1
|
Saiyisan A, Zeng S, Zhang H, Wang Z, Wang J, Cai P, Huang J. Chemical exchange saturation transfer MRI for neurodegenerative diseases: An update on clinical and preclinical studies. Neural Regen Res 2026; 21:553-568. [PMID: 39885672 DOI: 10.4103/nrr.nrr-d-24-01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025] Open
Abstract
Chemical exchange saturation transfer magnetic resonance imaging is an advanced imaging technique that enables the detection of compounds at low concentrations with high sensitivity and spatial resolution and has been extensively studied for diagnosing malignancy and stroke. In recent years, the emerging exploration of chemical exchange saturation transfer magnetic resonance imaging for detecting pathological changes in neurodegenerative diseases has opened up new possibilities for early detection and repetitive scans without ionizing radiation. This review serves as an overview of chemical exchange saturation transfer magnetic resonance imaging with detailed information on contrast mechanisms and processing methods and summarizes recent developments in both clinical and preclinical studies of chemical exchange saturation transfer magnetic resonance imaging for Alzheimer's disease, Parkinson's disease, multiple sclerosis, and Huntington's disease. A comprehensive literature search was conducted using databases such as PubMed and Google Scholar, focusing on peer-reviewed articles from the past 15 years relevant to clinical and preclinical applications. The findings suggest that chemical exchange saturation transfer magnetic resonance imaging has the potential to detect molecular changes and altered metabolism, which may aid in early diagnosis and assessment of the severity of neurodegenerative diseases. Although promising results have been observed in selected clinical and preclinical trials, further validations are needed to evaluate their clinical value. When combined with other imaging modalities and advanced analytical methods, chemical exchange saturation transfer magnetic resonance imaging shows potential as an in vivo biomarker, enhancing the understanding of neuropathological mechanisms in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ahelijiang Saiyisan
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shihao Zeng
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Huabin Zhang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Ziyan Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jiawen Wang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Pei Cai
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jianpan Huang
- Department of Diagnostic Radiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
- Tam Wing Fan Neuroimaging Research Laboratory, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
2
|
da Costa FP, Casseb RF, de Lima DP, Ponsoni A, Guimarães RP, Mourão LF. Isometric tongue endurance and incomplete laryngeal vestibule closure in Parkinson's disease. J Oral Rehabil 2023; 50:1401-1408. [PMID: 37605286 DOI: 10.1111/joor.13568] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/20/2023] [Accepted: 08/07/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Dysphagia is a common symptom of Parkinson's disease (PD). A delay in laryngeal vestibule closure (LVC) and a reduction in tongue pressure, may affect swallowing safety and increase the risk of pulmonary aspiration. OBJECTIVE To verify the relationship between tongue pressure and airway protection in PD patients: (1) comparing tongue pressure measures and physiological events in the pharyngeal phase of swallowing between PD and controls and (2) analysing the association between tongue pressure and LVC in the PD group. METHODS Twenty-three patients with idiopathic PD (64.9 years) and 24 healthy controls (64.1 years) participated in this study. All participants underwent the following procedures to verify tongue pressure measurements using the Iowa Oral Performance Instrument: maximum anterior and posterior pressure, isotonic and isometric tongue endurance and anterior and posterior tongue pressure during saliva swallowing. To verify swallowing safety, videofluoroscopic swallowing studies focusing on the pharyngeal phase were performed based on the MBSImP protocol. RESULTS Compared to healthy controls, PD exhibited a statistically significant decline in tongue pressure tasks: posterior maximum pressure, isotonic endurance, anterior and posterior isometric endurance and tongue pressure during posterior swallowing. Patients with PD had worse pharyngeal scores, including LVC scores, than controls. PD and incomplete LVC had lower anterior isometric endurance scores when compared to those with complete LVC. CONCLUSION PD with incomplete LVC scored lower in the anterior isometric endurance task. We observed a potential clinical use of this task for the assessment and management of dysphagia in patients with PD.
