1
|
Huang J, Li Y, Chen H, Liu H, Li W, Isiaka ID, Du H, Noman M, Rizwan MA, Du Q, Li Y, Lin Y, Liu Y, Lu X, Liu D, Yan Y. Epidemiological, Clinical, and Genomic Traits of PIV in Hospitalized Children After the COVID-19 Pandemic in Wuhan, China. J Med Virol 2024; 96:e70117. [PMID: 39673291 PMCID: PMC11645542 DOI: 10.1002/jmv.70117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/25/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Human parainfluenza virus (PIV) is a main cause of acute lower respiratory tract infections (ALRTIs), which contributes to childrens' mortality worldwide; however, the epidemiology of PIVs following the SARS-CoV-2 pandemic is still not clarified, and poses risks of potential outbreaks. Herein, we conducted a retrospective observational study from September 26, 2020 to September 30, 2023 to assess PIV epidemiology in Wuhan, China, as well as the clinical characteristics of PIV infections. In total, 14,065 inpatients with ALRTIs were enrolled, of which 936 were identified to have PIV infection. We also obtained 69 PIV3 RNA to reveal its molecular traits. An alteration in PIV season pattern away from spring and summer prevalence was noted, as well as a progressive rise in its detection rate. PIV-related ALRTIs were more prevalent in male patients. PIV3 was the dominant PIV type in recent years. In comparison with the phase before the cancellation of Dynamic Zero-COVID Policy in December 2022, symptoms after its repeal were milder. All Wuhan strains were classified with C3f lineage and possibly evolved from native strains in China. Additionally, some mutations, such as Q499P in protein hemagglutinin-neuraminidase, should be given further attention. In summary, our study demonstrates the clinical characteristics of PIVs and genomic traits of PIV3 in Wuhan, China, thus holds importance for the diagnosis and control of PIV infections in the post-pandemic era.
Collapse
Grants
- This study was supported by the Natural Science Foundation of Hubei Province (2023AFB221, 2021CFA012), the Funding for Scientific Research Projects from Wuhan Children's Hospital (2024FEBSJJ007), Medical Research Project of Wuhan Health Commission (S202401120097), the Knowledge Innovation Program of Wuhan-Basic Research (2022020801010569), and the Health Commission of Hubei Province (WJ2021M262).
- This study was supported by the Natural Science Foundation of Hubei Province (2023AFB221, 2021CFA012), the Funding for Scientific Research Projects from Wuhan Children's Hospital (2024FEBSJJ007), Medical Research Project of Wuhan Health Commission (S202401120097), the Knowledge Innovation Program of Wuhan‐Basic Research (2022020801010569), and the Health Commission of Hubei Province (WJ2021M262).
Collapse
Affiliation(s)
- Jiaming Huang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Ying Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hebin Chen
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Haizhou Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Wenqing Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ismaila Damilare Isiaka
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Hui Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Muhammad Noman
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Muhammad Arif Rizwan
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Du
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yang Li
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yaxin Lin
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuehu Liu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoxia Lu
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega‐Science, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Key Laboratory of Virology and Biosafety, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- Computational Virology Group, Etiology Research Center, Wuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yi Yan
- Department of Respiratory Medicine, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Pediatric Respiratory Disease Laboratory, Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
2
|
Alsaleh AN, Aziz IM, Alkubaisi NA, Almajhdi FN. Genetic analysis of human parainfluenza type 2 virus in Riyadh, Saudi Arabia. Virus Genes 2024; 60:1-8. [PMID: 37906378 DOI: 10.1007/s11262-023-02035-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 11/02/2023]
Abstract
The extensive mass gathering of pilgrims from all over the world, as well as the constant flow of foreign workers via country entry crossings, raises the likelihood of respiratory virus outbreaks spreading and evolving in Saudi Arabia. Here, we report the sequence and phylogenetic analysis of the human parainfluenza type-2 (HPIV-2) in nasopharyngeal aspirates (NPAs) collected from Riyadh, Saudi Arabia, from 2020/21 to 2021/22 seasons. RNA was extracted from the clinical samples and subjected to RT-PCR analysis for the detection of IAV and IBV. The full-length HN gene of HPIV-2 was amplified and sequenced. Multiple sequence alignments (both nucleotides and deduced amino acids) were aligned using Clustal W, MegAlign program of Lasergene software, and MEGA 7.0. HPIV-2 was found in (4; 2% of 200) NPAs. Sequence and phylogenetic analysis results showed that indicated a genotype shifting from G3 to G4a with 83% sequence homology 62-M786 from Japan, which was prominent throughout the winter seasons of 2008/09. Multiple amino acid sequence alignment revealed 25 sites of possible difference between G3 genotypes and G4a. A total of twenty- two of these locations were shared by the other G4a genotypes, whereas three positions, 67 V, 175 S, and 377Q, were exclusively shared by G3. Only eight conserved N-glycosylation sites were found at amino acids 6(NLS), 286(NTT), 335(NIT), 388(NNS), 498(NES), 504(NPT), 517(NTT), and 539(NGT) in four Riyadh isolates. Our findings also revealed that the G4a genotype of HPIV-2 predominated in our samples population during the winter seasons of 2020/21 and 2021/22. Further research with a larger sample size covering numerous regions of Saudi Arabia throughout different epidemic seasons is needed to achieve an improved knowledge of HPIV-2 circulation.
