1
|
The manifestation of myositis in tick-borne encephalitis as a prophet of severe disease course: a rare case report. Clin Rheumatol 2022; 41:1241-1245. [PMID: 35024987 DOI: 10.1007/s10067-022-06058-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis (TBE) is one of the most serious neurological tick-transmitted diseases. The initial phase usually occurs with non-specific symptoms such as fever, headache, and muscular pain. The clinical spectrum of the second phase of the disease typically ranges from mild meningitis to severe meningoencephalitis. Our case demonstrates a rare clinical case of acute myositis as manifestation of TBE virus infection. A 33-year-old female was admitted to the Rheumatology centre with a fever followed by proximal muscle pain and weakness. Despite the tick bite history and marginally positive anti-TBE virus IgM titre, the patient did not present any neurological symptoms. Laboratory test results showed elevated creatine kinase (CK) and myoglobin. Other infections, idiopathic inflammatory myopathies, were excluded. TBE virus infection was confirmed by rapid seroconversion of specific IgG class antibodies in serum. The second phase of the disease was followed by neurological symptoms and a repeated increase of CK and myoglobin. We suggest that in the case of acute myositis of unknown cause and the history of thick bite, TBE virus infection should be considered and creatine kinase might be considered as a laboratory marker of disease activity that correlates with the severity of the disease.
Collapse
|
2
|
Kurdi M, Alshareef A, Bamaga AK, Fadel ZT, Alrawaili MS, Hakamy S, Mohamed F, Abuzinadah AR, Addas BMJ, Butt NS. The Assessment of Major Histocompatibility Complex (MHC) Class-I Expression in Different Neuromuscular Diseases. Degener Neurol Neuromuscul Dis 2022; 11:61-68. [PMID: 35002356 PMCID: PMC8727622 DOI: 10.2147/dnnd.s340117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/14/2021] [Indexed: 11/25/2022] Open
Abstract
Background Major histocompatibility complex (MHC) class-1 antigen is a glycoprotein expressed in all nucleated cells. The aim of this study was to assess MHC class-I expression in different neuromuscular diseases. Methods The authors reviewed the data of 54 patients with neuromuscular diseases. Anti MHC class-I antibody was performed on the frozen muscle tissues using immunohistochemistry. MHC class-I was scored based on its expression on muscle fibers (0: normal, 1: expression <5 fibers, 2: expression in 5–10 fibers, 3: expression in >10 fibers). The pattern was only assessed in cases with MHC class-I scored 3 as: (1: Sarcocapillary, 2: Sarcocapillary and necrotic fibers, 3: Perifascicular). The relationship between MHC class-I expression and neuromuscular diseases was statistically analyzed. Results The mean age of the patients was 39.1 ± 18.5 years. Around 50% of patients showed normal CK levels and 5% of the cases showed elevated CK levels. There was a significance difference in MHC class-I expression between cases with normal and elevated CK levels when MHC class-I score was 3 (p= 0.020). There was a significant difference in MHC class-I expression among different neuromuscular diseases (p<0.001). All cases with idiopathic inflammatory myopathies (IIMs) have expressed MHC class-I in more than 10 fibers. MHC class-I was expressed in 15 cases of non-IIMs. Conclusion MHC class-I cannot be solely used as a biomarker to distinguish IIMs from non-IIMs. The presence of MHC class-I molecules in non-IIMs might be related to immunoproteasomes mechanism. Further studies, with different muscle proteins expression and genomic sequencing, must be conducted to understand the role of MHC Class-I in neuromuscular diseases.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.,Neuromuscular Unit, Roya Medical Specialized Laboratories, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Aysha Alshareef
- Department of Internal Medicine, King Abdulaziz University Hospital and Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed K Bamaga
- Neurology Division, Department of Pediatrics, Faculty of Medicine, King Abdulaziz University and Hospital, Jeddah, Saudi Arabia
| | - Zahir T Fadel
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Moafaq S Alrawaili
- Department of Internal Medicine, King Abdulaziz University Hospital and Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sahar Hakamy
- Neuromuscular Unit, Roya Medical Specialized Laboratories, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fawaz Mohamed
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia.,Neuromuscular Unit, Roya Medical Specialized Laboratories, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmad R Abuzinadah
- Department of Internal Medicine, King Abdulaziz University Hospital and Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bassam M J Addas
- Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nadeem Shafique Butt
- Department of Family Medicine and Community, Faculty of Medicine, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
3
|
