1
|
Alnaji HA, Hasan AH, Omran R, Al Nuwaini MQ. Association between the rs1800624 and rs80096349 SNPs and diabetic retinopathy: a pilot study. Ophthalmic Genet 2025; 46:40-46. [PMID: 39539063 DOI: 10.1080/13816810.2024.2428783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/13/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND One of the conditions that might harm your eyesight is diabetic retinopathy (DR), DR may set in slowly but surely for those with long-term diabetes and poor glucose control. . OBJECTIVE To establish a connection between the various genotypes of the rs1800624 SNP and the rs80096349 SNP located in the AGER gene and DR patients. . METHODS The current case-control research examined one hundred thirty-four individuals diagnosed with type 2 diabetes and thirty-six healthy individuals who did not have DM. These samples were obtained from Amir Al-Muminin, a private hospital in Najaf, Iraq. The tetra primers ARMS-PCR method was utilized to determine the genotype of rs1800624 SNP of the AGER gene. RESULTS A significant association was found between genotypes (AA, AG, and GG) and DR subgroups (NPDR & PDR) in patients (p = 0.001). The AG genotype of rs1800624 SNP is associated with a lowering the risk of developing NPDR (OR = 0.30; 95% CI = 0.12-0.74; p = 0.009 between controls and NPDR, OR = 0.36; 95% CI = 0.14-0.90; p = 0.029 between NDR and NPDR). HRM analysis verified the presence of only two genotypes in the samples: wild type (GG) and a heterozygous mutant (GA). However, a significant association between genotypes was observed when comparing DR status with controls and NDR (p = 0.031). CONCLUSION The rs1800624 SNP of the AGER gene is associated with the risk of NPDR and PDR in T2DM, and the polymorphism of the rs80096349 may be associated with retinopathy in the Iraqi population.
Collapse
Affiliation(s)
- Haider Ali Alnaji
- Medical Laboratory Department, Kufa institute, Al-Furat Al-Awsat Technical University, Najaf, Iraq
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Aizhar H Hasan
- Biology Department, College of Science, Babylon University, Babylon, Iraq
| | - Rabab Omran
- Biology Department, College of Science, Babylon University, Babylon, Iraq
| | | |
Collapse
|
2
|
Chou MCY, Chien HW, Lee CY, Yang SF, Lin HY. The relationship between long noncoding RNA H19 genotypes and the clinical features of diabetic retinopathy. Int J Med Sci 2025; 22:551-557. [PMID: 39898248 PMCID: PMC11783083 DOI: 10.7150/ijms.105022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/14/2024] [Indexed: 02/04/2025] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication of diabetes characterized by an inflammatory response. The H19 gene plays a role in regulating inflammation and is associated with chronic systemic inflammation. This study aims to investigate the potential correlation between single-nucleotide polymorphisms (SNPs) in the H19 gene and the development of DR. Five loci of H19 SNPs-rs3024270 (C/G), rs2839698 (C/T), rs3741219 (A/G), rs2107425 (C/T), and rs217727 (C/T)-were genotyped using TaqMan allelic discrimination in 454 individuals without DR and 272 DR participants. The results indicate that the H19 SNP rs3741219 AG (p = 0.030) and AG+GG (p = 0.037) alleles are significantly associated with an increased risk of developing DR in individuals with diabetes onset before the age of 45. Additionally, diabetic individuals with the H19 SNP rs3741219 AG+GG genotype also showed significantly higher serum creatinine (p = 0.034), lower glomerular filtration rate (GFR) (p = 0.013), higher total cholesterol/HDL ratio (p = 0.031), and higher triglycerides (p = 0.012). In an age-based subgroup analysis, GFR was significantly lower in diabetic patients with an onset of diabetes before 45 years and with the H19 SNP rs3741219 AG+GG genotype (p = 0.012). In conclusion, the presence of the H19 SNP rs3741219 variant is associated with a higher risk of DR in individuals with early-onset diabetes, and the relationship between the rs3741219 variant and decreased GFR is particularly pronounced in this population.
