1
|
Jitobaom K, Boonarkart C, Thongon S, Sirihongthong T, Sornwong A, Auewarakul P, Suptawiwat O. In vitro synergistic antiviral activity of repurposed drugs against enterovirus 71. Arch Virol 2024; 169:169. [PMID: 39078431 DOI: 10.1007/s00705-024-06097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024]
Abstract
Enteroviruses cause viral diseases that are harmful to children. Hand, foot, and mouth disease (HFMD) with neurological complications is mainly caused by enterovirus 71 (EV71). Despite its clinical importance, there is no effective antiviral drug against EV71. However, several repurposed drugs have been shown to have antiviral activity against related viruses. Treatments with single drugs and two-drug combinations were performed in vitro to assess anti-EV71 activity. Three repurposed drug candidates with broad-spectrum antiviral activity were found to demonstrate potent anti-EV71 activity: prochlorperazine, niclosamide, and itraconazole. To improve antiviral activity, combinations of two drugs were tested. Niclosamide and itraconazole showed synergistic antiviral activity in Vero cells, whereas combinations of niclosamide-prochlorperazine and itraconazole-prochlorperazine showed only additive effects. Furthermore, the combination of itraconazole and prochlorperazine showed an additive effect in neuroblastoma cells. Itraconazole and prochlorperazine exert their antiviral activities by inhibiting Akt phosphorylation. Repurposing of drugs can provide a treatment solution for HFMD, and our data suggest that combining these drugs can enhance that efficacy.
Collapse
Affiliation(s)
- Kunlakanya Jitobaom
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Chompunuch Boonarkart
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Songkran Thongon
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Thanyaporn Sirihongthong
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Arpakorn Sornwong
- Department of Central instrument and Research Laboratory, Virology and Immunology Laboratory, Chulabhorn Royal Academy, Bangkok, 10210, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Ornpreya Suptawiwat
- Department of Central instrument and Research Laboratory, Virology and Immunology Laboratory, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, 10210, Thailand.
| |
Collapse
|
2
|
Velazquez-Cervantes MA, López-Ortega O, Cruz-Holguín VJ, Herrera Moro-Huitron L, Flores-Pliego A, Lara-Hernandez I, Comas-García M, Villavicencio-Carrisoza O, Helguera-Reppeto AC, Arévalo-Romero H, Vázquez-Martínez ER, León-Juárez M. Metformin Inhibits Zika Virus Infection in Trophoblast Cell Line. Curr Microbiol 2024; 81:133. [PMID: 38592489 DOI: 10.1007/s00284-024-03651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
Zika virus (ZIKV) infections have been associated with severe clinical outcomes, which may include neurological manifestations, especially in newborns with intrauterine infection. However, licensed vaccines and specific antiviral agents are not yet available. Therefore, a safe and low-cost therapy is required, especially for pregnant women. In this regard, metformin, an FDA-approved drug used to treat gestational diabetes, has previously exhibited an anti-ZIKA effect in vitro in HUVEC cells by activating AMPK. In this study, we evaluated metformin treatment during ZIKV infection in vitro in a JEG3-permissive trophoblast cell line. Our results demonstrate that metformin affects viral replication and protein synthesis and reverses cytoskeletal changes promoted by ZIKV infection. In addition, it reduces lipid droplet formation, which is associated with lipogenic activation of infection. Taken together, our results indicate that metformin has potential as an antiviral agent against ZIKV infection in vitro in trophoblast cells.
Collapse
Affiliation(s)
- Manuel Adrían Velazquez-Cervantes
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Orestes López-Ortega
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Victor Javier Cruz-Holguín
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Luis Herrera Moro-Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Arturo Flores-Pliego
- Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico
| | - Ignacio Lara-Hernandez
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Atunóma de San Luis Potrosí, San Luis Potosí, SLP, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | - Mauricio Comas-García
- Sección de Microscopía de Alta Resolución, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Atunóma de San Luis Potrosí, San Luis Potosí, SLP, Mexico
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, SLP, Mexico
| | | | - Addy Cecilia Helguera-Reppeto
- Institut National de la Santé et de la Recherche Médicale (INSERM) U1151, Institut Necker Enfants Malades, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Haruki Arévalo-Romero
- Laboratorio de Inmunología y Microbiología Molecular, División Académica Multidisciplinaria de Jalpa de Méndez, Universidad Juárez Autónoma de Tabasco, Jalpa de Méndez, Mexico
| | - Edgar Ricardo Vázquez-Martínez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Universidad Nacional Autónoma de México, 11000, Mexico City, Mexico
| | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antigenos y Biomarcadores, Departamento de Inmunobioquimica, Instituto Nacional de Perinatología, 11000, Mexico City, Mexico.