Merlonghi G, Antonini G, Garibaldi M. Immune-mediated necrotizing myopathy (IMNM): A myopathological challenge. Autoimmun Rev 2021; 21:102993. [PMID: 34798316 DOI: 10.1016/j.autrev.2021.102993] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/14/2021] [Indexed: 02/07/2023]
Abstract
This review is focused on the myopathological spectrum of immune mediated necrotizing myopathies (IMNMs) and its differentiation with other, potentially mimicking, inflammatory and non-inflammatory myopathies. IMNMs are a subgroup of idiopathic inflammatory myopathies (IIMs) characterized by severe clinical presentation with rapidly progressive muscular weakness and creatine kinase elevation, often requiring early aggressive immunotherapy, associated to the presence of muscle specific autoantibodies (MSA) against signal recognition particle (SRP) or 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR). Muscle biopsy usually shows unspecific features consisting in prominent necrosis and regeneration of muscle fibres with mild or absent inflammatory infiltrates, inconstant and faint expression of major histocompatibility complex (MHC) class I and variable deposition of C5b-9 on sarcolemma. Several conditions could present similar histopathological findings leading to possible misdiagnosis of IMNM with other IIMs or non-inflammatory myopathies (nIMs) and viceversa. This review analyses the muscle biopsy data in IMNMs through a systematic revision of the literature from the last five decades. Several histopathological variables have been considered in both SRP- and HMGCR-IMNM, and compared to other IIMs - as dermatomyositis (DM) and anti-synthethase syndrome (ASS) - or other nIMs -as toxic myopathies (TM), critical illness myopathy (CIM) and muscular dystrophy (MD) - to elucidate similarities and differences among these potentially mimicking conditions. The major histopathological findings of IMNMs were: very frequent necrosis and regeneration of muscle fibres (93%), mild inflammatory component mainly constituted by scattered isolated (65%) CD68-prevalent (68%) cells, without CD8 invading/surrounding non-necrotic fibres, variable expression of MHC-I in non-necrotic fibres (56%) and constant expression of sarcoplasmic p62, confirming those that are widely considered the major histological characteristics of IMNMs. Conversely, only 42% of biopsies showed a sarcolemmal deposition of C5b-9 component. Few differences between SRP and HMGCR IMNMs consisted in more severe necrosis and regeneration in SRP than in HMGCR (p = 0.01); more frequent inflammatory infiltrates (p = 0.007) with perivascular localization (p = 0.01) and clustered expression of MHC-I (p = 0.007) in HMGCR; very low expression of sarcolemmal C5b-9 in SRP (18%) compared to HMGCR (56%) (p = 0.0001). Milder necrosis and regeneration, detection of perifascicular pathology, presence of lymphocytic inflammatory infiltrates and myofibre expression of MxA help to distinguish DM or ASS from IMNM. nIMs can present signs of inflammation at muscle biopsy. Low fibre size variability with overexpression of both MHC-I and II, associated with C5b-9 deposition, could could be observed in CIM, while increased connective tissue should lead to consider MD, or TM in absence of C5b-9 deposition. Nevertheless, these features are not constantly detected and muscle biopsy could not be diriment. For this reason, muscle biopsy should always be critically considered in light of the clinical context before concluding for a definite diagnosis of IMNM, only based on histopathological findings. More rigorous collection and analysis of muscle biopsy is warranted to obtain a higher quality and more homogeneous histopathological data in inflammatory myopathies.
Collapse
Affiliation(s)
- Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), SAPIENZA University of Rome, Sant'Andrea Hospital, Rome, Italy.
| |
Collapse
|
4
|
de Souza FHC, de Araújo DB, Vilela VS, Simões RS, Bernardo WM, Frank TA, da Cunha BM, Shinjo SK. The Brazilian Society of Rheumatology recommendations on investigation and diagnosis of systemic autoimmune myopathies. Adv Rheumatol 2019; 59:42. [PMID: 31601261 DOI: 10.1186/s42358-019-0085-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 09/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This research is recommended by the Myopathy Committee of the Brazilian Society of Rheumatology for the investigation and diagnosis of systemic autoimmune myopathies. BODY: A systematic literature review was performed in the Embase, Medline (PubMed) and Cochrane databases, including studies published until October 2018. PRISMA was used for the review, and the articles were evaluated, based on the Oxford levels of evidence. Ten recommendations were developed addressing different aspects of systemic autoimmune myopathy investigation and diagnosis. CONCLUSIONS The European League Against Rheumatism/ American College of Rheumatology (EULAR/ACR) classification stands out for the diagnosis of systemic autoimmune myopathies. Muscular biopsy is essential, aided by muscular magnetic resonance images and electroneuromyography in complementary research. Analysis of the factors related to prognosis with the evaluation of extramuscular manifestations, and comorbidities and intense investigation regarding differential diagnoses are mandatory.
