1
|
Jain V, Champawat V, Rajpoot M, Sarkar A, Verma R, Parmar V, Saha A. Functional and Radiological Outcomes of Short-Segment Fixation With Intermediate Screws for Thoracolumbar Spine Fractures. Cureus 2024; 16:e75653. [PMID: 39803062 PMCID: PMC11725301 DOI: 10.7759/cureus.75653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Introduction Thoracolumbar fractures, particularly burst fractures, represent a significant health concern due to their prevalence and functional impact. This study evaluates the efficacy of short-segment posterior fixation with intermediate screw instrumentation in treating unstable thoracolumbar fractures. Methods A prospective study was conducted from July 2022 to December 2023, including 26 patients with traumatic thoracolumbar fractures. Surgical intervention was indicated for patients with a thoracolumbar injury classification and severity (TLICS) score >4. Functional outcomes were assessed using the visual analog scale (VAS), Oswestry Disability Index (ODI), and the American Spinal Injury Association (ASIA) grading system. Radiological outcomes, including the local kyphotic angle (LKA) and anterior vertebral body height ratio (AVBHR), were evaluated preoperatively, postoperatively, and at follow-ups. Results Significant improvements in functional and radiological parameters were observed over 24 weeks. The mean VAS score reduced from 7.50 ± 0.58 preoperatively to 1.42 ± 0.50 (p < 0.001), and the mean ODI improved from 42.23 ± 3.54 to 16.12 ± 3.09 (p < 0.001). Neurological improvements were seen in ASIA grades B-D, with no new deficits. Radiologically, the mean LKA improved from 19.73 ± 1.59° preoperatively to 8.46 ± 1.33° at 24 weeks (p < 0.001), and the AVBHR increased from 34.08 ± 2.25% to 86.64 ± 0.83% (p < 0.001). No implant failures were reported. Conclusion Short-segment fixation with intermediate screws provides effective stabilization and significant functional and radiological improvements in thoracolumbar fractures. It minimizes intraoperative morbidity and preserves motion segments, making it a viable alternative to long-segment fixation, particularly for non-complex fractures. Further randomized controlled trials are recommended to validate these findings.
Collapse
Affiliation(s)
- Vaibhav Jain
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| | - Vishal Champawat
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| | - Manish Rajpoot
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| | - Abhishek Sarkar
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| | - Rahul Verma
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| | - Vijendra Parmar
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| | - Anagh Saha
- Department of Orthopaedics, Gandhi Medical College, Bhopal, Bhopal, IND
| |
Collapse
|
2
|
Laycock C, Kieser D, Fitz-Gerald C, Soltani S, Frampton C. A systematic review of large animal and human studies of stem cell therapeutics for acute adult traumatic spinal cord injury. JOURNAL OF ORTHOPAEDICS, TRAUMA AND REHABILITATION 2022. [DOI: 10.1177/22104917221087401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Traumatic spinal cord injury (TSCI) is a devastating condition and the search for a cure remains one of the most tenacious healthcare challenges to date. Current therapies are limited in their efficacy to restore full neurological function – resulting in lifelong disability and loss of autonomy. Whilst there remains a necessity to refine therapeutic protocols, stem cell (SC) studies have shown promise in the mending and re-establishment of the spinal cord neuroanatomy. Objectives: We conducted a systematic review of functional outcomes in stem cell therapeutics over the last three decades in large animals and humans. Methods: Medline, Embase, Cochrane and SCOPUS databases were searched for potentially pertinent articles from 1990 to 2020. Studies published in English were included if the stem cells were directly injected into the intraspinal, epidural or intrathecal compartments within two weeks of a traumatic mechanism of injury, including acute intervertebral disc prolapse. The participants were either large animals – defined as canine, porcine or non-human primate in-vivo models – or human patients. Results: Nine studies were included in this review. Statistically significant improvements in motor function and deep pain perception were seen at 8 weeks to 6 months post-SC injection compared to controls. Limitations: Functional outcomes are variably measured across studies. Almost all studies used experimentally induced trauma, which may not accurately represent the complexity of human spinal cord injury. Due to the exclusion criteria, there were no non-human primate studies included, yet these animal models are considered a closer anatomical match to humans than other large mammals. No human studies were included. Conclusions and Implications: Autologous and allogeneic stem cells have been trialled for the reconstitution of damaged and lost cells, remyelination of axons and remodelling of the pathophysiological microenvironment within the injured spinal cord, with some promising outcome data. This may translate to more successful future Phase I/II human clinical trials into the use of stem cells after TSCI in adults.