Collapse
Affiliation(s)
- Michael Chia-Yen Chou
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Hsiang-Wen Chien
- Department of Ophthalmology, Cathay General Hospital, Taipei, Taiwan
- Departments of Ophthalmology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Chia-Yi Lee
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Hung-Yu Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Ophthalmology, Show Chwan Memorial Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Optometry, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
3
|
Pei X, Huang D, Li Z. Genetic insights and emerging therapeutics in diabetic retinopathy: from molecular pathways to personalized medicine. Front Genet 2024; 15:1416924. [PMID: 39246572 PMCID: PMC11378321 DOI: 10.3389/fgene.2024.1416924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Diabetic retinopathy (DR) is a major complication of diabetes worldwide, significantly causing vision loss and blindness in working-age adults, and imposing a substantial socioeconomic burden globally. This review examines the crucial role of genetic factors in the development of DR and highlights the shift toward personalized treatment approaches. Advances in genetic research have identified specific genes and variations involved in angiogenesis, inflammation, and oxidative stress that increase DR susceptibility. Understanding these genetic markers enables early identification of at-risk individuals and the creation of personalized treatment plans. Incorporating these genetic insights, healthcare providers can develop early intervention strategies and tailored treatment plans to improve patient outcomes and minimize side effects. This review emphasizes the transformative potential of integrating genetic information into clinical practice, marking a paradigm shift in DR management and advancing toward a more personalized and effective healthcare model.
Collapse
Affiliation(s)
- Xiaoting Pei
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Duliurui Huang
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhijie Li
- Henan Eye Institute, Henan Eye Hospital, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
Sikka R, Raina P, Soni R, Gupta H, Bhanwer AJS. Genomic profile of diabetic retinopathy in a north indian cohort. Mol Biol Rep 2023; 50:9769-9778. [PMID: 37700140 DOI: 10.1007/s11033-023-08772-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/18/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Diabetic Retinopathy (DR) is one of the major microvascular complications of diabetes. Being a complex disease, it is important to delineate the genetic and environmental factors that influence the susceptibility to DR in a population. Therefore, the present study was designed to investigate the role of genetic and lifestyle risk factors associated with DR susceptibility in a North-Indian population. METHODS A total of 848 subjects were enrolled, comprising of DR cases (n = 414) and healthy controls (n = 434). The Sequenom MassARRAY technology was used to perform target genome analysis of 111 SNPs across 57 candidate genes and 14 intergenic region SNPs that are involved in the metabolic pathways associated with type 2 diabetes (T2D) and DR. Allele, genotype and haplotype frequencies were determined and compared among cases and controls. Logistic regression models were used to determine genotype-phenotype and phenotype-phenotype correlations. RESULTS The strongest association was observed with TCF7L2 rs12255372 T allele [p < 0.0001; odds ratio (OR) = 1.81 (1.44-2.27)] and rs11196205 C allele [p < 0.0008; OR = 1.62 (1.32-1.99)]. Genotype-phenotype and phenotype-phenotype correlations were found in the present study. CONCLUSION Our study provides strong evidence of association between the TCF7L2 variants and DR susceptibility.
Collapse
Affiliation(s)
- Ruhi Sikka
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India.
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India.
| | - Priyanka Raina
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
- Mosaic Therapeutics, Wellcome Genome Campus, Cambridge, UK
| | | | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, UP, India
| | - A J S Bhanwer
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
- Department of Genetics, Guru Ram Das University of Health Sciences, Amritsar, Punjab, India
| |
Collapse
|
5
|
Saravanakumar C, Usha Bhanu N. Speed Efficient Fast Fourier Transform for Signal Processing of Nucleotides to Detect Diabetic Retinopathy Using Machine Learning. JOURNAL OF MEDICAL IMAGING AND HEALTH INFORMATICS 2022. [DOI: 10.1166/jmihi.2022.3922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Diabetic Retinopathy (DR) is a complicated disease of diabetes, which specifically affects the retina. The human-intensive analysis mechanism of DR infected retina are likely to diagnose wrongly compared to computer-intensive diagnosis systems. In this paper, in order to aid the computer
based approach for the diagnosis of DR, a model based on machine learning algorithm is proposed. The nucleotides of the human retina are processed with the help of signal processing methodologies. A speed efficient Fast Fourier transform is proposed to work out the FFT of huge amount of samples
with higher pace. The improvement in speed is achieved in 98% of the samples. The prediction parameters, derived from these samples are utilized to classify the healthy retina sequence and an infected retina. In this study, Fine Tree, KNN Fine, Weighted KNN, Ensemble Bagged Trees and Ensemble
Subspace KNN classifiers are employed to build the models. The simulated results using MATLAB software show that the accuracy is 98% which is better than image processing based methods which were used earlier. The performance parameters such as sensitivity and specificity are determined for
each model. The faithfulness of the model is studied by deriving the ROC Curve.