| |
Collapse
|
3
|
Rezaei S, Timani KA, He JJ. Metformin Treatment Leads to Increased HIV Transcription and Gene Expression through Increased CREB Phosphorylation and Recruitment to the HIV LTR Promoter. Aging Dis 2024; 15:831-850. [PMID: 37450926 PMCID: PMC10917544 DOI: 10.14336/ad.2023.0705] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Antiretroviral therapy has effectively suppressed HIV infection and replication and prolonged the lifespan of HIV-infected individuals. In the meantime, various complications including type 2 diabetes associated with the long-term antiviral therapy have shown steady increases. Metformin has been the front-line anti-hyperglycemic drug of choice and the most widely prescribed medication for the treatment of type 2 diabetes. However, little is known about the effects of Metformin on HIV infection and replication. In this study, we showed that Metformin treatment enhanced HIV gene expression and transcription in HIV-transfected 293T and HIV-infected Jurkat and human PBMC. Moreover, we demonstrated that Metformin treatment resulted in increased CREB expression and phosphorylation, and TBP expression. Furthermore, we showed that Metformin treatment increased the recruitment of phosphorylated CREB and TBP to the HIV LTR promoter. Lastly, we showed that inhibition of CREB phosphorylation/activation significantly abrogated Metformin-enhanced HIV gene expression. Taken together, these results demonstrated that Metformin treatment increased HIV transcription, gene expression, and production through increased CREB phosphorylation and recruitment to the HIV LTR promoter. These findings may help design the clinical management plan and HIV cure strategy of using Metformin to treat type 2 diabetes, a comorbidity with an increasing prevalence, in people living with HIV.
Collapse
Affiliation(s)
- Sahar Rezaei
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Khalid A Timani
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| | - Johnny J He
- Department of Microbiology and Immunology, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA.
- Center for Cancer Cell Biology, Immunology and Infection, Rosalind Franklin University, North Chicago, IL 60064, USA.
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University, North Chicago, IL 60064, USA.
| |
Collapse
|
4
|
Niu B, Xia X, Ma L, Yao L, Zhang Y, Su H. LncRNA AC040162.3 Promotes HCV-Induced T2DM Deterioration through the miRNA-223-3p/NLRP3 Molecular Axis. Anal Cell Pathol (Amst) 2023; 2023:5350999. [PMID: 37359091 PMCID: PMC10290564 DOI: 10.1155/2023/5350999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 05/25/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Background Diabetes is one of the most common diseases and major public health burdens worldwide. Type 2 diabetes mellitus (T2DM) is associated with chronic hepatitis C virus (HCV) infection, and lncRNAs play an important role in HCV-induced T2DM. We aimed to explore the effect of lncRNA AC040162.3 on HCV-induced T2DM. Methods HCV was used to infect MIN6 cells to establish an in vitro model. HCV copy number and miRNA expression were detected by Real Time Quantitative PCR (RT-qPCR). Enzyme-Linked Immunosorbent Assay (ELISA) was used to detect the secretion of insulin, and methyl thiazolyl tetrazolium (MTT) was applied to analyze cell viability. Apoptosis was analyzed by Western blotting and flow cytometry. In addition, Western blotting and TdT-mediated dUTP Nick End Labeling (TUNEL) were used to analyze pyroptosis. Luciferase reporter assays were used to investigate the targeting relationship. Results The expression of LncRNA AC040162.3 and NLRP3 was markedly increased in HCV-T2DM, while the expression of miR-223-3p was remarkably inhibited. In vitro experiments demonstrated that lncRNA AC040162.3 silencing or miR-223-3p overexpression remarkably alleviated HCV-induced T2DM deterioration by inhibiting cell apoptosis and pyroptosis and enhancing cell viability. We then demonstrated that silencing lncRNA AC040162.3 promoted the expression of miR-223-3p and that miR-223-3p bound to lncRNA AC040162.3 and the NLRP3 binding site. In addition, the protective effects of LncRNA AC040162.3 silencing in HCV-infected MIN6 cells were reversed by overexpression of NLRP3 or silencing of miR-223-3p. Conclusion Silencing of lncRNA AC040162.3 alleviates the process of HCV-induced T2DM by governing the miR-223-3p/NLRP3 axis.