Collapse
Affiliation(s)
- Charlotte Laycock
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - David Kieser
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Connor Fitz-Gerald
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| | - Sherry Soltani
- University of Oxford Medical School, John Radcliffe Hospital, Oxford, UK
| | - Chris Frampton
- Department of Orthopaedics and Musculoskeletal Medicine, University of Otago, Christchurch School of Medicine, Christchurch, New Zealand
| |
Collapse
|
3
|
Shang Z, Wang R, Li D, Chen J, Zhang B, Wang M, Wang X, Wanyan P. Spinal Cord Injury: A Systematic Review and Network Meta-Analysis of Therapeutic Strategies Based on 15 Types of Stem Cells in Animal Models. Front Pharmacol 2022; 13:819861. [PMID: 35359872 PMCID: PMC8964098 DOI: 10.3389/fphar.2022.819861] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/04/2022] [Indexed: 12/13/2022] Open
Abstract
Objective: The optimal therapeutic strategies of stem cells for spinal cord injury (SCI) are fully explored in animal studies to promote the translation of preclinical findings to clinical practice, also to provide guidance for future animal experiments and clinical studies. Methods: PubMed, Web of Science, Embase, CNKI, Wangfang, VIP, and CBM were searched from inception to September 2021. Screening of search results, data extraction, and references quality evaluation were undertaken independently by two reviewers. Results and Discussion: A total of 188 studies were included for data analysis. Results of traditional meta-analysis showed that all 15 diverse types of stem cells could significantly improve locomotor function of animals with SCI, and results of further network meta-analysis showed that adipose-derived mesenchymal stem cells had the greatest therapeutic potential for SCI. Moreover, a higher dose (≥1 × 106) of stem cell transplantation had better therapeutic effect, transplantation in the subacute phase (3–14 days, excluding 3 days) was the optimal timing, and intralesional transplantation was the optimal route. However, the evidence of current animal studies is of limited quality, and more high-quality research is needed to further explore the optimal therapeutic strategies of stem cells, while the design and implementation of experiments, as well as measurement and reporting of results for animal studies, need to be further improved and standardized to reduce the risk when the results of animal studies are translated to the clinic. Systematic Review Registration: [website], identifier [registration number].
Collapse
Affiliation(s)
- Zhizhong Shang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Ruirui Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Dongliang Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Jinlei Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Baolin Zhang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Mingchuan Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
| | - Xin Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, China
- Chengren Institute of Traditional Chinese Medicine, Lanzhou, China
- Department of Spine, Changzheng Hospital, Naval Medical University, Shanghai, China
- *Correspondence: Xin Wang, ; Pingping Wanyan,
| | - Pingping Wanyan
- Gansu University of Chinese Medicine, Lanzhou, China
- The Second Hospital of Lanzhou University, Lanzhou, China
- *Correspondence: Xin Wang, ; Pingping Wanyan,
| |
Collapse
|
4
|
Laffey MK, Kubelick KP, Donnelly EM, Emelianov SY. Effects of Freezing on Mesenchymal Stem Cells Labeled with Gold Nanoparticles. Tissue Eng Part C Methods 2019; 26:1-10. [PMID: 31724492 DOI: 10.1089/ten.tec.2019.0198] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cell therapies are a promising treatment for many patients suffering from diseases with poor prognosis. However, clinical translation is inhibited by a lack of in vivo monitoring techniques to track stem cells throughout the course of treatment. Ultrasound-guided photoacoustic (PA) imaging of nanoparticle-labeled stem cells may be a solution. To allow PA tracking, stem cells must be labeled with an optically absorbing contrast agent. Gold nanoparticles are one option due to their cytocompatibility and strong optical absorption in the near-infrared region. However, stem cell labeling can require up to 24-h incubation with nanoparticles in culture before use. Although stem cell monitoring is critically needed, the additional preparation time may not be feasible-it is cost prohibitive and stem cell treatments should be readily available in emergency situations