Collapse
Affiliation(s)
- C. Saravanakumar
- Department of Electronics and Communication Engineering, SRM Valliammai Engineering College, Kattankulathur 603203, India
| | - N. Usha Bhanu
- Department of Electronics and Communication Engineering, SRM Valliammai Engineering College, Kattankulathur 603203, India
| |
Collapse
|
6
|
Niu T, An Y, Lv T, Liu D. Long non-coding RNA RPSAP52 upregulates Timp3 by serving as the endogenous sponge of microRNA-365 in diabetic retinopathy. Exp Ther Med 2020; 20:246. [PMID: 33178344 DOI: 10.3892/etm.2020.9376] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 05/20/2020] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes and the most common metabolic disorder. Recently, long non-coding (lnc)RNAs have been identified as critical regulators of DR. Ribosomal protein SA pseudogene 52 (RPSAP52) is an oncogenic lncRNA expressed in pituitary tumors. The present study aimed to investigate the functions of RPSAP52 in DR. RPSAP52 levels in the plasma of diabetic patients with or without DR complication was detected. Luciferase reporter assays, RT-qPCR and western blotting were performed to detect the interaction between RPSAP52 and micro RNA (miR)-365. Moreover, expression vectors of RPSAP52 and Timp3, as well as miR-365 mimics were transfected into ARPE-19 cells exposed to high glucose and the apoptotic cells were detected. The results showed that RPSAP52 was downregulated in patients with DR compared with patients with diabetes without obvious complications. RPSAP52 directly interacted with miR-365, while overexpression of RPSAP52 and miR-365 did not affect the expression of one another. In addition, overexpression of RPSAP52 upregulated TIMP metallopeptidase inhibitor 3 (Timp3) in retinal pigment epithelial (RPE) cells. High glucose treatment led to downregulated RPSAP52 and Timp3, but upregulated miR-365 in RPE cells. Moreover, cell apoptosis analysis identified that overexpression of RPSAP52 and Timp3 led to a decreased apoptotic rate of RPE cells under high glucose treatment. Therefore, it was speculated that RPSAP52 may upregulate Timp3 by serving as the endogenous sponge of miR-365 in DR to suppress RPE cell apoptosis.
Collapse
Affiliation(s)
- Tongtong Niu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Yan An
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Tingting Lv
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| | - Dongning Liu
- Department of Ophthalmology, The Fourth People's Hospital of Shenyang, Shenyang, Liaoning 110031, P.R. China
| |
Collapse
|
7
|
Cabrera AP, Mankad RN, Marek L, Das R, Rangasamy S, Monickaraj F, Das A. Genotypes and Phenotypes: A Search for Influential Genes in Diabetic Retinopathy. Int J Mol Sci 2020; 21:E2712. [PMID: 32295293 PMCID: PMC7215289 DOI: 10.3390/ijms21082712] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Although gene-environment interactions are known to play an important role in the inheritance of complex traits, it is still unknown how a genotype and the environmental factors result in an observable phenotype. Understanding this complex interaction in the pathogenesis of diabetic retinopathy (DR) remains a big challenge as DR appears to be a disease with heterogenous phenotypes with multifactorial influence. In this review, we examine the natural history and risk factors related to DR, emphasizing distinct clinical phenotypes and their natural course in retinopathy. Although there is strong evidence that duration of diabetes and metabolic factors play a key role in the pathogenesis of DR, accumulating new clinical studies reveal that this disease can develop independently of duration of diabetes and metabolic dysfunction. More recently, studies have emphasized the role of genetic factors in DR. However, linkage analyses, candidate gene studies, and genome-wide association studies (GWAS) have not produced any statistically significant results. Our recently initiated genomics study, the Diabetic Retinopathy Genomics (DRGen) Study, aims to examine the contribution of rare and common variants in the development DR, and how they can contribute to clinical phenotype, rate of progression, and response to available therapies. Our preliminary findings reveal a novel set of genetic variants associated with proangiogenic and inflammatory pathways that may contribute to DR pathogenesis. Further investigation of these variants is necessary and may lead to development of novel biomarkers and new therapeutic targets in DR.