Collapse
Affiliation(s)
| | - Raphael Fernandes Casseb
- Department of Neurology, Neuroimaging Laboratory, University of Campinas (Unicamp), Campinas, Brazil
| | - Daniella Priscila de Lima
- Health, Interdisciplinarity and Rehabilitation Department, University of Campinas (Unicamp), Campinas, Brazil
| | - Adriana Ponsoni
- Gerontology Department, University of Campinas (Unicamp), Campinas, Brazil
| | - Rachel Paes Guimarães
- Department of Neurology, Neuroimaging Laboratory, University of Campinas (Unicamp), Campinas, Brazil
| | - Lucia Figueiredo Mourão
- Interdisciplinarity and Rehabilitation Departments, Center for Studies and Research in Rehabilitation, CEPRE, Gerontology and Health, University of Campinas (Unicamp), Campinas, Brazil
| |
Collapse
|
3
|
Xu J. Dopamine D3 Receptor in Parkinson Disease: A Prognosis Biomarker and an Intervention Target. Curr Top Behav Neurosci 2023; 60:89-107. [PMID: 35711029 PMCID: PMC10034716 DOI: 10.1007/7854_2022_373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parkinson disease (PD) dementia, pathologically featured as nigrostriatal dopamine (DA) neuronal loss with motor and non-motor manifestations, leads to substantial disability and economic burden. DA therapy targets the DA D3 receptor (D3R) with high affinity and selectivity. The pathological involvement of D3R is evidenced as an effective biomarker for disease progression and DA agnostic interventions, with compensations of increased DA, decreased aggregates of α-synuclein (α-Syn), enhanced secretion of brain-derived neurotrophic factors (BDNF), attenuation of neuroinflammation and oxidative damage, and promoting neurogenesis in the brain. D3R also interacts with D1R to reduce PD-associated motor symptoms and alleviate the side effects of levodopa (L-DOPA) treatment. We recently found that DA D2 receptor (D2R) density decreases in the late-stage PDs, while high D3R or DA D1 receptor (D1R) + D3R densities in the postmortem PD brains correlate with survival advantages. These new essential findings warrant renewed investigations into the understanding of D3R neuron populations and their cross-sectional and longitudinal regulations in PD progression.
Collapse
Affiliation(s)
- Jinbin Xu
- Division of Radiological Sciences, Department of Radiology, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Jia P, Zhang J, Han J, Ji Y. Clinical outcomes and cognitive impairments between progressive supranuclear palsy and multiple system atrophy. Brain Behav 2022; 12:e2827. [PMID: 36409061 PMCID: PMC9759125 DOI: 10.1002/brb3.2827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/14/2022] [Accepted: 11/01/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Both progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) belong to atypical parkinsonian syndromes. It is important to differentiate these diseases accurately. We compared clinical outcomes and cognitive impairments between PSP and MSA. METHODS Eighty-five MSA parkinsonism type (MSA-P) patients and 76 PSP patients participated in this research. The Montreal Cognitive Assessment (MoCA) and the mini-mental state examination (MMSE) evaluated cognitive function. RESULTS MSA-P patients had a significantly higher incidence of dyskinesia, fall, urinary symptoms, and constipation, whereas patients with PSP had a higher incidence of tremor and salivation. MSA-P patients had higher MMSE and MoCA scores than PSP patients. The MMSE score showed a diagnostic cut-off score of 24.5 in PSP versus MSA-P. The MoCA score showed a diagnostic cut-off score of 20.5 in PSP versus MSA-P. CONCLUSION In conclusion, patients with PSP had differences in the clinical outcomes and cognitive impairments compared with MSA-P patients. PSP patients had more severe cognitive deficits. The score of MMSE and MoCA could be used in distinguishing MSA-P from PSP.