Collapse
Affiliation(s)
- Asma N Alsaleh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ibrahim M Aziz
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
3
|
Yi S, Zhang SS, Wang XR, Zhou Y, Zhang WX, Du J, Hu XW, Lu QB. Dynamics of parainfluenza virus among hospitalized children with acute respiratory tract infection under two-child policy and COVID-19 pandemic in Hubei Province, China, 2014-2022. J Med Virol 2023; 95:e28899. [PMID: 37401337 DOI: 10.1002/jmv.28899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/12/2023] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
To analyze changes in the detection of parainfluenza virus (PIV) in children hospitalized with acute respiratory tract infection (ARTI) during 2014-2022 in Hubei Province, and explore the impact of the universal two-child policy and the public health measures against COVID-19 epidemic on the prevalence of PIV in China. The study was conducted at the Maternal and Child Health Hospital of Hubei Province. Children aged <18 years with ARTI admitted from January 2014 to June 2022 were enrolled. The infection of PIV was confirmed by the direct immunofluorescence method in nasopharyngeal specimens. Adjusted logistic regression models were used to analyze the influence of the universal two-child policy implementation and public health measurements against COVID-19 on PIV detection. Totally 75 128 inpatients meeting the criteria were enrolled in this study from January 2014 to June 2022 with an overall PIV positive rate of 5.5%. The epidemic seasons of PIV prevalence lagged substantially in 2020. A statistically significant higher positive rate of PIV was observed in 2017-2019 compared to that in 2014-2015 (6.12% vs 2.89%, risk ratio = 2.12, p < 0.001) after the implementation of the universal two-child policy in 2016. A steep decline occurred in PIV positive rate during the COVID-19 epidemic in 2020 (0.92% vs 6.92%, p < 0.001) and it rebounded during the regular epidemic prevention and control period in 2021-2022 (6.35%, p = 0.104). In Hubei Province, the implementation of the universal two-child policy might have led to an increase of PIV prevalence, and public health measures during the COVID-19 epidemic might have influenced the fluctuation in PIV detection since 2020.
Collapse
Affiliation(s)
- Song Yi
- Department of Medical Genetic Center, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Shan-Shan Zhang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Xin-Rui Wang
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
| | - Yiguo Zhou
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
| | - Wan-Xue Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Juan Du
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
| | - Xing-Wen Hu
- Department of Clinical Laboratory, Maternal and Child Health Hospital of Hubei Province, Wuhan, China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology & Vaccine Research Center, School of Public Health, Peking University, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Department of Health Policy and Management, School of Public Health, Peking University, Beijing, China
- Global Center for Infectious Disease and Policy Research & Global Health and Infectious Diseases Group, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| |
Collapse
|
4
|
Sun YP, Qiang HS, Lei SY, Zheng XY, Zhang HX, Su YY, Zheng ZZ, Zhang J, Lin XZ, Zhou YL. Epidemiological features, risk factors and disease burden of respiratory viruses among hospitalized children with acute respiratory tract infections in Xiamen, China. Jpn J Infect Dis 2022; 75:537-542. [PMID: 35768274 DOI: 10.7883/yoken.jjid.2022.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Well-established surveillance and monitoring system for respiratory viruses need be improved and epidemiological data about respiratory viruses is scarce in China. This study aimed to investigate epidemiological characteristics of respiratory viruses among hospitalized children ≤ 2 years old with acute respiratory tract infections (ARTIs) in Xiamen, China from October 2014 to September 2017. The clinical records of 7248 children hospitalized for ARTIs were analyzed retrospectively. Respiratory syncytial virus (RSV) (22.3%) was the most common virus among hospitalized children ≤ 2 years old, followed by parainfluenza (5.0%), adenovirus (3.5%) and influenza (1.7%). RSV-infected children possessed a higher disease burden including higher ICU admission rate (12.7%) and hospital charges ($635.36). Especially, infants < 6 months of age had the highest risk of RSV infection (OR= 2.4, 95% CI: 1.9-2.9) and higher ICU admission rate (12.1% vs. 4.5%, 4.6%) and hospital costs ($923.3 vs. $785.5, $811.7) than other age groups. Therefore, infants aged 0-6 months, especially premature infants and children with congenital diseases, should receive more concern. There is an urgent need to develop effective immunization strategies to protect these infants through the first 6 months of life or RSV season.
