1
|
Narayan A, Patel S, Baile SB, Jain S, Sharma S. Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017-2022). Infect Disord Drug Targets 2024; 24:e200324228067. [PMID: 38509674 DOI: 10.2174/0118715265274067240223040333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/23/2023] [Accepted: 12/15/2023] [Indexed: 03/22/2024]
Abstract
BACKGROUND Regarding scientific research, Imidazo[1,2-a] pyridine derivatives are constantly being developed due to the scaffold's intriguing chemical structure and varied biological activity. They are distinctive organic nitrogen-bridged heterocyclic compounds that have several uses in medicines, organometallics and natural products. It has become a vital tool for medicinal chemists. METHODS In order to gather scientific information on Imidazo[1,2-a] pyridines derivative, Google, PubMed, Scopus, Google Scholar, and other databases were searched. In the current study, the medicinal value and therapeutic effect of Imidazo[1,2-a] pyridines were investigated using above mentioned databases. The current study analyzed the detailed pharmacological activities of Imidazo[1,2-a] pyridine analogs through literature from diverse scientific research works. RESULTS Due to its wide range of biological activities, including antiulcer, anticonvulsant, antiprotozoal, anthelmintic, antiepileptic, antifungal, antibacterial, analgesic, antiviral, anticancer, anti-inflammatory, antituberculosis, and antitumor properties, imidazopyridine is one of the most significant structural skeletons in the field of natural and pharmaceutical products. An imidazopyridine scaffold serves as the basis for a number of therapeutically utilized medications, including zolpidem, alpidem, olprinone, zolimidine, and necopidem. CONCLUSION This comprehensive study covers the period of the last five years, and it sheds light on the developments and emerging pharmacological actions of Imidazo[1,2-a] pyridines. Additionally, the structure-activity relationship and molecular docking studies are carefully documented throughout the paper, providing medicinal chemists with a clear picture for developing new drugs.
Collapse
Affiliation(s)
- Aditya Narayan
- Centre for Pharmaceutical Engineering Science, School of Pharmacy and Medical Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, United Kingdom
| | - Shivkant Patel
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At & Po. Piparia, Ta. Waghodia, 391760, Vadodara, Gujarat, India
| | - Sunil B Baile
- Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, At & Po. Piparia, Ta. Waghodia, 391760, Vadodara, Gujarat, India
| | - Surabhi Jain
- B. Pharmacy College Rampura-kakanpur, Gujarat Technological University, Panchmahals, Gujarat, India
| | - Smriti Sharma
- Amity Institute of Pharmacy, Amity University, Sector- 125, Noida, 201313, India
| |
Collapse
|
2
|
Jahan RN, Khan Z, Akhtar MS, Ansari MD, Solanki P, Ahmad FJ, Aqil M, Sultana Y. Development of Bedaquiline-Loaded SNEDDS Using Quality by Design (QbD) Approach to Improve Biopharmaceutical Attributes for the Management of Multidrug-Resistant Tuberculosis (MDR-TB). Antibiotics (Basel) 2023; 12:1510. [PMID: 37887211 PMCID: PMC10603879 DOI: 10.3390/antibiotics12101510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Background: The ever-growing emergence of antibiotic resistance associated with tuberculosis (TB) has become a global challenge. In 2012, the USFDA gave expedited approval to bedaquiline (BDQ) as a new treatment for drug-resistant TB in adults when no other viable options are available. BDQ is a diarylquinoline derivative and exhibits targeted action on mycobacterium tuberculosis, but due to poor solubility, the desired therapeutic action is not achieved. Objective: To develop a QbD-based self-nanoemulsifying drug delivery system of bedaquiline using various oils, surfactants, and co-surfactants. Methods: The quality target product profile (QTPP) and critical quality attributes (CQAs) were identified with a patient-centric approach, which facilitated the selection of critical material attributes (CMAs) during pre-formulation studies and initial risk assessment. Caprylic acid as a lipid, propylene glycol as a surfactant, and Transcutol-P as a co-surfactant were selected as CMAs for the formulation of bedaquiline fumarate SNEDDS. Pseudo-ternary phase diagrams were constructed to determine the optimal ratio of oil and Smix. To optimize the formulation, a Box-Benkhen design (BBD) was used. The optimized formulation (BDQ-F-SNEDSS) was further evaluated for parameters such as droplet size, polydispersity index (PDI), percentage transmittance, dilution studies, stability studies, and cell toxicity through the A549 cell. Results: Optimized BDQ-F-SNEDDS showed well-formed droplets of 98.88 ± 2.1 nm with a zeta potential of 21.16 mV. In vitro studies showed enhanced drug release with a high degree of stability at 25 ± 2 °C, 60 ± 5% and 40 ± 2 °C, 75 ± 5%. Furthermore, BDQ-F-SNEDDS showed promising cell viability in A549 cells, indicating BDQ-F-SNEDDS as a safer formulation for oral delivery. Conclusion: Finally, it was concluded that the utilization of a QbD approach in the development of BDQ-F-loaded SNEDDS offers a promising strategy to improve the biopharmaceutical properties of the drug, resulting in potential cost and time savings.