Collapse
Affiliation(s)
- Peifei Jia
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, The Second Affiliated Hospital of Baotou Medical College, Baotou, China
| | - Jinhong Zhang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China.,Department of Neurology, Cangzhou People's Hospital, Cangzhou, Hebei, China
| | - Jiuyan Han
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
5
|
Wang L, Zhao Z, Zhao L, Zhao Y, Yang G, Wang C, Gao L, Niu C, Li S. Lactobacillus plantarum DP189 Reduces α-SYN Aggravation in MPTP-Induced Parkinson's Disease Mice via Regulating Oxidative Damage, Inflammation, and Gut Microbiota Disorder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1163-1173. [PMID: 35067061 DOI: 10.1021/acs.jafc.1c07711] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This study aimed to evaluate the attenuating effect of Lactobacillus plantarum DP189 on α-synuclein (α-SYN) aggregates in the substantia nigra (SN) of Parkinson's disease (PD) mice via 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced. Our results indicated that L. plantarum DP189 increased the levels of superoxide dismutase (SOD), glutathione peroxide (GSH-Px), and interleukin-10 (IL-10) and decreased the levels of malondialdehyde (MDA), reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β). Moreover, L. plantarum DP189 reduced the α-SYN accumulation in SN. Mechanistically, L. plantarum DP189 activated the expression of nuclear factor erythroid 2-related factor (Nrf2)/ARE and PGC-1α pathways and suppressed the NLRP3 inflammasome. Furthermore, fecal analysis showed that L. plantarum DP189 reshaped the gut microbiota in PD mice by reducing the number of pathogenic bacteria (Proteobacteria and Actinobacteria) and increased the abundance of probiotics (Lactobacillus and Prevotella). Our results suggested that L. plantarum DP189 could delay the neurodegeneration caused by the accumulation of α-SYN in the SN of PD mice via suppressing oxidative stress, repressing proinflammatory response, and modulating gut microbiota.
Collapse
Affiliation(s)
- Lei Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Zijian Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Lei Zhao
- School of Pharmaceutical Sciences, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Yujuan Zhao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Ge Yang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Chao Wang
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Lei Gao
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Chunhua Niu
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| | - Shengyu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun 130033, P. R. China
| |
Collapse
|
6
|
Favier M, Carcenac C, Savasta M, Carnicella S. Dopamine D3 Receptors: A Potential Target to Treat Motivational Deficits in Parkinson's Disease. Curr Top Behav Neurosci 2022; 60:109-132. [PMID: 35469394 DOI: 10.1007/7854_2022_316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Parkinson's disease (PD), which is traditionally viewed as a motor disorder involving the degeneration of dopaminergic (DA) neurons, has recently been identified as a quintessential neuropsychiatric condition. Indeed, a plethora of non-motor symptoms may occur in PD, including apathy. Apathy can be defined as a lack of motivation or a deficit of goal-directed behaviors and results in a pathological decrease of self-initiated voluntary behavior. Apathy in PD appears to fluctuate with the DA state of the patients, suggesting a critical role of DA neurotransmission in the pathophysiology of this neuropsychiatric syndrome. Using a lesion-based approach, we developed a rodent model which exhibits specific alteration in the preparatory component of motivational processes, reminiscent to apathy in PD. We found a selective decrease of DA D3 receptors (D3R) expression in the dorsal striatum of lesioned rats. Next, we showed that inhibition of D3R neurotransmission in non-lesioned animals was sufficient to reproduce the motivational deficit observed in our model. Interestingly, we also found that pharmacologically targeting D3R efficiently reversed the motivational deficit induced by the lesion. Our findings, among other recent data, suggest a critical role of D3R in parkinsonian apathy and highlight this receptor as a promising target for treating motivational deficits.
Collapse
Affiliation(s)
- Mathieu Favier
- Douglas Mental Health University Institute, McGill University, Verdun, QC, Canada
| | - Carole Carcenac
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Marc Savasta
- Inserm, Délégation régionale Provence-Alpes-Côte d'Azur et Corse, Marseille CEDEX 09, France
| | - Sebastien Carnicella
- Inserm, U1216, Univ. Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France.
| |
Collapse
|
7
|
Wei SZ, Yao XY, Wang CT, Dong AQ, Li D, Zhang YT, Ren C, Zhang JB, Mao CJ, Wang F, Liu CF. Pramipexole regulates depression-like behavior via dopamine D3 receptor in a mouse model of Parkinson's disease. Brain Res Bull 2021; 177:363-372. [PMID: 34699917 DOI: 10.1016/j.brainresbull.2021.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 01/02/2023]
Abstract
Depression is one of the strongest predictors of quality of life in patients with Parkinson's disease (PD). Despite the high prevalence of depression, there is no clear guidance for its treatment in PD because the evidence for the efficacy of most antidepressants remains insufficient. Pramipexole, a dopamine agonist, is one of the few drugs that has proven to be clinically useful. However, the underlying mechanisms of antidepressive effects of pramipexole are still unknown. A 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model, dopamine D2 receptor (DRD2) and D3 receptor (DRD3) knockout mice were used in our study. Compared with other dopamine D2-like receptor agonists and madopar, pramipexole improved depression-like behavior and alleviate bradykinesia in an MPTP-induced mouse model of PD. Pramipexole significantly improved depression-like behavior in DRD2-/- mice but not in DRD3-/- mice. These results demonstrate that the antidepressive effect of pramipexole is mediated by DRD3 but not DRD2. Our findings highlight the need to develop novel dopamine agonists specifically targeting DRD3 for the treatment of depression in PD in the future.