as well as scheduled procedures. To remedy this, stem cells can be labeled before freezing and long-term storage. While it is well known that stem cells retain their cellular function after freezing, storage, and thawing, the impact of gold nanoparticles on this process has yet to be investigated. Therefore, we assessed the viability, multipotency, and PA activity of gold nanosphere-labeled mesenchymal stem cells (MSCs) after freezing, storing, and thawing for 1 week, 1 month, or 2 months and compared to unlabeled, naive MSCs which were frozen, stored, and thawed at the same time points. Results indicated no substantial change in viability as assessed by the MTT assay. Differentiation, observed through adipogenesis and osteogenesis, was also comparable to controls. Finally, strong PA signals and similar PA spectral signatures remained. Further studies involving more diverse stem cell types and nanoparticles are required, but our data suggest that function and imaging properties of nanoparticle-labeled stem cells are maintained after freezing and storage, which improve translation of stem cell monitoring techniques by simplifying integration with clinical protocols. Impact statement Although stem cell tracking techniques are critically needed, stem cells must be labeled with contrast agents in advance of procedures, which is not clinically feasible due to increased procedure time. As a solution, a stock of labeled stem cells could be frozen and stored, ready for immediate use. Results showed that gold nanosphere-labeled stem cells can be frozen and stored long-term without impacting cellular function or photoacoustic imaging contrast, supporting further investigation of other contrast agents and cell types. Creating a bank of nanoparticle-labeled stem cells advances translation and scalability of stem cell tracking methods by improving integration with clinical protocols.
Collapse
Affiliation(s)
- Makenna K Laffey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Kelsey P Kubelick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Eleanor M Donnelly
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia
| | - Stanislav Y Emelianov
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, Georgia.,School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
5
|
Vawda R, Badner A, Hong J, Mikhail M, Lakhani A, Dragas R, Xhima K, Barretto T, Librach CL, Fehlings MG. Early Intravenous Infusion of Mesenchymal Stromal Cells Exerts a Tissue Source Age-Dependent Beneficial Effect on Neurovascular Integrity and Neurobehavioral Recovery After Traumatic Cervical Spinal Cord Injury. Stem Cells Transl Med 2019; 8:639-649. [PMID: 30912623 PMCID: PMC6591557 DOI: 10.1002/sctm.18-0192] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Localized vascular disruption after traumatic spinal cord injury (SCI) triggers a cascade of secondary events, including inflammation, gliosis, and scarring, that can further impact recovery. In addition to immunomodulatory and neurotrophic properties, mesenchymal stromal cells (MSCs) possess pericytic characteristics. These features make MSCs an ideal candidate for acute cell therapy targeting vascular disruption, which could reduce the severity of secondary injury, enhance tissue preservation and repair, and ultimately promote functional recovery. A moderately severe cervical clip compression/contusion injury was induced at C7‐T1 in adult female rats, followed by an intravenous tail vein infusion 1 hour post‐SCI of (a) term‐birth human umbilical cord perivascular cells (HUCPVCs); (b) first‐trimester human umbilical cord perivascular cells (FTM HUCPVCs); (c) adult bone marrow mesenchymal stem cells; or (d) vehicle control. Weekly behavioral testing was performed. Rats were sacrificed at 24 hours or 10 weeks post‐SCI and immunohistochemistry and ultrasound imaging were performed. Both term and FTM HUCPVC‐infused rats displayed improved (p < .05) grip strength compared with vehicle controls. However, only FTM HUCPVC‐infusion led to significant weight gain. All cell infusion treatments resulted in reduced glial scarring (p < .05). Cell infusion also led to increased axonal, myelin, and vascular densities (p < .05). Although post‐traumatic cavity volume was reduced with cell infusion, this did not reach significance. Taken together, we demonstrate selective long‐term functional recovery alongside histological improvements with HUCPVC infusion in a clinically relevant model of cervical SCI. Our findings highlight the potential of these cells for acute therapeutic intervention after SCI.
