloids, and saponins. Composites in the ratios of 1:1:1 and 1:1:2 gave synergistic effects in terms of polyphenol yield and anti-oxidant potentials. All composites (1:1:1, 1:2:1, 2:1:1, 1:1:2) showed synergistic anti-oxidant actions. Inhibitory activities against the targeted enzymes expressed in terms of IC50 values have shown that hydro-ethanolic extracts in all cases whether individual species or composites in varying ratios gave higher IC50 values thus showing greater effectivity. Conclusion: Current research provides the state-of-the-art of search of NEIs amongst three species by in-vitro assays which can be further utilized for bioactivity-guided isolations of such enzyme inhibitors. Further, it reports the optimized phyto-blend ratios so as to achieve synergistic anti-oxidative actions. SUMMARY The current research work focuses on the optimization of the extraction process parameters and the ratios of phyto-synergistic blends of the leaves of three common medicinal plants viz. banyan, jamun and tulsi by chemometrics. Qualitative and quantitative chemo profiling of the extracts were done by different phytochemical tests and UV spectrophotometric methods. Enzymes like alpha amylase, alpha glucosidase, aldose reductase, dipeptidyl peptidase 4, angiotensin converting enzymes are found to be pathogenic in type 2 diabetes. In vitro screening of natural enzyme inhibitors amongst individual extracts and composite blends were carried out by different assay procedures and the potency expressed in terms of IC50 values. Antioxidant potentials were estimated by DPPH radical scavenging, ABTS, FRAP and Dot Blot assay. Hydroalcoholic solvent (50:50) gave maximal yield of bio-actives with minimal chlorophyll leaching. Hydroethanolic extract of tulsi showed maximal antioxidant effect. Though all composites showed synergism, maximal effects were shown by the composite (1:1:2) in terms of polyphenol yield, antioxidant effect and inhibitory actions against the targeted enzymes.
Abbreviations used: DPP4- dipeptidyl peptidase 4; AR- aldose reductase; ACE- angiotensin converting enzyme; PPAR-γ- peroxisome proliferator activated receptor-γ; NEIs- natural enzyme inhibitors; BE- binding energy; GLP-1- Glucagon like peptide -1; ROS- Reactive oxygen species; CAT- catalase; GSH-Px- glutathione per-oxidase; SOD- superoxide dismutase; pNPG- para-nitro phenyl-α-D-gluco-pyranoside solution; DPPH- 1,1-diphenyl-2-picrylhydrazyl; RSM- Response surface methodology; CCD- central composite design; DMSO- dimethyl sulfoxide; HHL- hippuryl-L-histidyl-L-leucine; GPN-Tos- Gly-Pro p-nitroanilide toluenesulfonate salt; ESC- experimental scavenging capacity; TSC- theoretical scavenging capacity; FRAP- Ferric Reducing Assay Procedure; ABTS- 2, 2’- azinobis (3-ethylbenzothiazoline-6 – sulfonic acid.
Collapse
Affiliation(s)
- Baishakhi De
- School of Medical Science and Technology, IIT Kharagpur, India
| | | | - Rajeev K Singla
- Division of Biotechnology, Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi, India
| | | | - Tanmoy Samanta
- Tea Engineering Research Centre, Department of Agriculture and Food Engineering, IIT Kharagpur, India
| | - Dilip Kumar Kushwaha
- Tea Engineering Research Centre, Department of Agriculture and Food Engineering, IIT Kharagpur, India
| | - Rohit Gundamaraju
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Analava Mitra
- School of Medical Science and Technology, IIT Kharagpur, India
| |
Collapse
|
16
|
Pramono LA. Plants and herbs for therapy of diabetes. MEDICAL JOURNAL OF INDONESIA 2015. [DOI: 10.13181/mji.v24i2.1260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
[No abstract available]
Collapse
|
17
|
Chen IJ, Liu CY, Chiu JP, Hsu CH. Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clin Nutr 2015; 35:592-9. [PMID: 26093535 DOI: 10.1016/j.clnu.2015.05.003] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/22/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS To examine the effect and safety of high-dose green tea extract (Epigallocatechin gallate, EGCG) at a daily dosage of 856.8 mg on weight reduction and changes of lipid profile and obesity-related hormone peptides in women with central obesity. METHODS We conducted a randomized, double-blind trial registered under ClinicalTrials.gov Identifier no. NCT02147041. A total of 115 women with central obesity were screened at our clinic. 