Collapse
Affiliation(s)
- Rao Nargis Jahan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Zafar Khan
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Md. Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Al-Fara, Abha 62223, Saudi Arabia
| | - Mohd Danish Ansari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Pavitra Solanki
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India;
| | - Farhan J. Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Mohd Aqil
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| | - Yasmin Sultana
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (R.N.J.); (M.D.A.); (F.J.A.)
| |
Collapse
|
3
|
Das NK, Mirza S, Ajagunde J, Khan S. The syndemic of "COVID-19 and tuberculosis". J Family Med Prim Care 2022; 11:6609-6610. [PMID: 36618135 PMCID: PMC9810885 DOI: 10.4103/jfmpc.jfmpc_645_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/14/2022] [Accepted: 06/30/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nikunja K. Das
- Department of Microbiology Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Shahzad Mirza
- Department of Microbiology Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Jyoti Ajagunde
- Department of Microbiology Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| | - Sameena Khan
- Department of Microbiology Dr. D. Y. Patil Medical College, Hospital and Research Center, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
| |
Collapse
|
4
|
Systems biology predicts that fibrosis in tuberculous granulomas may arise through macrophage-to-myofibroblast transformation. PLoS Comput Biol 2020; 16:e1008520. [PMID: 33370784 PMCID: PMC7793262 DOI: 10.1371/journal.pcbi.1008520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) infection causes tuberculosis (TB), a disease characterized by development of granulomas. Granulomas consist of activated immune cells that cluster together to limit bacterial growth and restrict dissemination. Control of the TB epidemic has been limited by lengthy drug regimens, antibiotic resistance, and lack of a robustly efficacious vaccine. Fibrosis commonly occurs during treatment and is associated with both positive and negative disease outcomes in TB but little is known about the processes that initiate fibrosis in granulomas. Human and nonhuman primate granulomas undergoing fibrosis can have spindle-shaped macrophages with fibroblast-like morphologies suggesting a relationship between macrophages, fibroblasts, and granuloma fibrosis. This relationship has been difficult to investigate because of the limited availability of human pathology samples, the time scale involved in human TB, and overlap between fibroblast and myeloid cell markers in tissues. To better understand the origins of fibrosis in TB, we used a computational model of TB granuloma biology to identify factors that drive fibrosis over the course of local disease progression. We validated the model with granulomas from nonhuman primates to delineate myeloid cells and lung-resident fibroblasts. Our results suggest that peripheral granuloma fibrosis, which is commonly observed, can arise through macrophage-to-myofibroblast transformation (MMT). Further, we hypothesize that MMT is induced in M1 macrophages through a sequential combination of inflammatory and anti-inflammatory signaling in granuloma macrophages. We predict that MMT may be a mechanism underlying granuloma-associated fibrosis and warrants further investigation into myeloid cells as drivers of fibrotic disease. Tuberculosis is a disease caused by Mycobacterium tuberculosis (Mtb), a bacterium that infects over a third of the world’s population. The only available vaccine for TB has limited efficacy and drug treatment involves several antibiotics that are taken for several months. These drugs can have significant side-effects and a lack of compliance can lead to drug resistance in Mtb. A hallmark of Mtb infection is the development of clusters of cells that form around infected macrophages to contain the infection called granulomas. Older granulomas, or granulomas in patients treated with antibiotic, often become fibrotic and this can cause chronic lung problems long after the Mtb infection has cleared. The process that drives a fibrotic outcome has been difficult to assess in vivo. Herein we combined wet-lab and computational experimentation to identify a novel mechanism leading to peripheral fibrosis in granulomas. We find that macrophages transforming into myofibroblast-like cells, may be a key pathway to granuloma-associated fibrosis, a phenomena that has not been well characterized in vivo. Further we identified factors that can inhibit fibrosis development during TB that could be therapeutic targets during TB treatment to limit the risk of long-term tissue damage in TB.