Collapse
Affiliation(s)
- Reaz Vawda
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Anna Badner
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James Hong
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mirriam Mikhail
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alam Lakhani
- CReATe Fertility Centre, Toronto, Ontario, Canada
| | - Rachel Dragas
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Kristiana Xhima
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Neurosurgery and Spinal Program, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Rezk S, Althani A, Abd-elmaksoud A, Kassab M, Farag A, Lashen S, Cenciarelli C, Caceci T, Marei H. Effects of estrogen on Survival and Neuronal Differentiation of adult human olfactory bulb neural stem Cells Transplanted into Spinal Cord Injured Rats.. [DOI: 10.1101/571950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractIn the present study we developed an excitotoxic spinal cord injury (SCI) model using kainic acid (KA) to evaluate of the therapeutic potential of human olfactory bulb neural stem cells (h-OBNSCs) for spinal cord injury (SCI). In a previous study, we assessed the therapeutic potential of these cells for SCI; all transplanted animals showed successful engraftment. These cells differentiated predominantly as astrocytes, not motor neurons, so no improvement in motor functions was detected. In the current study we used estrogen as neuroprotective therapy before transplantation of OBNSCs to preserve some of endogenous neurons and enhance the differentiation of these cells towards neurons. The present work demonstrated that the h-GFP-OBNSCs were able to survive for more than eight weeks after sub-acute transplantation into injured spinal cord. Stereological quantification of OBNSCs showed approximately a 2.38-fold increase in the initial cell population transplanted. 40.91% of OBNSCs showed differentiation along the neuronal lineages, which was the predominant fate of these cells. 36.36% of the cells differentiated into mature astrocytes; meanwhile 22.73% of the cells differentiated into oligodendrocytes. Improvement in motor functions was also detected after cell transplantation.
Collapse
|
7
|
Zhou Y, Wang Z, Li J, Li X, Xiao J. Fibroblast growth factors in the management of spinal cord injury. J Cell Mol Med 2017; 22:25-37. [PMID: 29063730 PMCID: PMC5742738 DOI: 10.1111/jcmm.13353] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 07/12/2017] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) possesses a significant health and economic burden worldwide. Traumatic SCI is a devastating condition that evolves through two successive stages. Throughout each of these stages, disturbances in ionic homeostasis, local oedema, ischaemia, focal haemorrhage, free radicals stress and inflammatory response were observed. Although there are no fully restorative cures available for SCI patients, various molecular, cellular and rehabilitative therapies, such as limiting local inflammation, preventing secondary cell death and enhancing the plasticity of local circuits in the spinal cord, were described. Current preclinical studies have showed that fibroblast growth factors (FGFs) alone or combination therapies utilizing cell transplantation and biomaterial scaffolds are proven effective for treating SCI in animal models. More importantly, some studies further demonstrated a paucity of clinical transfer usage to promote functional recovery of numerous patients with SCI. In this review, we focus on the therapeutic capacity and pitfalls of the FGF family and its clinical application for treating SCI, including the signalling component of the FGF pathway and the role in the central nervous system, the pathophysiology of SCI and the targets for FGF treatment. We also discuss the challenges and potential for the clinical translation of FGF-based approaches into treatments for SCI.
Collapse
Affiliation(s)
- Yulong Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiawei Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaokun Li
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian Xiao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
8
|
Khazaei M, Ahuja CS, Fehlings MG. Induced Pluripotent Stem Cells for Traumatic Spinal Cord Injury. Front Cell Dev Biol 2017; 4:152. [PMID: 28154814 PMCID: PMC5243807 DOI: 10.3389/fcell.2016.00152] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/23/2016] [Indexed: 01/13/2023] Open
Abstract
Spinal cord injury (SCI) is a common cause of mortality and neurological morbidity. Although progress had been made in the last decades in medical, surgical, and rehabilitation treatments for SCI, the outcomes of these approaches are not yet ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is very promising. Cell therapies for the treatment of SCI are limited by several translational road blocks, including ethical concerns in relation to cell sources. The use of iPSCs is particularly attractive, given that they provide an autologous cell source and avoid the ethical and moral considerations of other stem cell sources. In addition, different cell types, that are applicable to SCI, can be created from iPSCs. Common cell sources used for reprogramming are skin fibroblasts, keratinocytes, melanocytes, CD34+ cells, cord blood cells and adipose stem cells. Different cell types have different genetic and epigenetic considerations that affect their reprogramming efficiencies. Furthermore, in SCI the iPSCs can be differentiated to neural precursor cells, neural crest cells, neurons, oligodendrocytes, astrocytes, and even mesenchymal stromal cells. These can produce functional recovery by replacing lost cells and/or modulating the lesion microenvironment.