Collapse
Affiliation(s)
- Shi-Zhuang Wei
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiao-Yu Yao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chen-Tao Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - An-Qi Dong
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Dan Li
- Department of Neurology, Suqian First Hospital, Suqian, China
| | - Yu-Ting Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Chao Ren
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Jin-Bao Zhang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China
| | - Cheng-Jie Mao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fen Wang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China.
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, China; Department of Neurology, Suqian First Hospital, Suqian, China; Department of Neurology, The Second Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
8
|
The Impact of SNCA Variations and Its Product Alpha-Synuclein on Non-Motor Features of Parkinson's Disease. Life (Basel) 2021; 11:life11080804. [PMID: 34440548 PMCID: PMC8401994 DOI: 10.3390/life11080804] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is a common and progressive neurodegenerative disease, caused by the loss of dopaminergic neurons in the substantia nigra pars compacta in the midbrain, which is clinically characterized by a constellation of motor and non-motor manifestations. The latter include hyposmia, constipation, depression, pain and, in later stages, cognitive decline and dysautonomia. The main pathological features of PD are neuronal loss and consequent accumulation of Lewy bodies (LB) in the surviving neurons. Alpha-synuclein (α-syn) is the main component of LB, and α-syn aggregation and accumulation perpetuate neuronal degeneration. Mutations in the α-syn gene (SNCA) were the first genetic cause of PD to be identified. Generally, patients carrying SNCA mutations present early-onset parkinsonism with severe and early non-motor symptoms, including cognitive decline. Several SNCA polymorphisms were also identified, and some of them showed association with non-motor manifestations. The functional role of these polymorphisms is only partially understood. In this review we explore the contribution of SNCA and its product, α-syn, in predisposing to the non-motor manifestations of PD.
Collapse
|
9
|
Josan ES, Zaietta GA, Hoskere GV. The Devastating Starfield Pattern of Cerebral Fat Embolism. Neurol India 2021; 69:538-539. [PMID: 33904505 DOI: 10.4103/0028-3886.314561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Enambir S Josan
- Department of Pulmonary and Critical Care - MetroHealth Medical Center, Cleveland, OH USA 44109, USA
| | - Gabriel A Zaietta
- Department of Pulmonary and Critical Care - East Tennessee State University, Johnson City, TN, USA 37614, USA
| | - Girendra V Hoskere
- Department of Pulmonary and Critical Care - East Tennessee State University, Johnson City, TN, USA 37614, USA
| |
Collapse
|
10
|
Affiliation(s)
| | - Roopa Rajan
- Department of Neurology, AIIMS, New Delhi, India
| | | |
Collapse
|
11
|
The Effects of a 10-Week Home-Based Exercise Programme in Individuals with Parkinson’s Disease during the COVID-19 Pandemic: A Pilot Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11104518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Current restrictions on clinical visits as a consequence of the COVID-19 pandemic has increased the need for home-based exercise regimes to facilitate useful, long term patterns of behaviour in individuals with Parkinson’s disease (PD). This study aimed to evaluate the effectiveness of a 10-week home-based exercise program designed to target improvements in axial rigidity and gait. The Movement Disorders Society-Unified Parkinson’s Disease Rating Scale (MDS-UPDRS), motor scale and rigidity items, Functional axial rotation–physical (FAR-p), functional reach test (FRT), and time up and go (TUG) test were recorded. In addition, the 10-metre walk test, the fall efficacy scale international (FES-I) and the global rating of change score (GROC) were also recorded. Eighteen individuals were divided randomly into two groups: a home-based exercise group (n = 10) and a traditional physiotherapy control group (n = 8). Participants in the 10-week home-based exercise group showed significant improvements (p < 0.05) in the MDS-UPDRS rigidity item, FAR-p, step length, gait velocity, FRT and FES-I when compared with the control group. This study supports the use of home-based exercises in individuals with PD. These preliminary results also support the hypothesis that targeting axial deficits may be an effective approach for improving gait and reducing falls.