Collapse
Affiliation(s)
- Andrea P. Cabrera
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Rushi N. Mankad
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Lauren Marek
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Ryan Das
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
| | - Sampath Rangasamy
- Translational & Genomics Research Institute, Phoenix, AZ 85004, USA;
| | - Finny Monickaraj
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| | - Arup Das
- Department of Surgery, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (R.N.M.); (L.M.); (R.D.); (F.M.)
- New Mexico VA Health Care System, Albuquerque, NM 87108, USA
| |
Collapse
|
8
|
Cabrera AP, Monickaraj F, Rangasamy S, Hobbs S, McGuire P, Das A. Do Genomic Factors Play a Role in Diabetic Retinopathy? J Clin Med 2020; 9:E216. [PMID: 31947513 PMCID: PMC7019561 DOI: 10.3390/jcm9010216] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Although there is strong clinical evidence that the control of blood glucose, blood pressure, and lipid level can prevent and slow down the progression of diabetic retinopathy (DR) as shown by landmark clinical trials, it has been shown that these factors only account for 10% of the risk for developing this disease. This suggests that other factors, such as genetics, may play a role in the development and progression of DR. Clinical evidence shows that some diabetics, despite the long duration of their diabetes (25 years or more) do not show any sign of DR or show minimal non-proliferative diabetic retinopathy (NPDR). Similarly, not all diabetics develop proliferative diabetic retinopathy (PDR). So far, linkage analysis, candidate gene studies, and genome-wide association studies (GWAS) have not produced any statistically significant results. We recently initiated a genomics study, the Diabetic Retinopathy Genetics (DRGen) Study, to examine the contribution of rare and common variants in the development of different phenotypes of DR, as well as their responsiveness to anti-VEGF treatment in diabetic macular edema (DME). Our preliminary findings reveal a novel set of genetic variants involved in the angiogenesis and inflammatory pathways that contribute to DR progression or protection. Further investigation of variants can help to develop novel biomarkers and lead to new therapeutic targets in DR.
Collapse
Affiliation(s)
- Andrea P. Cabrera
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Finny Monickaraj
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
| | | | - Sam Hobbs
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
| | - Paul McGuire
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| | - Arup Das
- Department of Surgery/Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA; (A.P.C.); (F.M.); (S.H.)
- New Mexico VA Health Care System, Albuquerque, NM 87131, USA
- Department of Cell Biology & Physiology, UNM, Albuquerque, NM 87131, USA;
| |
Collapse
|
9
|
Li W, Chen S, Mei Z, Zhao F, Xiang Y. Polymorphisms in Sorbitol-Aldose Reductase (Polyol) Pathway Genes and Their Influence on Risk of Diabetic Retinopathy Among Han Chinese. Med Sci Monit 2019; 25:7073-7078. [PMID: 31539366 PMCID: PMC6767949 DOI: 10.12659/msm.917011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Sorbitol-aldose reductase (polyol) pathway genes have been strongly linked to diabetic retinopathy. Polymorphisms in these genes may affect their functions and influence the risk of retinopathy. In this work, we investigated the influence of the rs759853 polymorphism of ALR2 gene and rs2055858 and rs3759890 polymorphisms of SDH gene on risk of diabetic retinopathy among Han Chinese. MATERIAL AND METHODS We included 3,000 subjects in our study, of which 1,500 were patients with diabetic retinopathy and 1,500 were controls without the said condition. Among the cases, 750 had the non-proliferative diabetic retinopathy (NPDR) and 750 had proliferative diabetic retinopathy (PDR). The polymorphisms were genotyped using established methods and logistic regression analysis was used to determine whether the polymorphisms were associated with risk of diabetic retinopathy. RESULTS We found that variants of ALR2 rs759853 polymorphism were significantly associated with an increased risk of diabetic retinopathy, whereas variants of SDH rs2055858 polymorphism were significantly associated with a lower risk. For the former, an odds ratio (OR) of 1.46 were noted for the heterozygous genotype (95% CI=1.25-1.70, P<0.01) and the homozygous variant genotype (OR=1.90, 95% CI=1.40-2.60, P<0.01). For SDH rs2055858 polymorphism, an OR of 0.51 (95% CI=0.43-0.61, P<0.01) and 0.34 (95% CI=0.28-0.42, P<0.01) was observed for heterozygous and homozygous variant genotype respectively. Subgroup analysis based on NPDR and PDR showed a similar finding as the combined results. CONCLUSIONS ALR2 rs759853 and SDH rs2055858 polymorphisms were respectively associated with a higher and lower risk of diabetic retinopathy.