Collapse
Affiliation(s)
- Mohamad Khazaei
- Division of Genetics and Development, Krembil Research Institute Toronto, ON, Canada
| | - Christopher S Ahuja
- Division of Genetics and Development, Krembil Research InstituteToronto, ON, Canada; Institute of Medical Science, University of TorontoToronto, ON, Canada; Division of Neurosurgery, University of TorontoToronto, ON, Canada
| | - Michael G Fehlings
- Division of Genetics and Development, Krembil Research InstituteToronto, ON, Canada; Institute of Medical Science, University of TorontoToronto, ON, Canada; Division of Neurosurgery, University of TorontoToronto, ON, Canada; Spinal Program, Toronto Western Hospital, University Health NetworkToronto, ON, Canada; Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
9
|
Hua Z, Liu L, Shen J, Cheng K, Liu A, Yang J, Wang L, Qu T, Yang H, Li Y, Wu H, Narouze J, Yin Y, Cheng J. Mesenchymal Stem Cells Reversed Morphine Tolerance and Opioid-induced Hyperalgesia. Sci Rep 2016; 6:32096. [PMID: 27554341 PMCID: PMC4995471 DOI: 10.1038/srep32096] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/02/2016] [Indexed: 01/27/2023] Open
Abstract
More than 240 million opioid prescriptions are dispensed annually to treat pain in the US. The use of opioids is commonly associated with opioid tolerance (OT) and opioid-induced hyperalgesia (OIH), which limit efficacy and compromise safety. The dearth of effective way to prevent or treat OT and OIH is a major medical challenge. We hypothesized that mesenchymal stem cells (MSCs) attenuate OT and OIH in rats and mice based on the understanding that MSCs possess remarkable anti-inflammatory properties and that both OT and chronic pain are associated with neuroinflammation in the spinal cord. We found that the development of OT and OIH was effectively prevented by either intravenous or intrathecal MSC transplantation (MSC-TP), which was performed before morphine treatment. Remarkably, established OT and OIH were significantly reversed by either intravenous or intrathecal MSCs when cells were transplanted after repeated morphine injections. The animals did not show any abnormality in vital organs or functions. Immunohistochemistry revealed that the treatments significantly reduced activation level of microglia and astrocytes in the spinal cord. We have thus demonstrated that MSC-TP promises to be a potentially safe and effective way to prevent and reverse two of the major problems of opioid therapy.
Collapse
Affiliation(s)
- Zhen Hua
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
- Department of Anesthesiology, Beijing Hospital, No. 1 Dahua Road, Beijing 100730, China
| | - LiPing Liu
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jun Shen
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Katherine Cheng
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Aijun Liu
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jing Yang
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Lina Wang
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Tingyu Qu
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - HongNa Yang
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yan Li
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Haiyan Wu
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - John Narouze
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Yan Yin
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Jianguo Cheng
- Departments of Pain Management and Neurosciences, Lerner Research Institute and Anaesthesiology Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| |
Collapse
|
10
|
Using Stem Cells to Grow Artificial Tissue for Peripheral Nerve Repair. Stem Cells Int 2016; 2016:7502178. [PMID: 27212954 PMCID: PMC4861803 DOI: 10.1155/2016/7502178] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 02/17/2016] [Accepted: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury continues to pose a clinical hurdle despite its frequency and advances in treatment. Unlike the central nervous system, neurons of the peripheral nervous system have a greater ability to regenerate. However, due to a number of confounding factors, this is often both incomplete and inadequate. The lack of supportive Schwann cells or their inability to maintain a regenerative phenotype is a major factor. Advances in nervous system tissue engineering technology have led to efforts to build Schwann cell scaffolds to overcome this and enhance the regenerative capacity of neurons following injury. Stem cells that can differentiate along a neural lineage represent an essential resource and starting material for this process. In this review, we discuss the different stem cell types that are showing promise for nervous system tissue engineering in the context of peripheral nerve injury. We also discuss some of the biological, practical, ethical, and commercial considerations in using these different stem cells for future clinical application.