Collapse
|
12
|
LC-MS/MS Determination of Modified Nucleosides in The Urine of Parkinson's Disease and Parkinsonian Syndromes Patients. Molecules 2020; 25:molecules25214959. [PMID: 33120888 PMCID: PMC7663364 DOI: 10.3390/molecules25214959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/20/2022] Open
Abstract
Epigenetic modifications play a key role in gene regulation and expression and are involved in numerous cellular processes. Due to the limited research on nucleosides in Parkinson's disease (PD), it is very important to consider epigenetic factors and their role in the development of PD. The aim of this study was to investigate and compare the levels of modified nucleosides, such as O-methylguanosine, N6-methyl-2'-deoxyadenosine, 1-methyladenosine, 1-methylguanine, 7-methylguanine, 3-methyladenine and 7-methylguanosine in the urine of Parkinson's disease (PD) patients and the control group, and to verify that the results obtained differ in a subgroup of patients with parkinsonian syndromes. The study group comprised 18 patients with diagnosed idiopathic Parkinson's disease and four parkinsonian syndromes. The control group consisted of 30 age- and sex-matched neurological patients without confirmation by neuroimaging brain damage and extrapyramidal symptoms. The levels of nucleosides were determined by validated liquid chromatography coupled with the mass spectrometry (LC-MS/MS) method using the multiple reaction monitoring (MRM) mode. Lower levels of O-methylguanosine, 3-methyladenine, 1-methylguanine, N6-methyl-2'-deoxyadenosine and a higher level of 7-methylguanine in the urine of 22 PD patients were observed. Moreover, elevated levels of 1-methyladenosine, 7-methylguanine, and O-methylguanosine were observed in the parkinsonian syndrome subgroup. These preliminary results may indicate that modified nucleosides describe metabolic disturbances in the metabolism of purine, which was the most severely affected pathway that mediated the detrimental effects of neuroinflammation on PD.
Collapse
|
13
|
Cheng L, Wu X, Guo R, Wang Y, Wang W, He P, Lin H, Shen J. Discriminative pattern of reduced cerebral blood flow in Parkinson's disease and Parkinsonism-Plus syndrome: an ASL-MRI study. BMC Med Imaging 2020; 20:78. [PMID: 32660445 PMCID: PMC7359235 DOI: 10.1186/s12880-020-00479-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Accurate identification of Parkinson's disease (PD) and Parkinsonism-Plus syndrome (PPS), especially in the early stage of the disease, is very important. The purpose of this study was to investigate the discriminative spatial pattern of cerebral blood flow (CBF) between patients with PD and PPS. METHODS Arterial spin labeling (ASL) perfusion-weighted imaging was performed in 20 patients with PD (mean age 56.35 ± 7.56 years), 16 patients with PPS (mean age 59.62 ± 6.89 years), and 17 healthy controls (HCs, mean age 54.17 ± 6.58 years). Voxel-wise comparison of the CBF was performed among PD, PPS, and HC groups. The receiver operating characteristic (ROC) curve was used to evaluate the performance of CBF in discriminating between PD and PPS. The relationship between CBF and non-motor neuropsychological scores was assessed by correlation analysis. RESULTS PD group showed a significantly decreased CBF in the right cerebelum_crus2, the left middle frontal gyrus (MFG), the triangle inferior frontal gyrus (IFG_Tri), the left frontal medial orbital gyrus (FG_Med_Orb) and the left caudate nucleus (CN) compared with the HC group (P < 0.05). Besides the above regions, the left supplementary motor area (SMA), the right thalamus had decreased CBF in the PPS group compared with the HC group (P < 0.05). PPS group had lower CBF value in the left MFG, the left IFG_Tri, the left CN, the left SMA, and the right thalamus compared with the PD group (P < 0.05). CBFs in left IFG_Tri, the left CN, the left SMA, and the right thalamus had moderate to high capacity in discriminating between PD and PPS patients (AUC 0.719-0.831). The CBF was positively correlated with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores in PD patients, while positively correlated with the MMSE, Hamilton Anxiety Scale (HAMA), Hamilton Depression Scale (HAMD) scores in PPS patients (P < 0.05). CONCLUSION PD and PPS patients have certain discriminative patterns of reduced CBFs, which can be used as a surrogate marker for differential diagnosis.