Collapse
|
5
|
Hädrich G, Boschero RA, Appel AS, Falkembach M, Monteiro M, da Silva PEA, Dailey LA, Dora CL. Tuberculosis Treatment Facilitated by Lipid Nanocarriers: Can Inhalation Improve the Regimen? Assay Drug Dev Technol 2020; 18:298-307. [PMID: 33054379 DOI: 10.1089/adt.2020.998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB) remains a major global health problem. Conventional treatments fail either because of poor patient compliance with the drug regimen or due to the emergence of multidrug-resistant TB. Thus, not only has the discovery of new compounds and new therapeutic strategies been the focus of many types of research but also new routes of administration. Pulmonary drug delivery possesses many advantages, including the noninvasive route of administration, low metabolic activity, and control environment for systemic absorption, and avoids first-pass metabolism. The use of lipid nanocarriers provides several advantages such as protection of the compound's degradation, increased bioavailability, and controlled drug release. In this study, we review some points related to how the use of lipid nanocarriers can improve TB treatment with inhaled nanomedicines. This review also discusses the current approaches and formulations developed to achieve optimal pulmonary drug delivery systems with nanocarriers targeting alveolar macrophages.
Collapse
Affiliation(s)
- Gabriela Hädrich
- Department of Pharmaceutical Technology and Biopharmaceutics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.,Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Raphael Aparecido Boschero
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Arthur Sperry Appel
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Mariana Falkembach
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Matheus Monteiro
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| | - Pedro Eduardo Almeida da Silva
- Nucleo de Pesquisa em Microbiologia Médica, Faculdade de Medicina, Universidade Federal do Rio Grande-FURG, Rio Grande, Brazil
| | - Lea Ann Dailey
- Department of Pharmaceutical Technology and Biopharmacy, University of Vienna, Vienna, Austria
| | - Cristiana Lima Dora
- Laboratório de Nanotecnologia, Programa de Pós-graduação em Ciências da Saúde, Universidade Federal do Rio Grande, Rio Grande, Brazil
| |
Collapse
|
6
|
Thakur G, Thakur S, Thakur H. Status and challenges for tuberculosis control in India - Stakeholders' perspective. Indian J Tuberc 2020; 68:334-339. [PMID: 34099198 PMCID: PMC7550054 DOI: 10.1016/j.ijtb.2020.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND Tuberculosis is one of the ten major causes of mortality worldwide. The trend of increasing TB cases and drug resistance in India is very disturbing. The objectives of the study were to study the perspectives and opinions of different stakeholders on the status, challenges and the ways to tackle the issues of TB in India. METHODS The online survey was done for the data collection from national and international experts. The data collection took place during October 2017. We received 46 responses. RESULTS The experts had varied answers as to the menace of TB in India, effect of TB on individuals, family and society, failure of government plans in India, TB awareness campaign and ways to create awareness. Everyone believed that urgent action needs to be taken against the disease like improving the healthcare infrastructure of the country (improving the quality and quantity of medical facilities and doctors) and creating awareness about the TB. CONCLUSION Government of India is making lot of efforts to bring down the problems associated with TB through. In spite of this, there is a long way to go to achieve significant reduction in high incidence and prevalence of TB in India. Factors like lack of awareness and resources, poor infrastructure, increasing drug resistant cases, poor notification and overall negligence are the major challenges. If we eradicate poverty and undernourishment, educate the masses and eliminate the stigma attached with TB, we can hope for a disease free future.