Collapse
|
11
|
Mortazavi MM, Jaber M, Adeeb N, Deep A, Hose N, Rezaei M, Fard SA, Kateb B, Yashar P, Liker MA, Tubbs RS. Engraftment of neural stem cells in the treatment of spinal cord injury. TRANSLATIONAL RESEARCH IN ANATOMY 2015. [DOI: 10.1016/j.tria.2015.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Siddiqui AM, Khazaei M, Fehlings MG. Translating mechanisms of neuroprotection, regeneration, and repair to treatment of spinal cord injury. PROGRESS IN BRAIN RESEARCH 2015; 218:15-54. [PMID: 25890131 DOI: 10.1016/bs.pbr.2014.12.007] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the big challenges in neuroscience that remains to be understood is why the central nervous system is not able to regenerate to the extent that the peripheral nervous system does. This is especially problematic after traumatic injuries, like spinal cord injury (SCI), since the lack of regeneration leads to lifelong deficits and paralysis. Treatment of SCI has improved during the last several decades due to standardized protocols for emergency medical response teams and improved medical, surgical, and rehabilitative treatments. However, SCI continues to result in profound impairments for the individual. There are many processes that lead to the pathophysiology of SCI, such as ischemia, vascular disruption, neuroinflammation, oxidative stress, excitotoxicity, demyelination, and cell death. Current treatments include surgical decompression, hemodynamic control, and methylprednisolone. However, these early treatments are associated with modest functional recovery. Some treatments currently being investigated for use in SCI target neuroprotective (riluzole, minocycline, G-CSF, FGF-2, and polyethylene glycol) or neuroregenerative (chondroitinase ABC, self-assembling peptides, and rho inhibition) strategies, while many cell therapies (embryonic stem cells, neural stem cells, induced pluripotent stem cells, mesenchymal stromal cells, Schwann cells, olfactory ensheathing cells, and macrophages) have also shown promise. However, since SCI has multiple factors that determine the progress of the injury, a combinatorial therapeutic approach will most likely be required for the most effective treatment of SCI.
Collapse
Affiliation(s)
- Ahad M Siddiqui
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mohamad Khazaei
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael G Fehlings
- Department of Genetics and Development, Toronto Western Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
The Potential for iPS-Derived Stem Cells as a Therapeutic Strategy for Spinal Cord Injury: Opportunities and Challenges. J Clin Med 2014; 4:37-65. [PMID: 26237017 PMCID: PMC4470238 DOI: 10.3390/jcm4010037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/28/2014] [Indexed: 02/07/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating trauma causing long-lasting disability. Although advances have occurred in the last decade in the medical, surgical and rehabilitative treatments of SCI, the therapeutic approaches are still not ideal. The use of cell transplantation as a therapeutic strategy for the treatment of SCI is promising, particularly since it can target cell replacement, neuroprotection and regeneration. Cell therapies for treating SCI are limited due to several translational roadblocks, including ethical and practical concerns regarding cell sources. The use of iPSCs has been particularly attractive, since they avoid the ethical and moral concerns that surround other stem cells. Furthermore, various cell types with potential for application in the treatment of SCI can be created from autologous sources using iPSCs. For applications in SCI, the iPSCs can be differentiated into neural precursor cells, neurons, oligodendrocytes, astrocytes, neural crest cells and mesenchymal stromal cells that can act by replacing lost cells or providing environmental support. Some methods, such as direct reprogramming, are being investigated to reduce tumorigenicity and improve reprogramming efficiencies, which have been some of the issues surrounding the use of iPSCs clinically to date. Recently, iPSCs have entered clinical trials for use in age-related macular degeneration, further supporting their promise for translation in other conditions, including SCI.
Collapse
|