Collapse
Affiliation(s)
- Lina Cheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510 China
| | - Xiaoyan Wu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Ruomi Guo
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630 China
| | - Yuzhou Wang
- Department of Neurology, Guangdong 999 Brain Hospital, Guangzhou, 510510 China
| | - Wensheng Wang
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510 China
| | - Peng He
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510 China
| | - Hanbo Lin
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510510 China
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| |
Collapse
|
14
|
Lee KW, Chien CF, Wu MN, Lai CL, Liou LM. Parkinsonism with newly diagnosed flare-up rheumatoid arthritis mimicking progressive supranuclear palsy. Neurol India 2020; 68:481-482. [PMID: 32415030 DOI: 10.4103/0028-3886.284382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In order to make a correct diagnosis of idiopathic Parkinson's disease (PD), it is essential to exclude atypical parkinsonian features, such as early dementia, fall, and autonomic dysfunction. Rheumatoid arthritis (RA), which is a systemic inflammatory disorder, although most patients present in a polyarticular manner. Still some may also present with extra-articular involvement including skin, lung, heart, and the central or peripheral nervous systems. A possible pathogenetic link between RA and PD are proposed. However, the coexistence of RA and progressive supranuclear palsy (PSP) is rarely reported. Here, we report a parkinsonian patient with a newly diagnosed flare-up RA presenting with early falls, postural instability and supra-nuclear gaze palsy, which suggestive of clinically probable PSP. Furthermore, the parkinsonian features respond to anti-rheumatic agents, but not levodopa. Finally, the patient looks like a clinical possible PD. In summary, Parkinsonian patient with newly diagnosed flare-up RA can present with clinically probable PSP. Unbearably painful limb contracture is a clue of the coexistence of RA. Both typical and atypical parkinsonian features respond dramatically to anti-rheumatic medication, but not levodopa.
Collapse
Affiliation(s)
- Kuo-Wei Lee
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ching-Fang Chien
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Meng-Ni Wu
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University; Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiou-Lian Lai
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University; Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Li-Min Liou
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung Medical University; Department of Neurology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Yang P, Perlmutter JS, Benzinger TLS, Morris JC, Xu J. Dopamine D3 receptor: A neglected participant in Parkinson Disease pathogenesis and treatment? Ageing Res Rev 2020; 57:100994. [PMID: 31765822 PMCID: PMC6939386 DOI: 10.1016/j.arr.2019.100994] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/20/2022]
Abstract
Parkinson disease (PD) is a neurodegenerative disorder characterized by motor and non-motor symptoms which relentlessly and progressively lead to substantial disability and economic burden. Pathologically, these symptoms follow the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) associated with abnormal α-synuclein (α-Syn) deposition as cytoplasmic inclusions called Lewy bodies in pigmented brainstem nuclei, and in dystrophic neurons in striatal and cortical regions (Lewy neurites). Pharmacotherapy for PD focuses on improving quality of life and primarily targets dopaminergic pathways. Dopamine acts through two families of receptors, dopamine D1-like and dopamine D2-like; dopamine D3 receptors (D3R) belong to dopamine D2 receptor (D2R) family. Although D3R's precise role in the pathophysiology and treatment of PD has not been determined, we present evidence suggesting an important role for D3R in the early development and occurrence of PD. Agonist activation of D3R increases dopamine concentration, decreases α-Syn accumulation, enhances secretion of brain derived neurotrophic factors (BDNF), ameliorates neuroinflammation, alleviates oxidative stress, promotes neurogenesis in the nigrostriatal pathway, interacts with D1R to reduce PD associated motor symptoms and ameliorates side effects of levodopa (L-DOPA) treatment. Furthermore, D3R mutations can predict PD age of onset and prognosis of PD treatment. The role of D3R in PD merits further research. This review elucidates the potential role of D3R in PD pathogenesis and therapy.