Collapse
Affiliation(s)
| | - Shalvi Thakur
- Indian Institute of Science, Education and Research, Bhopal, India
| | - Harshad Thakur
- School of Health Systems Studies, Tata Institute of Social Sciences, Mumbai, India; National Institute of Health and Family Welfare, New Delhi, India.
| |
Collapse
|
7
|
|
8
|
Dry powder formulation combining bedaquiline with pyrazinamide for latent and drug-resistant tuberculosis. ADV POWDER TECHNOL 2019. [DOI: 10.1016/j.apt.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
9
|
Momin MAM, Rangnekar B, Sinha S, Cheung CY, Cook GM, Das SC. Inhalable Dry Powder of Bedaquiline for Pulmonary Tuberculosis: In Vitro Physicochemical Characterization, Antimicrobial Activity and Safety Studies. Pharmaceutics 2019; 11:pharmaceutics11100502. [PMID: 31581469 PMCID: PMC6836091 DOI: 10.3390/pharmaceutics11100502] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 12/19/2022] Open
Abstract
Bedaquiline is a newly developed anti-tuberculosis drug, conditionally approved by the United States Food and Drug Administration (USFDA) for treating drug-resistant tuberculosis in adults. Oral delivery of bedaquiline causes severe side effects such as increased hepatic aminotransferase levels and cardiac arrhythmias (prolongation of QT-interval). This study aimed to develop inhalable dry powder particles of bedaquiline with high aerosolization efficiency to reduce the side-effects of oral bedaquiline. Bedaquiline (with or without l-leucine) powders were prepared using a Buchi Mini Spray-dryer. The powders were characterized for physicochemical properties and for their in vitro aerosolization efficiency using a next-generation impactor (NGI). The formulation with maximum aerosolization efficiency was investigated for physicochemical and aerosolization stability after one-month storage at 20 ± 2 °C/30 ± 2% relative humidity (RH) and 25 ± 2 °C/75% RH in an open Petri dish. The cytotoxicity of the powders on A549 and Calu-3 cell-lines was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The powders were also evaluated for antimicrobial activity against Mycobacterium tuberculosis. The aerodynamic diameter of the l-leucine-containing powder was 2.4 µm, and the powder was amorphous in nature. The aerosolization efficiency (fine-particle fraction) of l-leucine-containing powder (fine-particle fraction (FPF): 74.4%) was higher than the bedaquiline-only powder (FPF: 31.3%). l-leucine containing powder particles were plate-shaped with rough surfaces, but the bedaquiline-only powder was spherical and smooth. The optimized powder was stable at both storage conditions during one-month storage and non-toxic (up to 50 µg/mL) to the respiratory cell-lines. Bedaquiline powders were effective against Mycobacterium tuberculosis and had a minimal inhibitory concentration (MIC) value of 0.1 µg/mL. Improved aerosolization may help to combat pulmonary tuberculosis by potentially reducing the side-effects of oral bedaquiline. Further research is required to understand the safety of the optimized inhalable powder in animal models.
Collapse
Affiliation(s)
- Mohammad A M Momin
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
- Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298-0533, USA.
| | | | - Shubhra Sinha
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| | - Chen-Yi Cheung
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Gregory M Cook
- Department of Microbiology and Immunology, University of Otago, Dunedin 9054, New Zealand.
| | - Shyamal C Das
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
10
|
Rodríguez-Flores EM, Mata-Espinosa D, Barrios-Payan J, Marquina-Castillo B, Castañón-Arreola M, Hernández-Pando R. A significant therapeutic effect of silymarin administered alone, or in combination with chemotherapy, in experimental pulmonary tuberculosis caused by drug-sensitive or drug-resistant strains: In vitro and in vivo studies. PLoS One 2019; 14:e0217457. [PMID: 31145751 PMCID: PMC6542514 DOI: 10.1371/journal.pone.0217457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 05/13/2019] [Indexed: 12/11/2022] Open
Abstract
For many years, tuberculosis (TB) has been a major public health problem worldwide. Advances for treatment and eradication have been very limited. Silymarin (Sm) is a natural product with antioxidant and hepatoprotective activities that has been proposed as a complementary medicine to reduce the liver injury produced by the conventional anti-TB chemotherapy. Sm also has immunoregulatory and microbicide properties. In this study, we determined the effect of Sm on the growth control of mycobacteria. In vitro studies showed that Sm and Silibinin (the principal active compound of Sm) have microbicidal activity against drug-sensitive and multidrug-resistant (MDR) mycobacteria, induce the production of protective cytokines from infected macrophages, and improve the growth control of mycobacteria (p ≤ 0.0001). Studies in vivo using a model of progressive pulmonary TB in BALB/c mice infected with drug-sensitive or MDR mycobacteria have shown that Sm induces significant expression of Th-1 cytokines such as IFN-γ and IL-12 as well as TNFα, which produce significant therapeutic activity when administered alone and apparently have a synergistic effect with chemotherapy. These results suggest that Sm has a bactericidal effect and can contribute to the control and establishment of a TH1 protective immune response against mycobacterial infection. Thus, it seems that this flavonoid has a promising potential as adjuvant therapy in the treatment of TB.