Collapse
Affiliation(s)
| | | | | | - Ricardo Santos Simões
- Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, SP, Brazil
| | | | - Thais Amanda Frank
- Programa Diretrizes da Associação Médica Brasileira (AMB), Brasília, Brazil
| | | | - Samuel Katsuyuki Shinjo
- Disciplina de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo, 455, 3° andar, sala 3150, Sao Paulo, Cerqueira César, CEP: 01246-903, Brazil.
| |
Collapse
|
5
|
Abstract
The immune response to acute muscle damage is important for normal repair. However, in chronic diseases such as many muscular dystrophies, the immune response can amplify pathology and play a major role in determining disease severity. Muscular dystrophies are inheritable diseases that vary tremendously in severity, but share the progressive loss of muscle mass and function that can be debilitating and lethal. Mutations in diverse genes cause muscular dystrophy, including genes that encode proteins that maintain membrane strength, participate in membrane repair, or are components of the extracellular matrix or the nuclear envelope. In this article, we explore the hypothesis that an important feature of many muscular dystrophies is an immune response adapted to acute, infrequent muscle damage that is misapplied in the context of chronic injury. We discuss the involvement of the immune system in the most common muscular dystrophy, Duchenne muscular dystrophy, and show that the immune system influences muscle death and fibrosis as disease progresses. We then present information on immune cell function in other muscular dystrophies and show that for many muscular dystrophies, release of cytosolic proteins into the extracellular space may provide an initial signal, leading to an immune response that is typically dominated by macrophages, neutrophils, helper T-lymphocytes, and cytotoxic T-lymphocytes. Although those features are similar in many muscular dystrophies, each muscular dystrophy shows distinguishing features in the magnitude and type of inflammatory response. These differences indicate that there are disease-specific immunomodulatory molecules that determine response to muscle cell damage caused by diverse genetic mutations. © 2018 American Physiological Society. Compr Physiol 8:1313-1356, 2018.
Collapse
Affiliation(s)
- James G. Tidball
- Molecular, Cellular & Integrative Physiology Program, University of California, Los Angeles, California, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA
| | - Steven S. Welc
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Michelle Wehling-Henricks
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| |
Collapse
|
6
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle. J Proteomics 2018; 191:212-227. [PMID: 29408692 DOI: 10.1016/j.jprot.2018.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
The highly progressive neuromuscular disorder dystrophinopathy is triggered by primary abnormalities in the Dmd gene, which causes cytoskeletal instability and loss of sarcolemmal integrity. Comparative organellar proteomics was employed to identify sarcolemma-associated proteins with an altered concentration in dystrophic muscle tissue from the mdx-4cv mouse model of dystrophinopathy. A lectin agglutination method was used to prepare a sarcolemma-enriched fraction and resulted in the identification of 190 significantly changed protein species. Proteomics established differential expression patterns for key components of the muscle plasma membrane, cytoskeletal network, extracellular matrix, metabolic pathways, cellular stress response, protein synthesis, immune response and neuromuscular junction. The deficiency in dystrophin and drastic reduction in dystrophin-associated proteins appears to trigger (i) enhanced membrane repair involving myoferlin, dysferlin and annexins, (ii) increased protein synthesis and the compensatory up-regulation of cytoskeletal proteins, (iii) the decrease in the scaffolding protein periaxin and myelin PO involved in myelination of motor neurons, (iv) complex changes in bioenergetic pathways, (v) elevated levels of molecular chaperones to prevent proteotoxic effects, (vi) increased collagen deposition causing reactive myofibrosis, (vii) disturbed ion homeostasis at the sarcolemma and associated membrane systems, and (viii) a robust inflammatory response by the innate immune system in response to chronic muscle damage. SIGNIFICANCE: Duchenne muscular dystrophy is a devastating muscle wasting disease and represents the most frequently inherited neuromuscular disorder in humans. Genetic abnormalities in the Dmd gene cause a loss of sarcolemmal integrity and highly progressive muscle fibre degeneration. Changes in the neuromuscular system are associated with necrosis, fibrosis and inflammation. In order to evaluate secondary changes in the sarcolemma membrane system due to the lack of the membrane cytoskeletal