1
|
di Leandro L, Colasante M, Pitari G, Ippoliti R. Hosts and Heterologous Expression Strategies of Recombinant Toxins for Therapeutic Purposes. Toxins (Basel) 2023; 15:699. [PMID: 38133203 PMCID: PMC10748335 DOI: 10.3390/toxins15120699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/23/2023] Open
Abstract
The production of therapeutic recombinant toxins requires careful host cell selection. Bacteria, yeast, and mammalian cells are common choices, but no universal solution exists. Achieving the delicate balance in toxin production is crucial due to potential self-intoxication. Recombinant toxins from various sources find applications in antimicrobials, biotechnology, cancer drugs, and vaccines. "Toxin-based therapy" targets diseased cells using three strategies. Targeted cancer therapy, like antibody-toxin conjugates, fusion toxins, or "suicide gene therapy", can selectively eliminate cancer cells, leaving healthy cells unharmed. Notable toxins from various biological sources may be used as full-length toxins, as plant (saporin) or animal (melittin) toxins, or as isolated domains that are typical of bacterial toxins, including Pseudomonas Exotoxin A (PE) and diphtheria toxin (DT). This paper outlines toxin expression methods and system advantages and disadvantages, emphasizing host cell selection's critical role.
Collapse
Affiliation(s)
| | | | | | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (L.d.L.); (M.C.); (G.P.)
| |
Collapse
|
2
|
Abulmagd S, Khattab AENA, Zedan H. Expression of full and fragment-B of diphtheria toxin genes in Escherichia coli for generating of recombinant diphtheria vaccines. Clin Exp Vaccine Res 2022; 11:12-29. [PMID: 35223662 PMCID: PMC8844665 DOI: 10.7774/cevr.2022.11.1.12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/21/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose In the present study, whole diphtheria toxin (dt) and fragment B (dtb) genes from Corynebacterium diphtheriae Park William were cloned into Escherichia coli, the purified expressed proteins were evaluated for ultimately using as a candidate vaccine. Materials and Methods The dt and dtb genes were isolated from bacterial strain ATCC (American Type Culture Collection) no. 13812. Plasmid pET29a+ was extracted by DNA-spin TM plasmid purification kit where genes were inserted using BamHI and HindIII-HF. Cloned pET29a+dt and pET29a+dtb plasmids were transformed into E. coli BL21(DE3)PlysS as expression host. The identity of the sequences was validated by blasting the sequence (BLASTn) against all the reported nucleotide sequences in the NCBI (National Center for Biotechnology Information) GenBank. Production of proteins in high yield by different types and parameters of fermentation to determine optimal conditions. Lastly, the purified concentrated rdtx and rdtb were injected to BALB/c mice and antibody titers were detected. Results The genetic transformation of E. coli DH5α and E. coli BL21 with the pET-29a(+) carrying the dt and dtb genes was confirmed by colony polymerase chain reaction assay and were positive to grow on Luria-Bertani/kanamycin medium. The open reading frame of dt and dtb sequences consisted of 1,600 bp and 1,000 bp, were found to be 100% identical to dt and dtb sequence of C. diphtheriae (accession number KX702999.1 and KX702993.1) respectively. The optimal condition for high cell density is fed-batch fermentation production to express the rdtx and rdtb at 280 and 240 Lf/mL, dissolved oxygen was about 24% and 22% and the dry cell weight of bacteria was 2.41 g/L and 2.18 g/L, respectively. Conclusion This study concluded with success in preparing genetically modified two strains for the production of a diphtheria vaccine, and to reach ideal production conditions to achieve the highest productivity.
Collapse
Affiliation(s)
| | | | - Hamdallah Zedan
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Heydari S, Hedayati Ch M, Saadat F, Abedinzade M, Nikokar I, Aboutaleb E, Khafri A, Mokarram AR. Diphtheria toxoid nanoparticles improve learning and memory impairment in animal model of Alzheimer's disease. Pharmacol Rep 2019; 72:814-826. [PMID: 32048245 DOI: 10.1007/s43440-019-00017-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 10/23/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder involving memory. The present study aimed at evaluating the effects of encapsulated diphtheria toxoid (DT) on behavioral learning impairment, and XBP1 mRNA splicing in AD. METHODS A DT-loaded nanoparticle (NP) carrier was prepared using the ionic gelation method. Sixty-three rats were divided into nine groups: (1) healthy, (2-4) sham, and (5-9) AD models: (5) AD was induced by intracerebroventricular injection of amyloid beta (Aβ) 1-42. (6) The rats received a subcutaneous diphtheria vaccine only 28 days before Aβ injection. (7) The rats received an intranasal diphtheria vaccine, in group 8, induced by administering empty chitosan NPs. 9) it was induced by administering chitosan NPs carrying DT. Morris water maze (MWM) test was used to examine the animals' learning and memory. Also, X-box binding protein 1 (XBP-1) mRNA gene splicing was studied in the hippocampus by reverse-transcription polymerase chain reaction (RT-PCR). RESULTS For the first time, chitosan NPs were prepared with an average diameter size of 40 nm and the effectiveness of approximately 70% during DT encapsulation. In comparison with the healthy group, the AD models exhibited significant impairment of learning and memory (P < 0.05), while DT-administrated animals showed significant improvements in learning and memory impairment (P < 0.05). XBP-1 mRNA gene splicing was only detected in an untreated AD group, while encapsulated DT completely inhibited splicing. CONCLUSION The therapeutic effects of DT chitosan NPs against learning and memory impairment were observed in this study, and XBP1 mRNA splicing was reported in the animal models.