102 of them with a body mass index (BMI) ≥ 27 kg/m(2) and a waist circumference (WC) ≥ 80 cm were eligible for the study. These women were randomly assigned to either a high-dose green tea group or placebo group. The total treatment time was 12 weeks. The main outcome measures were anthropometric measurements, lipid profiles, and obesity related hormone peptides including leptin, adiponectin, ghrelin, and insulin. RESULTS Significant weight loss, from 76.8 ± 11.3 kg to 75.7 ± 11.5 kg (p = 0.025), as well as decreases in BMI (p = 0.018) and waist circumference (p = 0.023) were observed in the treatment group after 12 weeks of high-dose EGCG treatment. This study also demonstrated a consistent trend of decreased total cholesterol, reaching 5.33%, and decreased LDL plasma levels. There was good tolerance of the treatment among subjects without any side effects or adverse events. Significantly lower ghrelin levels and elevated adiponectin levels were detected in the study group than in the placebo group. CONCLUSION 12 weeks of treatment with high-dose green tea extract resulted in significant weight loss, reduced waist circumference, and a consistent decrease in total cholesterol and LDL plasma levels without any side effects or adverse effects in women with central obesity. The antiobestic mechanism of high-dose green tea extract might be associated in part with ghrelin secretion inhibition, leading to increased adiponectin levels.
Collapse
Affiliation(s)
- I-Ju Chen
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taiwan; Taiwan International Traditional Chinese Medicine Training Center, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Yu Liu
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taiwan; Taiwan International Traditional Chinese Medicine Training Center, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jung-Peng Chiu
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taiwan; Taiwan International Traditional Chinese Medicine Training Center, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chung-Hua Hsu
- Branch of Linsen and Chinese Medicine, Taipei City Hospital, Taiwan; Taiwan International Traditional Chinese Medicine Training Center, Taipei, Taiwan; Institute of Traditional Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
18
|
Systematic Analysis of the Multiple Bioactivities of Green Tea through a Network Pharmacology Approach. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:512081. [PMID: 25525446 PMCID: PMC4267163 DOI: 10.1155/2014/512081] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 11/05/2014] [Accepted: 11/13/2014] [Indexed: 12/27/2022]
Abstract
During the past decades, a number of studies have demonstrated multiple beneficial health effects of green tea. Polyphenolics are the most biologically active components of green tea. Many targets can be targeted or affected by polyphenolics. In this study, we excavated all of the targets of green tea polyphenolics (GTPs) though literature mining and target calculation and analyzed the multiple pharmacology actions of green tea comprehensively through a network pharmacology approach. In the end, a total of 200 Homo sapiens targets were identified for fifteen GTPs. These targets were classified into six groups according to their related disease, which included cancer, diabetes, neurodegenerative disease, cardiovascular disease, muscular disease, and inflammation. Moreover, these targets mapped into 143 KEGG pathways, 26 of which were more enriched, as determined though pathway enrichment analysis and target-pathway network analysis. Among the identified pathways, 20 pathways were selected for analyzing the mechanisms of green tea in these diseases. Overall, this study systematically illustrated the mechanisms of the pleiotropic activity of green tea by analyzing the corresponding “drug-target-pathway-disease” interaction network.
Collapse
|
19
|
Mirmiran P, Bahadoran Z, Azizi F. Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: A review. World J Diabetes 2014; 5:267-281. [PMID: 24936248 PMCID: PMC4058731 DOI: 10.4239/wjd.v5.i3.267] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 01/11/2014] [Accepted: 04/11/2014] [Indexed: 02/05/2023] Open
Abstract
Type 2 diabetes is a complicated metabolic disorder with both short- and long-term undesirable complications. In recent years, there has been growing evidence that functional foods and their bioactive compounds, due to their biological properties, may be used as complementary treatment for type 2 diabetes mellitus. In this review, we have highlighted various functional foods as missing part of medical nutrition therapy in diabetic patients. Several in vitro, animal models and some human studies, have demonstrated that functional foods and nutraceuticals may improve postprandial hyperglycemia and adipose tissue metabolism modulate carbohydrate and lipid metabolism. Functional foods may also improve dyslipidemia and insulin resistance, and attenuate oxidative stress and inflammatory processes and subsequently could prevent the development of long-term diabetes complications including cardiovascular disease, neuropathy, nephropathy and retinopathy. In conclusion available data indicate that a functional foods-based diet may be a novel and comprehensive dietary approach for management of type 2 diabetes.