protein dystrophin, comparative organellar proteomics was used to study the mdx-4cv mouse model of dystrophinopathy. Mass spectrometric analyses identified a variety of altered components of the extracellular matrix-sarcolemma-cytoskeleton axis in dystrophic muscles. This included proteins involved in membrane repair, cytoskeletal restoration, calcium homeostasis, cellular signalling, stress response, neuromuscular transmission and reactive myofibrosis, as well as immune cell infiltration. These pathobiochemical alterations agree with the idea of highly complex secondary changes in X-linked muscular dystrophy and support the concept that micro-rupturing of the dystrophin-deficient plasma membrane is at the core of muscle wasting pathology.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
7
|
Rae MG, O'Malley D. Cognitive dysfunction in Duchenne muscular dystrophy: a possible role for neuromodulatory immune molecules. J Neurophysiol 2016; 116:1304-1315. [PMID: 27385793 PMCID: PMC5023417 DOI: 10.1152/jn.00248.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/29/2016] [Indexed: 11/22/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X chromosome-linked disease characterized by progressive physical disability, immobility, and premature death in affected boys. Underlying the devastating symptoms of DMD is the loss of dystrophin, a structural protein that connects the extracellular matrix to the cell cytoskeleton and provides protection against contraction-induced damage in muscle cells, leading to chronic peripheral inflammation. However, dystrophin is also expressed in neurons within specific brain regions, including the hippocampus, a structure associated with learning and memory formation. Linked to this, a subset of boys with DMD exhibit nonprogressing cognitive dysfunction, with deficits in verbal, short-term, and working memory. Furthermore, in the genetically comparable dystrophin-deficient mdx mouse model of DMD, some, but not all, types of learning and memory are deficient, and specific deficits in synaptogenesis and channel clustering at synapses has been noted. Little consideration has been devoted to the cognitive deficits associated with DMD compared with the research conducted into the peripheral effects of dystrophin deficiency. Therefore, this review focuses on what is known about the role of full-length dystrophin (Dp427) in hippocampal neurons. The importance of dystrophin in learning and memory is assessed, and the potential importance that inflammatory mediators, which are chronically elevated in dystrophinopathies, may have on hippocampal function is also evaluated.
Collapse
Affiliation(s)
- Mark G Rae
- Department of Physiology, University College Cork, Cork, Ireland; and
| | - Dervla O'Malley
- Department of Physiology, University College Cork, Cork, Ireland; and APC Microbiome Institute, University College Cork, Cork, Ireland
| |
Collapse
|
8
|
Chung T, Christopher-Stine L, Paik JJ, Corse A, Mammen AL. The composition of cellular infiltrates in anti-HMG-CoA reductase-associated myopathy. Muscle Nerve 2015; 52:189-95. [PMID: 25737145 DOI: 10.1002/mus.24642] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/23/2015] [Accepted: 02/28/2015] [Indexed: 11/05/2022]
Abstract
INTRODUCTION To characterize cellular infiltrates in muscle biopsies from patients with anti-3-hydroxy-3-methyl-gulatryl-CoA reductase (HMGCR)-associated myopathy. METHODS Biopsies from 18 anti-HMGCR myopathy and 7 control dermatomyositis patients were analyzed. RESULTS CD4+ and CD8+ T-cells were scattered within the endomysium in 50% of anti-HMGCR biopsies. All anti-HMGCR biopsies included increased endomysial and/or perivascular CD163+ M2 macrophages; CD11c+ M1 macrophages were present in 18.8%. CD123+ plasmacytoid dendritic (PD) cells were observed within the endomysium and perivascular spaces in 62.5% of anti-HMGCR biopsies. Membrane attack complex was deposited on endothelial cells in 50% and on the sarcolemma of nonnecrotic muscle fibers in 85.7% of anti-HMGCR cases. Major histocompatibility complex class I antigen was up-regulated in 87.5% of the anti-HMGCR cases. CONCLUSIONS In addition to necrosis, scattered CD4+, CD8+, and PD cells are characteristic of anti-HMGCR myopathy. Predominant M2 polarization suggests infiltrating macrophages are more likely to be involved with tissue repair than destruction.
Collapse
Affiliation(s)
- Tae Chung
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lisa Christopher-Stine
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julie J Paik
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea Corse
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew L Mammen
- Muscle Disease Unit, Laboratory of Muscle Stem Cells and Gene Expression, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Drive, Room 1146, Building 50, MSC 8024, Bethesda, Maryland, 20892, USA
| |
Collapse
|