Collapse
Affiliation(s)
- Samane Heydari
- Medical Biotechnology Research Center, School of Nursing, Midwifery and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Farshid Saadat
- Department of Microbiology, Parasitology, and Immunology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahmood Abedinzade
- Medical Biotechnology Research Center, School of Nursing, Midwifery and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Iraj Nikokar
- Medical Biotechnology Research Center, School of Nursing, Midwifery and Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Aboutaleb
- Department of Pharmaceutics, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Abolfazl Khafri
- Quality Control of Bacterial and Parasitic Vaccine Department, Quality Control Management, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Ali Rezaei Mokarram
- Quality Control of Bacterial and Parasitic Vaccine Department, Quality Control Management, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
4
|
Husada D, Soegianto SDP, Kurniawati IS, Hendrata AP, Irawan E, Kartina L, Puspitasari D, Basuki PS, Ismoedijanto. First-line antibiotic susceptibility pattern of toxigenic Corynebacterium diphtheriae in Indonesia. BMC Infect Dis 2019; 19:1049. [PMID: 31829153 PMCID: PMC6907133 DOI: 10.1186/s12879-019-4675-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Diphtheria has been reported as an outbreak in some regions in Indonesia, most especially in East Java Province. Resistance to penicillin, erythromycin, and other antibiotics, single or multiple, has been reported in several studies. This study aims to evaluate the first-line antibiotic susceptibility pattern of toxigenic Corynebacterium diphtheriae isolates. METHODS This descriptive observational study was performed from August to November 2018. C. diphtheriae isolates were collected from diphtheria patients and carriers in East Java from 2012 to 2017 and kept at the Balai Besar Laboratorium Kesehatan Daerah Surabaya or the Public Health Laboratory of Surabaya. Sample selection was done by random cluster sampling. The sensitivity test by E-test®of the five antibiotics (penicillin, oxacillin, erythromycin, azithromycin, and clarithromycin) was done to determine the minimum inhibitory concentration (MIC). The Clinical and Laboratory Standards Institute M45A (2015) Corynebacterium spp. for penicillin and erythromycin was used as standard. RESULTS From 114 targeted isolates, 108 were viable and toxigenic. The E-test was performed on the viable isolates. The majority of the hosts were male (58.3%), with median (range) age of 6.5 (1-14) years. Half of the samples were from the 1 to 5-year-old age group. The isolates were acquired much more from patients (78.7%) than carriers (21.3%) and from pharyngeal swab (74.1%). Most of these isolates were from Madura Island (47.2%) and the northern and eastern parts of the province (horseshoe area). Mitis isolates were the major variant (76.9%). The susceptibility pattern of C. diphtheriae to erythromycin was better than that to penicillin. The E-test result for penicillin was 68.52% susceptible, 31.48% intermediate, and 0% resistant (MIC range, < 0.016 to 2 μg/L) and for erythromycin (MIC range, < 0.016 to > 256 μg/L) was 85.2% susceptible, 12% intermediate, and 2.8% resistant The MIC range for oxacillin was 1 to 96 μg/L, while for both azithromycin and clarithromycin were < 0.016 to > 256 μg/L. CONCLUSION The susceptibility rate of C. diphtheriae to erythromycin is higher than that to penicillin. The regular update of antibiotic selection to the national guidelines is recommended. The MIC reference standard to azithromycin and clarithromycin is also needed.
Collapse
Affiliation(s)
- Dominicus Husada
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Sugi Deny Pranoto Soegianto
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | | | | | - Eveline Irawan
- Balai Besar Laboratorium Kesehatan Daerah (BBLK), Surabaya, Indonesia
| | - Leny Kartina
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Dwiyanti Puspitasari
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Parwati Setiono Basuki
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| | - Ismoedijanto
- Department of Child Health, Faculty of Medicine Universitas Airlangga/Dr. Soetomo Academic General Hospital, Surabaya, Indonesia
| |
Collapse
|
5
|
Lange MJ, Lyddon TD, Johnson MC. Diphtheria Toxin A-Resistant Cell Lines Enable Robust Production and Evaluation of DTA-Encoding Lentiviruses. Sci Rep 2019; 9:8985. [PMID: 31222087 PMCID: PMC6586843 DOI: 10.1038/s41598-019-45481-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
Suicide genes have been widely investigated for their utility as therapeutic agents and as tools for in vitro negative selection strategies. Several methods for delivery of suicide genes have been explored. Two important considerations for delivery are the quantity of delivered cargo and the ability to target the cargo to specific cells. Delivery using a lentiviral vector is particularly attractive due to the ability to encode the gene within the viral genome, as well as the ability to limit off-target effects by using cell type-specific glycoproteins. Here, we present the design and validation of a diphtheria toxin A (DTA)-encoding lentiviral vector expressing DTA under the control of a constituitive promoter to allow for expression of DTA in a variety of cell types, with specificity provided via selection of glycoproteins for pseudotyping of the lentiviral particles. DTA exerts its toxic activity through inhibition of eukaryotic translation elongation factor 2 (eEF2) via adenosine diphosphate (ADP)-ribosylation of a modified histidine residue, diphthamide, at His715, which blocks protein translation and leads to cell death. Thus, we also detail development of DTA-resistant cell lines, engineered through CRISPR/Cas9-mediated knockout of the diphthamide 1 (DPH1) gene, which enable both robust virus production by transfection and evaluation of DTA-expressing virus infectivity.
Collapse
Affiliation(s)
- Margaret J Lange
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA. .,Department of Molecular Microbiology & Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States.
| | - Terri D Lyddon
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA
| | - Marc C Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA. .,Bond Life Sciences Center, University of Missouri, Columbia, Missouri, USA. .,Department of Molecular Microbiology & Immunology, Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|