Collapse
Affiliation(s)
- Yong-Peng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Hong-Sheng Qiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Si-Yu Lei
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Xin-Yi Zheng
- Department of Endemic Diseases Prevention and Control, Fujian Provincial Center for Disease Control and Prevention, China
| | - Hai-Xia Zhang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, China
| | - Xin-Zhu Lin
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine & School of Public Health, Xiamen University, China
| |
Collapse
|
5
|
Chen Y, Lei X. Metapath Aggregated Graph Neural Network and Tripartite Heterogeneous Networks for Microbe-Disease Prediction. Front Microbiol 2022; 13:919380. [PMID: 35711758 PMCID: PMC9194683 DOI: 10.3389/fmicb.2022.919380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
More and more studies have shown that understanding microbe-disease associations cannot only reveal the pathogenesis of diseases, but also promote the diagnosis and prognosis of diseases. Because traditional medical experiments are time-consuming and expensive, many computational methods have been proposed in recent years to identify potential microbe-disease associations. In this study, we propose a method based on heterogeneous network and metapath aggregated graph neural network (MAGNN) to predict microbe-disease associations, called MATHNMDA. First, we introduce microbe-drug interactions, drug-disease associations, and microbe-disease associations to construct a microbe-drug-disease heterogeneous network. Then we take the heterogeneous network as input to MAGNN. Second, for each layer of MAGNN, we carry out intra-metapath aggregation with a multi-head attention mechanism to learn the structural and semantic information embedded in the target node context, the metapath-based neighbor nodes, and the context between them, by encoding the metapath instances under the metapath definition mode. We then use inter-metapath aggregation with an attention mechanism to combine the semantic information of all different metapaths. Third, we can get the final embedding of microbe nodes and disease nodes based on the output of the last layer in the MAGNN. Finally, we predict potential microbe-disease associations by reconstructing the microbe-disease association matrix. In addition, we evaluated the performance of MATHNMDA by comparing it with that of its variants, some state-of-the-art methods, and different datasets. The results suggest that MATHNMDA is an effective prediction method. The case studies on asthma, inflammatory bowel disease (IBD), and coronavirus disease 2019 (COVID-19) further validate the effectiveness of MATHNMDA.
Collapse
Affiliation(s)
- Yali Chen
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
6
|
Xu M, Yue W, Song X, Zeng L, Liu L, Zheng J, Chen X, Lv F, Wen S, Zhang H. Epidemiological Characteristics of Parainfluenza Virus Type 3 and the Effects of Meteorological Factors in Hospitalized Children With Lower Respiratory Tract Infection. Front Pediatr 2022; 10:872199. [PMID: 35573951 PMCID: PMC9091557 DOI: 10.3389/fped.2022.872199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To investigate the relationship between meteorological factors and Human parainfluenza virus type 3 (HPIV-3) infection among hospitalized children. Methods All hospitalized children with acute lower respiratory tract infections were tested for viral pathogens and enrolled, at the second affiliated hospital of Wenzhou medical university, between 2008 and 2017. Meteorological data were directly obtained from Wenzhou Meteorology Bureau's nine weather stations and expressed as the mean exposure for each 10-day segment (average daily temperatures, average daily relative humidity, rainfall, rainfall days, and wind speed). The correlation between meteorological factors and the incidence of HPIV-3 was analyzed, with an autoregressive integrated moving average model (ARIMA), generalized additive model (GAM), and least absolute shrinkage and selection operator (LASSO). Results A total of 89,898 respiratory specimens were tested with rapid antigen tests, and HPIV-3 was detected in 3,619 children. HPIV-3 was detected year-round, but peak activities occurred most frequently from March to August. The GAM and LASSO-based model had revealed that HPIV-3 activity correlated positively with temperature and rainfall day, but negatively with wind speed. The ARIMA (1,0,0)(0,1,1) model well-matched the observed data, with a steady R2 reaching 0.708 (Ljung-Box Q = 21.178, P = 0.172). Conclusion Our study suggests that temperature, rainfall days, and wind speed have significant impacts on the activity of HPIV-3. GAM, ARIMA, and LASSO-based models can well predict the seasonality of HPIV-3 infection among hospitalized children. Further understanding of its mechanism would help facilitate the monitoring and early warning of HPIV-3 infection.
Collapse
Affiliation(s)
- Ming Xu
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Wei Yue
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xinyue Song
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Luyao Zeng
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Li Liu
- Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinwei Zheng
- Clinical Research Center, Affiliated Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaofang Chen
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fangfang Lv
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shunhang Wen
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hailin Zhang
- Department of Pediatric Pulmonology, Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Rafeek RAM, Divarathna MVM, Morel AJ, Noordeen F. Epidemiological and clinical characteristics of children with human parainfluenza virus associated acute respiratory infection in a general hospital in Sri Lanka. JOURNAL OF CLINICAL VIROLOGY PLUS 2021. [DOI: 10.1016/j.jcvp.2021.100049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
8
|
Sun YP, Zheng XY, Zhang HX, Zhou XM, Lin XZ, Zheng ZZ, Zhang J, Su YY, Zhou YL. Epidemiology of Respiratory Pathogens Among Children Hospitalized for Pneumonia in Xiamen: A Retrospective Study. Infect Dis Ther 2021; 10:1567-1578. [PMID: 34146254 PMCID: PMC8214060 DOI: 10.1007/s40121-021-00472-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES To investigate the etiology of common respiratory pathogens in children < 2 years of age hospitalized with pneumonia in Xiamen from 2014 to 2017. METHODS The medical records of 5581 children with pneumonia were retrospectively reviewed. Direct immunofluorescent test was used for respiratory virus testing. Bacteria were detected by conventional culture method. The results of pathogen detection at admission were analyzed as well as the clinical outcomes of children. RESULTS The burden of hospitalized children with pneumonia was highest among infants < 6 months old (58.2%). Respiratory syncytial virus (RSV) was the most common respiratory virus (26.0%) followed by parainfluenza (4.8%) and adenovirus (3.2%). Haemophilus influenzae was the most common bacteria detected (16.6%) followed by Moraxella catarrhalis (13.4%), Staphylococcus aureus (13.0%), Streptococcus pneumoniae (12.3%), Escherichia coli (5.1%) and Klebsiella pneumoniae (4.8%). Notably, RSV and K. pneumoniae were detected more frequently in severe pneumonia (35.0% and 10.9%) versus mild pneumonia (25.6% and 4.6%), with higher rates of ICU admissions, longer hospital stays and higher hospital costs compared to those infected with other respiratory pathogens. CONCLUSIONS Among children < 2 years of age hospitalized with pneumonia in Xiamen, RSV was the most common respiratory virus, while H. influenzae and S. pneumoniae remained the predominant bacterial pathogens detected. Considering the low implementation rate of vaccines against pneumococcal and Hib pneumonia in China, there is an urgent need to increase both vaccination rates to reduce pneumococcal and Hib disease burden.