Collapse
Affiliation(s)
- Wenliang Li
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Sisi Chen
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Zhongming Mei
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Fang Zhao
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| | - Yi Xiang
- Department of Ophthalmology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China (mainland)
| |
Collapse
|
10
|
Cecilia OM, José Alberto CG, José NP, Ernesto Germán CM, Ana Karen LC, Luis Miguel RP, Ricardo Raúl RR, Adolfo Daniel RC. Oxidative Stress as the Main Target in Diabetic Retinopathy Pathophysiology. J Diabetes Res 2019; 2019:8562408. [PMID: 31511825 PMCID: PMC6710812 DOI: 10.1155/2019/8562408] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/17/2019] [Accepted: 07/15/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the most common complications of diabetes mellitus (DM) causing vision impairment even at young ages. There are numerous mechanisms involved in its development such as inflammation and cellular degeneration leading to endothelial and neural damage. These mechanisms are interlinked thus worsening the diabetic retinopathy outcome. In this review, we propose oxidative stress as the focus point of this complication onset.
Collapse
Affiliation(s)
- Olvera-Montaño Cecilia
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Castellanos-González José Alberto
- Department of Ophthalmology, Specialties Hospital of the National Occidental Medical Center, Mexican Institute of Social Security, Mexico
| | - Navarro-Partida José
- Tecnológico de Monterrey Institute, School of Medicine and Health Sciences, Campus Guadalajara, Mexico
| | - Cardona-Muñoz Ernesto Germán
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - López-Contreras Ana Karen
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | | | - Robles-Rivera Ricardo Raúl
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| | - Rodríguez-Carrizalez Adolfo Daniel
- Institute of Clinical and Experimental Therapeutics, Department of Physiology, Health Sciences University Center, University of Guadalajara, Mexico
| |
Collapse
|
11
|
Cao M, Tian Z, Zhang L, Liu R, Guan Q, Jiang J. Genetic association of AKR1B1 gene polymorphism rs759853 with diabetic retinopathy risk: A meta-analysis. Gene 2018; 676:73-78. [DOI: 10.1016/j.gene.2018.07.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 07/05/2018] [Indexed: 11/27/2022]
|
12
|
Parveen A, Kim JH, Oh BG, Subedi L, Khan Z, Kim SY. Phytochemicals: Target-Based Therapeutic Strategies for Diabetic Retinopathy. Molecules 2018; 23:E1519. [PMID: 29937497 PMCID: PMC6100391 DOI: 10.3390/molecules23071519] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/07/2023] Open
Abstract
Background: A variety of causative factors are involved in the initiation of diabetic retinopathy (DR). Current antidiabetic therapies are expensive and not easily accessible by the public. Furthermore, the use of multiple synthetic drugs leads to severe side effects, which worsen the diabetic patient’s condition. Medicinal plants and their derived phytochemicals are considered safe and effective treatment and their consumption can reduce the DR risk. In this article, we discuss a variety of medicinal plants, and their noteworthy bio-active constituents, that will be utilized as target based therapeutic strategies for DR. Methods: A broad-spectrum study was conducted using published English works in various electronic databases including Science Direct, PubMed, Scopus, and Google Scholar. Results: Targeting the multiple pathological factors including ROS, AGEs formation, hexosamine flux, PARP, PKC, and MAPK activation through variety of bioactive constituents in medicinal plants, diabetes progression can be delayed with improved loss of vision. Conclusions: Data reveals that traditional herbs and their prominent bioactive components control and normalize pathological cellular factors involved in DR progression. Therefore, studies should be carried out to explore the protective retinopathy effects of medicinal plants using experimental animal and humans models.
Collapse
Affiliation(s)
- Amna Parveen
- Department of Pharmacognosy, College of Pharmacy, Government College University Faisalabad, Faisalabad 3800, Pakistan.
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Jin Hyun Kim
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Byeong Gyu Oh
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Lalita Subedi
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Zahra Khan
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu, Incheon 406-799, Korea.