Collapse
Affiliation(s)
- Pengfei Yang
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Neuroscience, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Physical Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA; Department of Occupational Therapy, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Tammie L S Benzinger
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA
| | - Jinbin Xu
- Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110, USA.
| |
Collapse
|
16
|
Magistrelli L, Amoruso A, Mogna L, Graziano T, Cantello R, Pane M, Comi C. Probiotics May Have Beneficial Effects in Parkinson's Disease: In vitro Evidence. Front Immunol 2019; 10:969. [PMID: 31134068 PMCID: PMC6513970 DOI: 10.3389/fimmu.2019.00969] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 04/15/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Parkinson's disease (PD) is characterized by loss of dopaminergic neurons and intraneuronal accumulation of alpha-synuclein, both in the basal ganglia and in peripheral sites, such as the gut. Peripheral immune activation and reactive oxygen species (ROS) production are important pathogenetic features of PD. In this context, the present study focused on the assessment of in vitro effects of probiotic bacterial strains in PBMCs isolated from PD patients vs. healthy controls. Methods: 40 PD patients and 40 matched controls have been enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and co-cultured with a selection of probiotics microorganisms belonging to the lactobacillus and bifidobacterium genus. In vitro release of the major pro- (Tumor Necrosis Factor-alpha and Interleukin-17A and 6) and anti-inflammatory (Interleukin 4 and 10) cytokines by PBMCs, as well as the production of ROS was investigated. Furthermore, we assessed the ability of probiotics to influence membrane integrity, antagonize the growth of potential pathogen bacteria, such as Escherichia coli and Klebsiella pneumoniae and encode tyrosine decarboxylase genes (tdc). Results: All probiotic strains were able to inhibit inflammatory cytokines and ROS production in both patients and controls. The most striking results were obtained in PD subjects with L. salivarius LS01 and L. acidophilus which significantly reduced pro-inflammatory and increased the anti-inflammatory cytokines (p < 0.05). Furthermore, most strains determined restoration of membrane integrity and inhibition of E. coli and K. pneumoniae. Finally, we also showed that all the strains do not carry tdc gene, which is known to decrease levodopa bioavailability in PD patients under treatment. Conclusions: Probiotics exert promising in vitro results in decreasing pro-inflammatory cytokines, oxidative stress and potentially pathogenic bacterial overgrowth. In vivo longitudinal data are mandatory to support the use of bacteriotherapy in PD.
Collapse
Affiliation(s)
- Luca Magistrelli
- PhD Program in Clinical and Experimental Medicine and Medical Humanities, University of Insubria, Varese, Italy.,Neurology Unit, Department of Translational Medicine, Interdisciplinary Research Centre of Autoimmune Diseases, Movement Disorders Centre, University of Piemonte Orientale, Novara, Italy
| | - Angela Amoruso
- Biolab Research Srl, Research and Development, Novara, Italy
| | - Luca Mogna
- Biolab Research Srl, Research and Development, Novara, Italy
| | - Teresa Graziano
- Biolab Research Srl, Research and Development, Novara, Italy
| | - Roberto Cantello
- Neurology Unit, Department of Translational Medicine, Interdisciplinary Research Centre of Autoimmune Diseases, Movement Disorders Centre, University of Piemonte Orientale, Novara, Italy
| | - Marco Pane
- Biolab Research Srl, Research and Development, Novara, Italy
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, Interdisciplinary Research Centre of Autoimmune Diseases, Movement Disorders Centre, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
17
|
Greydanus DE, Merrick J. Wilson's disease: the eponymous eminence of careful cognizance! Int J Adolesc Med Health 2018; 31:/j/ijamh.ahead-of-print/ijamh-2018-0113/ijamh-2018-0113.xml. [PMID: 30068073 DOI: 10.1515/ijamh-2018-0113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Donald E Greydanus
- Western Michigan University, Homer Stryker M.D. School of Medicine, Department of Pediatric and Adolescent Medicine, 1000 Oakland Drive, Kalamazoo, United States of America
| | - Joav Merrick
- Department of Pediatrics, Mt Scopus Campus, Hadassah Hebrew University Medical Center and Director, National Institute of Child Health and Human Development, Jerusalem, Israel
| |
Collapse
|