1
|
Bourke SL, Suarez EG, Islam B, Stephenson J, Finn DP, McHugh PC. Clinical measures in chronic neuropathic pain are related to the Kennedy and endocannabinoid pathways. Eur J Clin Invest 2025; 55:e14351. [PMID: 39545479 PMCID: PMC11744925 DOI: 10.1111/eci.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Chronic neuropathic pain (CNP) is a debilitating condition, often refractory to currently available drugs. Understanding biochemical alterations in peripheral tissues such as blood will be useful for understanding underlying pathophysiological processes relating to CNP. METHODS We collected blood from two independent cohorts of CNP and pain-free controls (CNP n = 129/Controls n = 127) in the UK and Ireland to investigate the relationship between CNP-associated molecular/biochemical alterations and a range of clinical and pain metric parameters. Multiple statistical comparisons were conducted on the data, with selected variables included in one or more of the intended inferential analyses (six models). RESULTS Gene expression analysis showed that choline phosphotransferase (CHPT1) was increased (p < .001) in the CNP group compared to controls. The levels of phosphatidylcholine, a metabolite of CHPT1 in the Kennedy Pathway, were significantly (p = .008) decreased in the plasma of patients with CNP. Given the relationship between the Kennedy pathway and endocannabinoids, plasma endocannabinoids and related N-acylethanolamines were quantified in clinical samples by HPLC-Tandem Mass Spectrometry. Plasma levels of the endocannabinoid 2-arachidonoylglycerol were higher in CNP samples compared to controls, and in the statistical models applied, 2-arachidonoylglycerol significantly increased the odds of CNP (p < .001). The expression of genes related to the synthesis and catabolism of endocannabinoids also corroborated the increased plasma 2-arachidonoylglycerol levels in patients with CNP. CONCLUSIONS Endocannabinoid levels, expression of genes related to endocannabinoid metabolism, age, sex, depression and anxiety state together were strong predictors of CNP. The observed molecular changes indicate that lipid metabolism is altered in CNP and thus may represent a viable target for novel analgesics or biomarker development.
Collapse
Affiliation(s)
- Stephanie L. Bourke
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain ResearchUniversity of GalwayGalwayIreland
| | - Eva Gonzalez Suarez
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- Department of PharmacySchool of Applied SciencesHuddersfieldUK
| | - Barira Islam
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- Department of PharmacySchool of Applied SciencesHuddersfieldUK
| | - John Stephenson
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- School of Human and Health SciencesUniversity of HuddersfieldHuddersfieldUK
| | - David P. Finn
- Pharmacology & Therapeutics, School of Medicine, Galway Neuroscience Centre and Centre for Pain ResearchUniversity of GalwayGalwayIreland
| | - Patrick C. McHugh
- Centre for Biomarker ResearchSchool of Applied SciencesHuddersfieldUK
- Department of PharmacySchool of Applied SciencesHuddersfieldUK
| |
Collapse
|
2
|
Lambona C, Zwergel C, Valente S, Mai A. SIRT3 Activation a Promise in Drug Development? New Insights into SIRT3 Biology and Its Implications on the Drug Discovery Process. J Med Chem 2024; 67:1662-1689. [PMID: 38261767 PMCID: PMC10859967 DOI: 10.1021/acs.jmedchem.3c01979] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Sirtuins catalyze deacetylation of lysine residues with a NAD+-dependent mechanism. In mammals, the sirtuin family is composed of seven members, divided into four subclasses that differ in substrate specificity, subcellular localization, regulation, as well as interactions with other proteins, both within and outside the epigenetic field. Recently, much interest has been growing in SIRT3, which is mainly involved in regulating mitochondrial metabolism. Moreover, SIRT3 seems to be protective in diseases such as age-related, neurodegenerative, liver, kidney, heart, and metabolic ones, as well as in cancer. In most cases, activating SIRT3 could be a promising strategy to tackle these health problems. Here, we summarize the main biological functions, substrates, and interactors of SIRT3, as well as several molecules reported in the literature that are able to modulate SIRT3 activity. Among the activators, some derive from natural products, others from library screening, and others from the classical medicinal chemistry approach.