Collapse
Affiliation(s)
- Yong-Peng Sun
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Xin-Yi Zheng
- Department of Endemic Diseases Prevention and Control, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, 350001 Fujian China
| | - Hai-Xia Zhang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| | - Xiao-Man Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| | - Xin-Zhu Lin
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| | - Zi-Zheng Zheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Jun Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Ying-Ying Su
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University, Xiamen, 361002 Fujian China
| | - Yu-Lin Zhou
- United Diagnostic and Research Center for Clinical Genetics, Women and Children’s Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, 361102 Fujian China
| |
Collapse
|
9
|
Shao N, Liu B, Xiao Y, Wang X, Ren L, Dong J, Sun L, Zhu Y, Zhang T, Yang F. Genetic Characteristics of Human Parainfluenza Virus Types 1-4 From Patients With Clinical Respiratory Tract Infection in China. Front Microbiol 2021; 12:679246. [PMID: 34335501 PMCID: PMC8320325 DOI: 10.3389/fmicb.2021.679246] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/17/2021] [Indexed: 11/27/2022] Open
Abstract
Human parainfluenza viruses (HPIV1–4) cause acute respiratory tract infections, thereby impacting human health worldwide. However, there are no current effective antivirals or licensed vaccines for infection prevention. Moreover, sequence information for human parainfluenza viruses (HPIVs) circulating in China is inadequate. Therefore, to shed light on viral genetic diversity and evolution, we collected samples from patients infected with HPIV1–4 in China from 2012 to 2018 to sequence the viruses. We obtained 24 consensus sequences, comprising 1 for HPIV1, 2 for HPIV2, 19 for HPIV3, and 2 for HPIV4A. Phylogenetic analyses classified the 1 HPIV1 into clade 2, and the 2 HPIV4 sequences into cluster 4A. Based on the hemagglutinin-neuraminidase (HN) gene, a new sub-cluster was identified in one of the HPIV2, namely G1c, and the 19 HPIV3 sequences were classified into the genetic lineages of C3f and C3a. The results indicated that HPIV1–4 were co-circulated in China. Further, the lineages of sub-cluster C3 of HPIV3 were co-circulated in China. A recombination analysis indicated that a putative recombination event may have occurred in the HN gene of HPIV3. In the obtained sequences of HPIV3, we found that two amino acid substitution sites (R73K in the F protein of PUMCH14028/2014 and A281V in the HN protein of PUMCH13961/2014) and a negative selection site (amino acid position 398 in the F protein) corresponded to the previously reported neutralization-related sites. Moreover, amino acid substitution site (K108E) corresponded to the negative selection site (amino acid position 108) in the 10 F proteins of HPIV3. However, no amino acid substitution site corresponded to the glycosylation site in the obtained HPIV3 sequences. These results might help in studying virus evolution, developing vaccines, and monitoring HPIV-related respiratory diseases.
Collapse
Affiliation(s)
- Nan Shao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bo Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yan Xiao
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Wang
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lili Ren
- NHC Key Laboratory of Systems Biology of Pathogens and Christophe Mérieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Key Laboratory of Respiratory Disease Pathogenomics, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Dong
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lilian Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yafang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ting Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fan Yang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Howard LM, Rankin DA, Spieker AJ, Gu W, Haddadin Z, Probst V, Rahman H, McHenry R, Pulido CG, Williams JV, Faouri S, Shehabi A, Khuri-Bulos N, Halasa NB. Clinical features of parainfluenza infections among young children hospitalized for acute respiratory illness in Amman, Jordan. BMC Infect Dis 2021; 21:323. [PMID: 33827449 PMCID: PMC8024934 DOI: 10.1186/s12879-021-06001-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/17/2021] [Indexed: 11/22/2022] Open
Abstract
Background Parainfluenza virus (PIV) is a leading cause of acute respiratory illness (ARI) in children. However, few studies have characterized the clinical features and outcomes associated with PIV infections among young children in the Middle East. Methods We conducted hospital-based surveillance for ARI among children < 2 years of age in a large referral hospital in Amman, Jordan. We systematically collected clinical data and respiratory specimens for pathogen detection using reverse transcription polymerase chain reaction. We compared clinical features of PIV-associated ARI among individual serotypes 1, 2, 3, and 4 and among PIV infections compared with other viral ARI and ARI with no virus detected. We also compared the odds of supplemental oxygen use using logistic regression. Results PIV was detected in 221/3168 (7.0%) children hospitalized with ARI. PIV-3 was the most commonly detected serotype (125/221; 57%). Individual clinical features of PIV infections varied little by individual serotype, although admission diagnosis of ‘croup’ was only associated with PIV-1 and PIV-2. Children with PIV-associated ARI had lower frequency of cough (71% vs 83%; p < 0.001) and wheezing (53% vs 60% p < 0.001) than children with ARI associated with other viruses. We did not find a significant difference in supplemental oxygen use between children with PIV-associated infections (adjusted odds ratio [aOR] 1.12, 95% CI 0.66–1.89, p = 0.68) and infections in which no virus was detected. Conclusions PIV is frequently associated with ARI requiring hospitalization in young Jordanian children. Substantial overlap in clinical features may preclude distinguishing PIV infections from other viral infections at presentation. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06001-1.