- Gachon Institute of Pharmaceutical Science, Gachon University, Hambakmoe-ro, Yeonsu-gu, Incheon 406-799, Korea.
| |
Collapse
|
13
|
TLR7 deficiency contributes to attenuated diabetic retinopathy via inhibition of inflammatory response. Biochem Biophys Res Commun 2017; 493:1136-1142. [PMID: 28843858 DOI: 10.1016/j.bbrc.2017.08.085] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 08/22/2017] [Indexed: 12/25/2022]
Abstract
Diabetic retinopathy (DR) is a major microvascular complication of diabetes, resulting in neuronal dysfunction, retinal vascular leakage, and apoptosis within the retina. Innate immunity plays an important role in the pathogenesis of type 2 diabetes (T2D) and related complications. The toll-like receptors (TLRs), central to innate immunity, are essential participants in the progression and pathogenesis of the disease and its complications. In the study, streptozotocin (STZ) was combined with whole-body hypoxia for quicker induction of early-stage diabetic retinopathy (DR) in the wild type (WT) and TLR7-knockout (KO) C57BL/6 mice. The effects of TLR7 were also investigated in fructose-treated retinal pigment epithelial (RPE) cells. In the retinas of WT/DR mice, abnormal a-wave and b-wave activity, hyperfluorescence, and reduced retinal thickness were observed. DR development was associated with enhanced TLR7 expression, whose deletion dramatically reduced VEGF expression levels. And the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-6, IL-18 and IL-12, was highly reduced by TLR7-deficiency in DR mice. Consistently, WT/DR mice exhibited higher phosphorylation of IκB kinase α (IKKα), inhibitor of NF-κB α (IκBα) and nuclear factor κB (NF-κB), which were found to be down-regulated in KO/DR mice. Similarly, DR-induced mitogen-activated protein kinases (MAPKs) activation was blocked by TLR7-knockout. In vitro, fructose incubation-triggered inflammation was reversed by TLR7 knockdown, accompanied with inactivated NF-κB and MAPKs pathways. And reduced reactive oxygen species (ROS) generation was observed in TLR7-knockdown cells with fructose treatment. Together, inhibiting TLR7 suppressed diabetic retinopathy by reducing inflammation and suggested a potential application in clinics.
Collapse
|
14
|
Affiliation(s)
- Arup Das
- Department of Ophthalmology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
15
|
Wang W, He M, Huang W. Association of monocyte chemoattractant protein-1 gene 2518A/G polymorphism with diabetic retinopathy in type 2 diabetes mellitus: A meta-analysis. Diabetes Res Clin Pract 2016; 120:40-6. [PMID: 27505625 DOI: 10.1016/j.diabres.2016.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/01/2016] [Accepted: 07/22/2016] [Indexed: 01/02/2023]
Abstract
AIMS The relationship between monocyte chemoattractant protein-1 (MCP-1) 2518 A/G polymorphism and diabetic retinopathy (DR) attracted intense interest recently, but the reported results are controversial. A meta-analysis was performed to assess the MCP-1 polymorphism associated with DR susceptibility in type 2 diabetes mellitus. METHODS Eligible studies were identified from PubMed, Embase, Web of science, Chinese Biomedical database, and references of retrieved articles. Pooled odds ratios (ORs) with their 95% confidence intervals (95%CI) were calculated by fixed or random-effects models. RESULTS Six studies involving 3415 patients without DR and 3468 with any DR were included in the final meta-analysis. Each 5 studies evaluated the associations of MCP-1 polymorphism and any DR and proliferative DR (PDR), respectively. Meta-analysis in fixed model demonstrated a significant association between MCP-1 polymorphism and any DR under the homozygous model (OR=1.36; 95%CI: 1.15-1.62, P<0.001), heterozygous model (OR=1.20; 95%CI: 1.02-1.42, P=0.031), dominant model (OR=1.28; 95%CI: 1.10-1.50, P=0.002), recessive model (OR=1.17; 95%CI: 1.05-1.31, P=0.004), and allelic model (OR=1.16; 95%CI: 1.07-1.25, P<0.001). Furthermore, a significant association of MCP-1 polymorphism and DR progression from non-proliferative DR to proliferative DR was identified under heterozygous model (OR=1.45; 95%CI: 1.04-2.02, P=0.030). Sensitivity analyses did not draw different findings. CONCLUSIONS Meta-analysis of existing data suggested that MCP-1 2518 A/G polymorphism affected the risk of presence and progression of DR in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Wei Wang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Miao He
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Wenyong Huang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou, People's Republic of China.
| |
Collapse
|