Collapse
Affiliation(s)
- Chiara Lambona
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Sergio Valente
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Pasteur
Institute, Cenci-Bolognetti Foundation, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
3
|
Chen Y, Hu Y, He X, Zang H, Sun R, Zhu C, Yao W. Activation of mitochondrial DNA-mediated cGAS-STING pathway contributes to chronic postsurgical pain by inducing type I interferons and A1 reactive astrocytes in the spinal cord. Int Immunopharmacol 2024; 127:111348. [PMID: 38086268 DOI: 10.1016/j.intimp.2023.111348] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/18/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
Chronic postsurgical pain (CPSP) is increasingly recognized as a public health issue. Recent studies indicated the innate immune pathway of cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) was involved in pain regulation. However, the detailed mechanisms remain unclear. Previous studies found A1 reactive astrocytes in the spinal cord contributed to CPSP. This study aimed to investigate the roles and mechanisms of the cGAS-STING pathway in regulating the generation of A1 reactive astrocytes during CPSP. First, CPSP model was established using skin/muscle incision and retraction (SMIR) in rats. We found that cGAS-STING pathway was activated accompanied with an increase in mitochondrial DNA in the cytosol in the spinal cord following SMIR. Second, a STING inhibitor C-176 was intrathecally administrated. We found that C-176 decreased the expression of type I interferons and A1 reactive astrocytes in the spinal cord, and alleviated mechanical allodynia in SMIR rats. Third, cyclosporin A as a mitochondrial permeability transition pore blocker was intrathecally administrated. We found that cyclosporin A decreased the leakage of mitochondrial DNA and inhibited the activation of cGAS-STING pathway. Compared with C-176, cyclosporin A exhibits similar analgesic effects. The expression of type I interferons and A1 reactive astrocytes in the spinal cord were also down-regulated after intervention with cyclosporin A. Moreover, simultaneous administration of cyclosporin A and C-176 did not show synergistic effects in SMIR rats. Therefore, our study demonstrated that the cGAS-STING pathway activated by the leakage of mitochondrial DNA contributed to chronic postsurgical pain by inducing type I interferons and A1 reactive astrocytes in the spinal cord.
Collapse
Affiliation(s)
- Yuye Chen
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingjie Hu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao He
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Zang
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rao Sun
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chang Zhu
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenlong Yao
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Wuhan Clinical Research Center for Geriatric Anesthesia, Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
4
|
Silva Santos Ribeiro P, Willemen HLDM, Eijkelkamp N. Mitochondria and sensory processing in inflammatory and neuropathic pain. FRONTIERS IN PAIN RESEARCH 2022; 3:1013577. [PMID: 36324872 PMCID: PMC9619239 DOI: 10.3389/fpain.2022.1013577] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/26/2022] [Indexed: 01/24/2023] Open
Abstract
Rheumatic diseases, such as osteoarthritis and rheumatoid arthritis, affect over 750 million people worldwide and contribute to approximately 40% of chronic pain cases. Inflammation and tissue damage contribute to pain in rheumatic diseases, but pain often persists even when inflammation/damage is resolved. Mechanisms that cause this persistent pain are still unclear. Mitochondria are essential for a myriad of cellular processes and regulate neuronal functions. Mitochondrial dysfunction has been implicated in multiple neurological disorders, but its role in sensory processing and pain in rheumatic diseases is relatively unexplored. This review provides a comprehensive understanding of how mitochondrial dysfunction connects inflammation and damage-associated pathways to neuronal sensitization and persistent pain. To provide an overall framework on how mitochondria control pain, we explored recent evidence in inflammatory and neuropathic pain conditions. Mitochondria have intrinsic quality control mechanisms to prevent functional deficits and cellular damage. We will discuss the link between neuronal activity, mitochondrial dysfunction and chronic pain. Lastly, pharmacological strategies aimed at reestablishing mitochondrial functions or boosting mitochondrial dynamics as therapeutic interventions for chronic pain are discussed. The evidence presented in this review shows that mitochondria dysfunction may play a role in rheumatic pain. The dysfunction is not restricted to neuronal cells in the peripheral and central nervous system, but also includes blood cells and cells at the joint level that may affect pain pathways indirectly. Pre-clinical and clinical data suggest that modulation of mitochondrial functions can be used to attenuate or eliminate pain, which could be beneficial for multiple rheumatic diseases.