Collapse
Affiliation(s)
- Leigh M Howard
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Danielle A Rankin
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA.,Vanderbilt Epidemiology PhD Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Andrew J Spieker
- Department of Biostatistics, Vanderbilt University, Nashville, TN, USA
| | - Wenying Gu
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Zaid Haddadin
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Varvara Probst
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Herdi Rahman
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Rendie McHenry
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Claudia Guevara Pulido
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - John V Williams
- Department of Pediatrics, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Samir Faouri
- Department of Pediatrics, Al Bashir Hospital, Amman, Jordan
| | - Asem Shehabi
- Department of Pathology and Microbiology, University of Jordan, Amman, Jordan
| | | | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University School of Medicine, 1161 21st Avenue South, Nashville, TN, 37232, USA.
| |
Collapse
|
11
|
Rafeek RAM, Divarathna MVM, Noordeen F. A review on disease burden and epidemiology of childhood parainfluenza virus infections in Asian countries. Rev Med Virol 2020; 31:e2164. [PMID: 32996257 DOI: 10.1002/rmv.2164] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/18/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
Human parainfluenza viruses (HPIVs) are an important cause of acute respiratory tract infections (ARTIs) in children less than 5 years, second only to human respiratory syncytial viruses (HRSVs). Generally, patients infected with HPIVs are treated in outpatient clinics, yet also contribute to ARTI-associated hospitalization in children. Although HPIV infections are well studied in developed countries, these infections remain under-investigated and not considered in the routine laboratory diagnosis of childhood ARTI in many developing countries in Asia. We performed an extensive literature search on the prevalence, epidemiology, and burden of HPIV infections in children less than 5 years in Asia using PubMed and PubMed Central search engines. Based on the literature, the prevalence of HPIV infection in Asia ranges from 1% to 66%. According to many studies, HPIV-3 is the major virus circulating among children; however, several studies failed to detect HPIV-4 due to unavailability of diagnostic tools. In Asian countries, HPIV contributes a substantial disease burden in children. The data in this review should assist researchers and public health authorities to plan preventive measures, including accelerating research on vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Rukshan A M Rafeek
- Faculty of Medicine, Department of Microbiology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Maduja V M Divarathna
- Faculty of Medicine, Department of Microbiology, University of Peradeniya, Peradeniya, Sri Lanka
| | - Faseeha Noordeen
- Faculty of Medicine, Department of Microbiology, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
12
|
Li HJ, Du J, Yang YN, Cui Y, Xi L, Wang S, Liu YQ, Zhang GF, Cui F, Lu QB. Outbreak of Human Parainfluenza Virus Type 1 in a Kindergarten from China, 2018. J PEDIAT INF DIS-GER 2019; 15:25-30. [PMID: 32300276 PMCID: PMC7117075 DOI: 10.1055/s-0039-1695039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 07/12/2019] [Indexed: 01/05/2023]
Abstract
Objective
We reported an outbreak of human parainfluenza virus type 1 (HPIV1) in a kindergarten and explored the genetic characteristics of HPIV1
hemagglutinin-neuraminidase
(HN) and
fusion
(F) genes to provide more evidence about HPIV1 outbreaks.
Methods
Suspected cases were the children with an influenza-like illness during June 20 to 26, 2018. Nasopharyngeal swabs were collected and screened to determine the presence of respiratory pathogens by real-time fluorescent quantitative polymerase chain reaction. The HN and F gene sequences of HPIV-positive samples were further amplified and sequenced to confirm the HPIV genotype and identify genetic characteristics. A phylogenetic tree, based on the HN and F genes, was reconstructed by maximum likelihood method.
Results
Fourteen children in the outbreak were diagnosed as upper respiratory tract infection. The most common symptom was cough (10/14), followed by rhinorrhea (5/14), sore throat (4/14), headache (1/14), and abdominal pain (1/14). Eight patients were positive for HPIV1 and negative for other pathogens. Phylogenetic tree demonstrated that the eight strains from the year 2018 in our study located in the clade 2.3. Two specific substitutions (N333S and I509M) in the amino acids of the F protein and two substitutions (V19A and L436I) in the HN protein were different from other strains in the clade 2.
Conclusion
HPIV1 was attributed to the outbreak, which may be related to the genetic variations of HPIV1.