Collapse
Affiliation(s)
- Edén M. Rodríguez-Flores
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
- Genomic Sciences Program, Autonomous University of México City, Mexico City, México
| | - Dulce Mata-Espinosa
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | - Jorge Barrios-Payan
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | - Brenda Marquina-Castillo
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| | | | - Rogelio Hernández-Pando
- Department of Pathology, Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘‘Salvador Zubiran”, Mexico City, Mexico
| |
Collapse
|
11
|
Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019; 13:327-343. [PMID: 30705582 PMCID: PMC6342214 DOI: 10.2147/dddt.s190577] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The worldwide misuse of antibiotics and the subsequent rise of multidrug-resistant pathogenic bacteria have prompted a paradigm shift in the established view of antibiotic and bacterial-human relations. The clinical failures of conventional antibiotic therapies are associated with lengthy detection methods, poor penetration at infection sites, disruption of indigenous microflora and high potential for mutational resistance. One of the most promising strategies to improve the efficacy of antibiotics is to complex them with micro or nano delivery materials. Such materials/vehicles can shield antibiotics from enzyme deactivation, increasing the therapeutic effectiveness of the drug. Alternatively, drug-free nanomaterials that do not kill the pathogen but target virulent factors such as adhesins, toxins, or secretory systems can be used to minimize resistance and infection severity. The main objective of this review is to examine the potential of the aforementioned materials in the detection and treatment of antibiotic-resistant pathogenic organisms.
Collapse
Affiliation(s)
- Vo Van Giau
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - Seong Soo A An
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| | - John Hulme
- Department of Bionano Technology, Gachon Bionano Research Institute, Gachon University, Seongnam-si, Gyeonggi-do, South Korea, ;
| |
Collapse
|
12
|
Rawal T, Patel S, Butani S. Chitosan nanoparticles as a promising approach for pulmonary delivery of bedaquiline. Eur J Pharm Sci 2018; 124:273-287. [DOI: 10.1016/j.ejps.2018.08.038] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 11/28/2022]
|
13
|
Agarwal M, Nabavizadeh SA, Mohan S. Chapter 6 Non-Squamous Cell Causes of Cervical Lymphadenopathy. Semin Ultrasound CT MR 2017; 38:516-530. [PMID: 29031368 DOI: 10.1053/j.sult.2017.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cervical lymphadenopathy is a common indication for imaging evaluation of the neck. Besides metastatic squamous cell carcinoma of the head and neck, cervical lymphadenopathy can be due to many causes, with simple reactive lymphadenopathy on one end of the spectrum and malignant lymphadenopathy due to a distant infraclavicular primary, on the other end. A systematic approach to the cause of cervical lymphadenopathy, which includes pattern of lymph node enlargement, lymph node characteristics, systemic symptoms, and extranodal abnormalities, can be very useful in arriving at the correct diagnosis. In this article, various patterns of cervical lymphadenopathy due to non-squamous cell causes are discussed.
Collapse
Affiliation(s)
- Mohit Agarwal
- Department of Radiology, Section of Neuroradiology, Medical College of Wisconsin, Milwaukee, WI
| | - Seyed Ali Nabavizadeh
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Suyash Mohan
- Department of Radiology, Division of Neuroradiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| |
Collapse
|