Collapse
Affiliation(s)
| | | | - Niels Eijkelkamp
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
5
|
SIRT3-Mediated CypD-K166 Deacetylation Alleviates Neuropathic Pain by Improving Mitochondrial Dysfunction and Inhibiting Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4722647. [PMID: 36092157 PMCID: PMC9458368 DOI: 10.1155/2022/4722647] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/21/2022] [Accepted: 08/17/2022] [Indexed: 12/29/2022]
Abstract
Numerous studies have shown that mitochondrial dysfunction manifested by increased mitochondrial permeability transition pore (mPTP) opening and reactive oxygen species (ROS) level, and decreased mitochondrial membrane potential (MMP) plays an important role in the development of neuropathic pain. Sirtuin3 (SIRT3), a nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylase, has been shown to inhibit mitochondrial oxidative stress. However, the role of SIRT3 in neuropathic pain is unclear. In this study, we found that the protein and mRNA levels of SIRT3 were significantly downregulated in the spinal cords of spared nerve injury- (SNI-) induced neuropathic pain mice, while overexpression of spinal SIRT3 reversed SNI-induced pain hypersensitivity. Further study showed that SIRT3 overexpression reduced the acetylation level of lysine 166 (K166) on cyclophilin D (CypD), the regulatory component of the mPTP, inhibited the mPTP opening, decreased ROS and malondialdehyde (MDA) levels, and increased MMP and manganese superoxide dismutase (MnSOD) in SNI mice. Point mutation of K166 to arginine on CypD (CypD-K166R) abrogated SNI-induced mitochondrial dysfunction and neuropathic pain in mice. Moreover, inhibiting mPTP opening by cyclosporin A (CsA) improved mitochondrial function and neuropathic pain in SNI mice. Together, these data show that SIRT3 is necessary to prevent neuropathic pain by deacetylating CypD-K166 and further improving mitochondrial dysfunction. This study may shed light on a potential drug target for the treatment of neuropathic pain.
Collapse
|
6
|
Zhao T, Alder NN, Starkweather AR, Chen MH, Matson AP, Xu W, Balsbaugh JL, Cong X. Associations of Mitochondrial Function, Stress, and Neurodevelopmental Outcomes in Early Life: A Systematic Review. Dev Neurosci 2022; 44:438-454. [PMID: 35995037 PMCID: PMC9928905 DOI: 10.1159/000526491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 07/18/2022] [Indexed: 11/19/2022] Open
Abstract
Early life stress is commonly experienced by infants, especially preterm infants, and may impact their neurodevelopmental outcomes in their early and later lives. Mitochondrial function/dysfunction may play an important role underlying the linkage of prenatal and postnatal stress and neurodevelopmental outcomes in infants. This review aimed to provide insights on the relationship between early life stress and neurodevelopment and the mechanisms of mitochondrial function/dysfunction that contribute to the neuropathology of stress. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement was used to develop this systematic review. PubMed, Scopus, PsycINFO, and Biosis databases were searched for primary research articles published between 2010 and 2021 that examined the relationships among mitochondrial function/dysfunction, infant stress, and neurodevelopment. Thirty studies were identified. There is evidence to support that mitochondrial function/dysfunction mediates the relationship between prenatal and postnatal stress and neurodevelopmental outcomes in infants. Maternal transgenerational transmission of mitochondrial bioenergetic patterns influenced prenatal stress induced neurodevelopmental outcomes and behavioral changes in infants. Multiple functionally relevant mitochondrial proteins, genes, and polymorphisms were associated with stress exposure. This is the first review of the role that mitochondrial function/dysfunction plays in the association between stress and neurodevelopmental outcomes in full-term and preterm infants. Although multiple limitations were found based on the lack of data on the influence of biological sex, and due to invasive sampling, and lack of longitudinal data, many genes and proteins associated with mitochondrial function/dysfunction were found to influence neurodevelopmental outcomes in the early life of infants.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA,
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut, USA
| | | | - Ming-Hui Chen
- Department of Statistics, University of Connecticut, Storrs, Connecticut, USA
| | - Adam P Matson
- Division of Neonatology, Connecticut Children's Medical Center, Hartford, Connecticut, USA
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Wanli Xu
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, University of Connecticut, Storrs, Connecticut, USA
| | - Xiaomei Cong
- School of Nursing, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
7
|
Yousuf MS, Maguire AD, Simmen T, Kerr BJ. Endoplasmic reticulum-mitochondria interplay in chronic pain: The calcium connection. Mol Pain 2020; 16:1744806920946889. [PMID: 32787562 PMCID: PMC7427143 DOI: 10.1177/1744806920946889] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 06/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chronic pain is a debilitating condition that affects roughly a third to a half of the world's population. Despite its substantial effect on society, treatment for chronic pain is modest, at best, notwithstanding its side effects. Hence, novel therapeutics are direly needed. Emerging evidence suggests that calcium plays an integral role in mediating neuronal plasticity that underlies sensitization observed in chronic pain states. The endoplasmic reticulum and the mitochondria are the largest calcium repositories in a cell. Here, we review how stressors, like accumulation of misfolded proteins and oxidative stress, influence endoplasmic reticulum and mitochondria function and contribute to chronic pain. We further examine the shuttling of calcium across the mitochondrial-associated membrane as a mechanism of cross-talk between the endoplasmic reticulum and the mitochondria. In addition, we discuss how endoplasmic reticulum stress, mitochondrial impairment, and calcium dyshomeostasis are implicated in various models of neuropathic pain. We propose a novel framework of endoplasmic reticulum-mitochondria signaling in mediating pain hypersensitivity. These observations require further investigation in order to develop novel therapies for chronic pain.