Collapse
Affiliation(s)
- Hong-Jun Li
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, People's Republic of China
| | - Juan Du
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Yan-Na Yang
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, People's Republic of China
| | - Yan Cui
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, People's Republic of China
| | - Lu Xi
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, People's Republic of China
| | - Shuai Wang
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Ya-Qiong Liu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Guo-Feng Zhang
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Tongzhou Center for Diseases Prevention and Control, Beijing, People's Republic of China
| | - Fuqiang Cui
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing, People's Republic of China
| |
Collapse
|
13
|
Farrag MA, Hamed ME, Amer HM, Almajhdi FN. Epidemiology of respiratory viruses in Saudi Arabia: toward a complete picture. Arch Virol 2019; 164:1981-1996. [PMID: 31139937 PMCID: PMC7087236 DOI: 10.1007/s00705-019-04300-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 05/01/2019] [Indexed: 02/07/2023]
Abstract
Acute lower respiratory tract infection is a major health problem that affects more than 15% of the total population of Saudi Arabia each year. Epidemiological studies conducted over the last three decades have indicated that viruses are responsible for the majority of these infections. The epidemiology of respiratory viruses in Saudi Arabia is proposed to be affected mainly by the presence and mobility of large numbers of foreign workers and the gathering of millions of Muslims in Mecca during the Hajj and Umrah seasons. Knowledge concerning the epidemiology, circulation pattern, and evolutionary kinetics of respiratory viruses in Saudi Arabia are scant, with the available literature being inconsistent. This review summarizes the available data on the epidemiology and evolution of respiratory viruses. The demographic features associated with Middle East respiratory syndrome-related coronavirus infections are specifically analyzed for a better understanding of the epidemiology of this virus. The data support the view that continuous entry and exit of pilgrims and foreign workers with different ethnicities and socioeconomic backgrounds in Saudi Arabia is the most likely vehicle for global dissemination of respiratory viruses and for the emergence of new viruses (or virus variants) capable of greater dissemination.
Collapse
Affiliation(s)
- Mohamed A Farrag
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia
| | - Maaweya E Hamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia
| | - Haitham M Amer
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455QA6, Riyadh, 11451, Saudi Arabia.
| |
Collapse
|
14
|
Han M, Rajput C, Ishikawa T, Jarman CR, Lee J, Hershenson MB. Small Animal Models of Respiratory Viral Infection Related to Asthma. Viruses 2018; 10:E682. [PMID: 30513770 PMCID: PMC6316391 DOI: 10.3390/v10120682] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/21/2018] [Accepted: 11/29/2018] [Indexed: 12/20/2022] Open
Abstract
Respiratory viral infections are strongly associated with asthma exacerbations. Rhinovirus is most frequently-detected pathogen; followed by respiratory syncytial virus; metapneumovirus; parainfluenza virus; enterovirus and coronavirus. In addition; viral infection; in combination with genetics; allergen exposure; microbiome and other pathogens; may play a role in asthma development. In particular; asthma development has been linked to wheezing-associated respiratory viral infections in early life. To understand underlying mechanisms of viral-induced airways disease; investigators have studied respiratory viral infections in small animals. This report reviews animal models of human respiratory viral infection employing mice; rats; guinea pigs; hamsters and ferrets. Investigators have modeled asthma exacerbations by infecting mice with allergic airways disease. Asthma development has been modeled by administration of virus to immature animals. Small animal models of respiratory viral infection will identify cell and molecular targets for the treatment of asthma.
Collapse
Affiliation(s)
- Mingyuan Han
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Charu Rajput
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Tomoko Ishikawa
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Caitlin R Jarman
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Julie Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
15
|
Clinical evaluation of a panel of multiplex quantitative real-time reverse transcription polymerase chain reaction assays for the detection of 16 respiratory viruses associated with community-acquired pneumonia. Arch Virol 2018; 163:2855-2860. [PMID: 29961119 PMCID: PMC7087343 DOI: 10.1007/s00705-018-3921-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/14/2018] [Indexed: 10/28/2022]
Abstract
We developed a panel of multiplex quantitative real-time reverse transcription polymerase chain reaction (mqRT-PCR) assay consisting of seven internally controlled qRT-PCR assays to detect 16 different respiratory viruses. We compared the new mqRT-PCR with a previously reported two-tube mRT-PCR assay using 363 clinical sputum specimens. The mqRT-PCR assay performed comparably with the two-tube assay for most viruses, offering the advantages of quantitative analysis, easier performance, lower susceptibility to contamination, and shorter turnaround time in laboratories equipped with conventional real-time PCR instrumentation, and it could therefore be a valuable tool for routine surveillance of respiratory virus infections in China.
Collapse
|
16
|
Detailed genetic analyses of the HN gene in human respirovirus 3 detected in children with acute respiratory illness in the Iwate Prefecture, Japan. INFECTION GENETICS AND EVOLUTION 2018; 59:155-162. [PMID: 29408530 DOI: 10.1016/j.meegid.2018.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 01/15/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
We performed detailed genetic analyses of the partial hemagglutinin-neuraminidase (HN) gene in 34 human respirovirus 3 (HRV3) strains from children with acute respiratory illness during 2013-2015 in Iwate Prefecture, Japan. In addition, we performed analyses of the evolutionary timescale of the gene using the Bayesian Markov chain Monte Carlo (MCMC) method. Furthermore, we analyzed pairwise distances and performed selective pressure analyses followed by linear B-cell epitope mapping and N-glycosylation and phylodynamic analyses. A phylogenetic tree showed that the strains diversified at around 1939, and the rate of molecular evolution was 7.6 × 10-4 substitutions/site/year. Although the pairwise distances were relatively short (0.03 ± 0.018 [mean ± standard deviation, SD]), two positive selection sites (Cys544Trp and Leu555Ser) and no amino acid substitutions were found in the active/catalytic sites. Six epitopes were estimated in this study, and three mouse monoclonal antibody binding sites (amino acid positions 278, 281, and 461) overlapped with two epitopes belonging to subcluster C3 strains. Bayesian skyline plot analyses indicated that subcluster C3 strains have been increasing from 2004, whereas subcluster C1 strains have declined from 2004. Based on these results, Iwate strains were divided into two subclusters and each subcluster evolved independently. Moreover, our results suggested that some predicted linear epitopes (epitopes 3 and 5) are candidates for an HRV3 vaccine motif. To better understand the details of the molecular evolution of HRV, further studies are needed.
