1
|
Giancáspero-Inostroza F, Burgos-Jara C, Sepúlveda C, Haichelis D, Meneses-Valdés R, Orizola-Cáceres I, Cerda-Kohler H. Cycling Isokinetic Peak Force Explains Maximal Aerobic Power and Physiological Thresholds but Not Cycling Economy in Trained Triathletes. J Funct Morphol Kinesiol 2024; 9:273. [PMID: 39728257 DOI: 10.3390/jfmk9040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Background: Assessments of muscle strength help prescribe and monitor training loads in cyclists (e.g., triathletes). Some methods include repetition maximum, joint isokinetic tests, and indirect estimates. However, their specificity for cycling's dynamic force application and competitive cadences is lacking. This study aims to determine the influence of the cycling isokinetic peak force (cIPF) at different cadences on aerobic performance-related variables in trained triathletes. Methods: Eleven trained male athletes (33 ± 9.8 years, 173.1 ± 5.0 cm height, 73.9 ± 6.8 kg body mass, and ≥5 years of triathlon experience) were recruited. Maximal oxygen consumption (VO2 max), ventilatory thresholds (i.e., VT1 and VT2), and cIPF were assessed. cIPF testing involved 10 s sprints at varied cadences with 4 min rest intervals. Pedaling cadences were set at low (60 rpm), moderate (80 and 100 rpm), and high (120 and 140 rpm) cadences. A regression model approach identified cIPF related to aerobic performance. Results: IPF at 80 and 120 rpm explained 49% of the variability in power output at VT1, 55% of the variability in power output at VT2, 65% of the variability in power output at maximal aerobic power (MAP), and 39% of the variability in VO2 max. The cycling economy was not explained by cIPF. Conclusions: This study highlights the significance of cIPF, particularly at moderate to high cadences, as a determinant of aerobic-related variables in trained triathletes. Cycling cIPF should be tested to understand an athlete's profile during crank cycling, informing better practice for training specificity and ultimately supporting athletes in achieving optimal performance outcomes in competitive cycling events.
Collapse
Affiliation(s)
- Felipe Giancáspero-Inostroza
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Magister en Ciencias de la Salud y el Deporte, Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Santiago 7501015, Chile
| | - Carlos Burgos-Jara
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Carlos Sepúlveda
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Danni Haichelis
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Unidad de Ciencias Aplicadas al Deporte, Instituto Nacional de Deportes, Santiago 7750332, Chile
| | - Roberto Meneses-Valdés
- The August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, University of Copenhagen, Universitetsparken 13, 2100 Copenhagen, Denmark
| | - Ignacio Orizola-Cáceres
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
| | - Hugo Cerda-Kohler
- Unidad de Fisiología del Ejercicio, Centro de Innovación, Clínica MEDS, Santiago 7550615, Chile
- Departamento de Educación Física, Deporte y Recreación, Facultad de Artes y Educación Física, Universidad Metropolitana de Ciencias de la Educación, Santiago 7750332, Chile
- Laboratory of Psychophysiology and Performance in Sports and Combats, Postgraduate Program in Physical Education, School of Physical Education and Sport, Federal University of Rio de Janeiro, Rio de Janeiro 21941-853, Brazil
| |
Collapse
|
2
|
Nasr A, McPhee J. Scalable musculoskeletal model for dynamic simulations of lower body movement. Comput Methods Biomech Biomed Engin 2024:1-27. [PMID: 38396368 DOI: 10.1080/10255842.2024.2316240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
A musculoskeletal (MSK) model is an important tool for analysing human motions, calculating joint torques during movement, enhancing sports activity, and developing exoskeletons and prostheses. To enable biomechanical investigation of human motion, this work presents an open-source lower body MSK model. The MSK model of the lower body consists of 7 body segments (pelvis, left/right thigh, left/right leg, and left/right foot). The model has 20 degrees of freedom (DoFs) and 28 muscle torque generators (MTGs), which are developed from experimental data. The model can be modified for different anthropometric measurements and subject body characteristics, including sex, age, body mass, height, physical activity, and skin temperature. The model is validated by simulating the torque within the range of motion (ROM) of isolated movements; all simulation findings exhibit a good level of agreement with the literature.
Collapse
Affiliation(s)
- Ali Nasr
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| | - John McPhee
- Department of Systems Design Engineering, University of Waterloo, Waterloo, Canada
| |
Collapse
|
3
|
Dello Iacono A, Padulo J, Bešlija T, Halperin I. Barbell Hip-Thrust Exercise: Test-Retest Reliability and Correlation With Isokinetic Performance. J Strength Cond Res 2021; 35:659-667. [PMID: 30095734 DOI: 10.1519/jsc.0000000000002779] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ABSTRACT Dello Iacono, A, Padulo, J, Bešlija, T, and Halperin, I. Barbell hip-thrust exercise: Test-retest reliability and correlation with isokinetic performance. J Strength Cond Res 35(3): 659-667, 2021-The barbell hip-thrust (BHT) exercise is growing in popularity as evident by the large increase in research outputs investigating its utility as a training intervention and a testing tool. The aim of this study was to examine the test-retest reliability of the BHT and its correlation with isokinetic performance. Test-retest reliability was established by correlating the peak force and power outcomes measured with the BHT force-velocity profile test of 20 handball athletes on 2 separate days. The peak force and power measured with the BHT force-velocity profile test of 49 handball athletes were correlated with peak concentric force of the knee flexors and hip extensors measured with an isokinetic device at 2 different velocities (60-180°·s-1). The correlation between the isokinetic testing scores and the BHT force-velocity profile tests were moderate to large (Pearson r ranges: 0.45-0.86, all p values <0.001). Test-retest reliability of the BHT force-velocity profile was very high as shown with intraclass correlations of 0.94 and 0.99 for peak force and 0.97 and 0.99 for peak power measures. The BHT force-velocity profile can serve as a tentative substitute in cases that athletes do not have access to an isokinetic device, given the moderate to large correlations between them. Moreover, the BHT force-velocity profile was shown to be very reliable, thus providing coaches and scientists a range of day-to-day performance variability in this exercise.
Collapse
Affiliation(s)
- Antonio Dello Iacono
- Life Science Department, The Academic College at Wingate, Wingate Institute, Netanya, Israel.,Sport Science Department, Maccabi Tel Aviv FC, Tel Aviv, Israel
| | - Johnny Padulo
- University Ecampus, Novedrate, Italy.,Faculty of Kinesiology, University of Split, Split, Croatia; and
| | - Tea Bešlija
- Faculty of Kinesiology, University of Split, Split, Croatia; and
| | - Israel Halperin
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, New South Wales, Canada
| |
Collapse
|
4
|
Dauty M, Menu P, Mesland O, Fouasson-Chailloux A. Muscle strength particularity of Grand Tour cyclists from knee isokinetic assessment. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|