Collapse
Affiliation(s)
- Muhammad Saad Yousuf
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Aislinn D Maguire
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Thomas Simmen
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Bradley J Kerr
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Pharmacology, University of Alberta, Edmonton, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, Canada
| |
Collapse
|
8
|
Fu H, Li F, Thomas S, Yang Z. Hyperbaric oxygenation alleviates chronic constriction injury (CCI)-induced neuropathic pain and inhibits GABAergic neuron apoptosis in the spinal cord. Scand J Pain 2017; 17:330-338. [PMID: 28927648 DOI: 10.1016/j.sjpain.2017.08.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 08/28/2017] [Indexed: 01/23/2023]
Abstract
BACKGROUND AND AIMS Dysfunction of GABAergic inhibitory controls contributes to the development of neuropathic pain. We examined our hypotheses that (1) chronic constriction injury (CCI)-induced neuropathic pain is associated with increased spinal GABAergic neuron apoptosis, and (2) hyperbaric oxygen therapy (HBO) alleviates CCI-induced neuropathic pain by inhibiting GABAergic neuron apoptosis. METHODS Male rats were randomized into 3 groups: CCI, CCI+HBO and the control group (SHAM). Mechanical allodynia was tested daily following CCI procedure. HBO rats were treated at 2.4 atmospheres absolute (ATA) for 60min once per day. The rats were euthanized and the spinal cord harvested on day 8 and 14 post-CCI. Detection of GABAergic cells and apoptosis was performed. The percentages of double positive stained cells (NeuN/GABA), cleaved caspase-3 or Cytochrome C in total GABAergic cells or in total NeuN positive cells were calculated. RESULTS HBO significantly alleviated mechanical allodynia. CCI-induced neuropathic pain was associated with significantly increased spinal apoptotic GABA-positive neurons. HBO considerably decreased these spinal apoptotic cells. Cytochrome-C-positive neurons and cleaved caspase-3-positive neurons were also significantly higher in CCI rats. HBO significantly decreased these positive cells. Caspase-3 mRNA was also significantly higher in CCI rats. HBO reduced mRNA expression of caspase-3. CONCLUSIONS CCI-induced neuropathic pain was associated with increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord. HBO alleviated CCI-induced neuropathic pain and reduced GABAergic neuron apoptosis. The beneficial effect of HBO may be via its inhibitory role in CCI-induced GABAergic neuron apoptosis by suppressing mitochondrial apoptotic pathways in the spinal cord. IMPLICATIONS Increased apoptotic GABAergic neurons induced by activation of key proteins of mitochondrial apoptotic pathways in the dorsal horn of the spinal cord is critical in CCI-induced neuropathic pain. The inhibitory role of HBO in GABAergic neuron apoptosis suppresses ongoing neuropathic pain.
Collapse
Affiliation(s)
- Huiqun Fu
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Fenghua Li
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Sebastian Thomas
- Pain Treatment Center, Upstate Medical University, Syracuse, NY 13210, USA
| | - Zhongjin Yang
- Department of Anesthesiology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
9
|
Flatters SJ. The Contribution of Mitochondria to Sensory Processing and Pain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:119-46. [DOI: 10.1016/bs.pmbts.2014.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Sui BD, Xu TQ, Liu JW, Wei W, Zheng CX, Guo BL, Wang YY, Yang YL. Understanding the role of mitochondria in the pathogenesis of chronic pain. Postgrad Med J 2013; 89:709-14. [DOI: 10.1136/postgradmedj-2012-131068] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|