Collapse
|
17
|
Ramaekers K, Keyaerts E, Rector A, Borremans A, Beuselinck K, Lagrou K, Van Ranst M. Prevalence and seasonality of six respiratory viruses during five consecutive epidemic seasons in Belgium. J Clin Virol 2017; 94:72-78. [PMID: 28772168 DOI: 10.1016/j.jcv.2017.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/04/2017] [Accepted: 07/19/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND Acute Respiratory Infections (ARIs) are a major health problem, especially in young children and the elderly. OBJECTIVES Insights into the seasonality of respiratory viruses can help us understand when the burden on society is highest and which age groups are most vulnerable. STUDY DESIGN We monitored six respiratory viruses during five consecutive seasons (2011-2016) in Belgium. Patient specimens (n=22876), tested for one or more of the following respiratory viruses, were included in this analysis: Influenza viruses (IAV & IBV), Human respiratory syncytial virus (hRSV), Human metapneumovirus (hMPV), Adenovirus (ADV) and Human parainfluenza virus (hPIV). Data were analysed for four age categories: <6y, 6-17y, 18-64y and ≥65y. RESULTS Children <6y had the highest infection rates (39% positive vs. 20% positive adults) and the highest frequency of co-infections. hRSV (28%) and IAV (32%) caused the most common respiratory viral infections and followed, like hMPV, a seasonal pattern with winter peaks. hRSV followed an annual pattern with two peaks: first in young children and ±7 weeks later in elderly. This phenomenon has not been described in literature so far. hPIV and ADV occurred throughout the year with higher rates in winter. CONCLUSIONS Children <6y are most vulnerable for respiratory viral infections and have a higher risk for co-infections. hRSV and IAV are the most common respiratory infections with peaks during the winter season in Belgium.
Collapse
Affiliation(s)
- Kaat Ramaekers
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven. Herestraat 49 box 1040, BE-3000 Leuven, Belgium.
| | - Els Keyaerts
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven. Herestraat 49 box 1040, BE-3000 Leuven, Belgium; University Hospitals Leuven, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven. Herestraat 49 box 1040, BE-3000 Leuven, Belgium.
| | - Annie Borremans
- University Hospitals Leuven, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Kurt Beuselinck
- University Hospitals Leuven, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Katrien Lagrou
- University Hospitals Leuven, Herestraat 49, BE-3000 Leuven, Belgium.
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven. Herestraat 49 box 1040, BE-3000 Leuven, Belgium; University Hospitals Leuven, Herestraat 49, BE-3000 Leuven, Belgium.
| |
Collapse
|
18
|
Clinical and epidemiological characteristics of human parainfluenza virus infections of children in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:749-755. [PMID: 28757139 DOI: 10.1016/j.jmii.2016.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Human parainfluenza viruses (HPIV) 1-4 had been analyzed as being one of the most frequent causes of hospitalizations for young children with respiratory tract illnesses. METHODS This retrospective study was performed from children virologically confirmed as HPIV infection through throat swab or nasopharyngeal aspirates at a tertiary care university hospital, between January 2012 and December 2014. HPIV4 was not checked and analyzed, due to not include in the commercial kit. The demographic, epidemiological, clinical presentations, diagnosis, treatment, outcomes, and laboratory data were analyzed. RESULTS Totally 398 cases were enrolled, including 39 (9.8%) of HPIV1, 67 (16.8%) of HPIV2, and 292 (73.4%) of HPIV3. The mean age of HPIV-infected children was 2.9 year-old, and 50.5% were among one to three year-old. A total of 56.8% HPIV3-infected children were among one to three years old, however, no HPIV2-infected children was younger than one year-old. The HPIV1-infected patients were more common to develop wheezing and diagnose as acute bronchiolitis. HPIV2-infected children were more likely to have hoarseness (23.9%), and were associated with croup (25.4%). HPIV3 was isolated from two fatal cases, with neurological underlying diseases. CONCLUSION The impact caused by HPIVs infections is significant in hospitalized children. In the current study, our results contribute to the epidemiologic, clinical and laboratory information of HPIV infection in children in the important areas of respiratory tract infection that could support the development of optimization management.