Collapse
|
20
|
Dey B, Mitra A, Katakam P, Singla RK. Exploration of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays. World J Diabetes 2014. [PMID: 24748933 DOI: 10.4239/wjd.v5i2.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the presence and potency of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays. METHODS The leaf extracts of the three different Eucalyptus species [E. globulus (EG), E. citriodora (EC), E. camaldulensis (ECA)] were subjected to in vitro assay procedures to explore the prevalence of natural enzyme inhibitors (NEIs) after preliminary qualitative and quantitative phytochemical evaluations, to study their inhibitory actions against the enzymes like α-amylase, α-glucosidase, aldose reductase, angiotensin converting enzyme and dipeptidyl peptidase 4 playing pathogenic roles in type 2 diabetes. The antioxidant potential and total antioxidant capacity of the species were also evaluated. RESULTS Major bioactive compounds like polyphenols (341.75 ± 3.63 to 496.85 ± 3.98) and flavonoids (4.89 ± 0.01 to 7.15 ± 0.02) were found in appreciable quantity in three species. Based on the IC50 values of the extracts under investigation, in all assays the effectivity was in the order of EG > ECA > EC. The results of the ferric reducing antioxidant power assay showed that the reducing ability of the species was also in the order of EG > ECA > EC. A strong correlation (R(2) = 0.81-0.99) was found between the phenolic contents and the inhibitory potentials of the extracts against the targeted enzymes. CONCLUSION These results show immense hypoglycemic potentiality of the Eucalyptus Spp. and a remarkable source of NEIs for a future phytotherapeutic approach in Type 2 diabetes.
Collapse
Affiliation(s)
- Baishakhi Dey
- Baishakhi Dey, Analava Mitra, School of Medical Science and Technology, IIT Kharaghpur 721302, India
| | - Analava Mitra
- Baishakhi Dey, Analava Mitra, School of Medical Science and Technology, IIT Kharaghpur 721302, India
| | - Prakash Katakam
- Baishakhi Dey, Analava Mitra, School of Medical Science and Technology, IIT Kharaghpur 721302, India
| | - Rajeev K Singla
- Baishakhi Dey, Analava Mitra, School of Medical Science and Technology, IIT Kharaghpur 721302, India
| |
Collapse
|
21
|
Dey B, Mitra A, Katakam P, Singla RK. Exploration of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays. World J Diabetes 2014; 5:209-18. [PMID: 24748933 PMCID: PMC3990318 DOI: 10.4239/wjd.v5.i2.209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 12/27/2013] [Accepted: 01/17/2014] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the presence and potency of natural enzyme inhibitors with hypoglycemic potentials amongst Eucalyptus Spp. by in vitro assays. METHODS The leaf extracts of the three different Eucalyptus species [E. globulus (EG), E. citriodora (EC), E. camaldulensis (ECA)] were subjected to in vitro assay procedures to explore the prevalence of natural enzyme inhibitors (NEIs) after preliminary qualitative and quantitative phytochemical evaluations, to study their inhibitory actions against the enzymes like α-amylase, α-glucosidase, aldose reductase, angiotensin converting enzyme and dipeptidyl peptidase 4 playing pathogenic roles in type 2 diabetes. The antioxidant potential and total antioxidant capacity of the species were also evaluated. RESULTS Major bioactive compounds like polyphenols (341.75 ± 3.63 to 496.85 ± 3.98) and flavonoids (4.89 ± 0.01 to 7.15 ± 0.02) were found in appreciable quantity in three species. Based on the IC50 values of the extracts under investigation, in all assays the effectivity was in the order of EG > ECA > EC. The results of the ferric reducing antioxidant power assay showed that the reducing ability of the species was also in the order of EG > ECA > EC. A strong correlation (R(2) = 0.81-0.99) was found between the phenolic contents and the inhibitory potentials of the extracts against the targeted enzymes. CONCLUSION These results show immense hypoglycemic potentiality of the Eucalyptus Spp. and a remarkable source of NEIs for a future phytotherapeutic approach in Type 2 diabetes.
Collapse
|