Collapse
|
19
|
Etiology and Clinical Characteristics of Single and Multiple Respiratory Virus Infections Diagnosed in Croatian Children in Two Respiratory Seasons. J Pathog 2016; 2016:2168780. [PMID: 27656298 PMCID: PMC5021477 DOI: 10.1155/2016/2168780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/20/2016] [Accepted: 08/16/2016] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to determine the causative agent of acute respiratory infection (ARI) in hospitalized children, as well as investigate the characteristics of ARIs with single and multiple virus detection in two respiratory seasons. In 2010 and 2015, nasopharyngeal and pharyngeal swabs from a total of 134 children, admitted to the hospital due to ARI, were tested using multiplex PCR. Viral etiology was established in 81.3% of the patients. Coinfection with two viruses was diagnosed in 27.6% of the patients, and concurrent detection of three or more viruses was diagnosed in 12.8% of the patients. The most commonly diagnosed virus in both seasons combined was respiratory syncytial virus (RSV) (28.6%), followed by parainfluenza viruses (PIVs) types 1–3 (18.4%), rhinovirus (HRV) (14.3%), human metapneumovirus (10.1%), adenovirus (AdV) (7.1%), influenza viruses types A and B (4.8%), and coronaviruses (4.2%). In 2015, additional pathogens were investigated with the following detection rate: enterovirus (13.2%), bocavirus (HBoV) (10.5%), PIV-4 (2.6%), and parechovirus (1.3%). There were no statistical differences between single and multiple virus infection regarding patients age, localization of infection, and severity of disease (P > 0.05). AdV, HRV, HBoV, and PIVs were significantly more often detected in multiple virus infections compared to the other respiratory viruses (P < 0.001).
Collapse
|
20
|
Košutić-Gulija T, Slovic A, Ljubin-Sternak S, Mlinarić-Galinović G, Forčić D. A study of genetic variability of human parainfluenza virus type 1 in Croatia, 2011-2014. J Med Microbiol 2016; 65:793-803. [PMID: 27302417 DOI: 10.1099/jmm.0.000297] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular epidemiology of human parainfluenza viruses type 1 (HPIV1) was investigated. Samples were collected from patients hospitalized in Croatia during the three consecutive epidemic seasons (2011-2014). Results indicated co-circulation of two major genetic clusters of HPIV1. Samples from the current study refer to clades II and III in a phylogenetic tree of haemagglutinin-neuraminidase (HN) gene. Additional phylogenetic trees of fusion (F) and phosphoprotein (P) genes confirmed the topology. Analysis of nucleotide diversity of entire P, F and HN genes demonstrated similar values: 0.0255, 0.0236 and 0.0237, respectively. However, amino acid diversity showed F protein to be the most conserved, while P protein was the most tolerant to mutations. Potential N- and O-glycosylation sites suggested that HPIV1 HN protein is abundantly glycosylated, and a specific N-glycosylation pattern could distinguish between clades II and III. Analysis of potential O-glycosylation sites in F protein indicated that samples from this study have two potential O-glycosylation sites, while publicly available sequences have five potential sites. This study provides data on the molecular characterization and epidemic pattern of HPIV1 in Croatia.
Collapse
Affiliation(s)
- Tanja Košutić-Gulija
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Andrija Stampar Teaching Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Mlinarić-Galinović
- Department of Virology, Croatian National Institute of Public Health, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Dubravko Forčić
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Zhang D, Feng Z, Zhao M, Wang H, Wang L, Yang S, Li G, Lu L, Ma X. Clinical Evaluation of a Single-Tube Multiple RT-PCR Assay for the Detection of 13 Common Virus Types/Subtypes Associated with Acute Respiratory Infection. PLoS One 2016; 11:e0152702. [PMID: 27043208 PMCID: PMC4820107 DOI: 10.1371/journal.pone.0152702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 03/17/2016] [Indexed: 12/12/2022] Open
Abstract
Respiratory viruses are among the most important causes of human morbidity and mortality worldwide, especially for infants and young children. In the past years, a few commercial multiplex RT-PCR assays have been used to detect respiratory viruses in spite of the high cost. In the present study, an improved single-tube multiplex reverse transcription PCR assay for simultaneous detection of 13 respiratory viruses was evaluated and compared with a previously reported two-tube assay as the reference method using clinical nasopharyngeal aspirates samples. Of 310 prospectively tested respiratory specimens selected from children hospitalized with acute respiratory illness, 226 (72.90%, 226/310) and 214 (69.03%, 214/310) positive for one or more viruses were identified by the single-tube and the two-tube assays, respectively, with combined test results showing good concordance (Kappa value = 0.874). Individually, the single-tube assay for adenovirus (Adv), human metapneumovirus (HMPV), human rhinovirus (HRV), parainfluenza virus type 1 (PIV1), parainfluenza virus type 3 (PIV3) and parainfluenza virus type 4 (PIV4) showed the significantly superior sensitivities to those of the two-tube assay. No false positives were found. In conclusion, our results demonstrates the one-tube assay revealed significant improvements over the two-tube assay in terms of the better sensitivity, more accurate quality control, less nonspecific amplification, more cost-effective and shorter turn-around time and will be a valuable tool for routine surveillance of respiratory virus infection in China.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou city, Guangdong, China
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping district, Beijing, China
| | - Zhishan Feng
- Pediatric Research Institute, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Mengchuan Zhao
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping district, Beijing, China
- Pediatric Research Institute, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Hao Wang
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping district, Beijing, China
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Le Wang
- Pediatric Research Institute, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Shuo Yang
- Pediatric Research Institute, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Guixia Li
- Pediatric Research Institute, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Li Lu
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou city, Guangdong, China
- * E-mail: (XM); (LL)
| | - Xuejun Ma
- Key Laboratory for Medical Virology, National Health and Family Planning Commission, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping district, Beijing, China
- * E-mail: (XM); (LL)
| |
Collapse
|