Collapse
Affiliation(s)
- Ben Niu
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lijing Ma
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Lixuan Yao
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yating Zhang
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Heng Su
- Department of Endocrinology and Metabolism, The First People's Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
5
|
Khalid T, Hasan A, Fatima JE, Faridi SA, Khan AF, Mir SS. Therapeutic role of mTOR inhibitors in control of SARS-CoV-2 viral replication. Mol Biol Rep 2023; 50:2701-2711. [PMID: 36538171 PMCID: PMC9764303 DOI: 10.1007/s11033-022-08188-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
By the end of 2019, COVID-19 was reported in Wuhan city of China, and through human-human transmission, this virus spread worldwide and became a pandemic. Initial symptoms of the disease include fever, cough, loss of smell, taste, and shortness of breath, but a decrease in the oxygen levels in the body leads, and pneumonia may ultimately lead to the patient's death. However, the symptoms vary from patient to patient. To understand COVID-19 disease pathogenesis, researchers have tried to understand the cellular pathways that could be targeted to suppress viral replication. Thus, this article reviews the markers that could be targeted to inhibit viral replication by inhibiting the translational initiation complex/regulatory kinases and upregulating host autophagic flux that may lead to a reduction in the viral load. The article also highlights that mTOR inhibitors may act as potential inhibitors of viral replication. mTOR inhibitors such as metformin may inhibit the interaction of SARS-CoV-2 Nsp's and ORFs with mTORC1, LARP1, and 4E-BP. They may also increase autophagic flux by decreasing protein degradation via inhibition of Skp2, further promoting viral cell death. These events result in cell cycle arrest at G1 by p27, ultimately causing cell death.
Collapse
Affiliation(s)
- Tuba Khalid
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Adria Hasan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, 226026, Lucknow, India
| | - Jamal E Fatima
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Soban Ahmad Faridi
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Ahamad Faiz Khan
- Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, 226026, Lucknow, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, 226026, Lucknow, India.
- Department of Biosciences, Faculty of Science, Integral University, Kursi Road, 226026, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
6
|
Goel S, Singh R, Singh V, Singh H, Kumari P, Chopra H, Sharma R, Nepovimova E, Valis M, Kuca K, Emran TB. Metformin: Activation of 5' AMP-activated protein kinase and its emerging potential beyond anti-hyperglycemic action. Front Genet 2022; 13:1022739. [PMID: 36386794 PMCID: PMC9659887 DOI: 10.3389/fgene.2022.1022739] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Metformin is a plant-based drug belonging to the class of biguanides and is known to treat type-2 diabetes mellitus (T2DM). The drug, combined with controlling blood glucose levels, improves the body's response to insulin. In addition, trials have identified the cardioprotective potential of metformin in the diabetic population receiving the drug. Activation of 5' AMP-activated protein kinase (AMPK) is the major pathway for these potential beneficial effects of metformin. Historically, much emphasis has been placed on the potential indications of metformin beyond its anti-diabetic use. This review aims to appraise other potential uses of metformin primarily mediated by the activation of AMPK. We also discuss various mechanisms, other than AMPK activation, by which metformin could produce beneficial effects for different conditions. Databases including PubMed/MEDLINE and Embase were searched for literature relevant to the review's objective. Reports from both research and review articles were considered. We found that metformin has diverse effects on the human body systems. It has been shown to exert anti-inflammatory, antioxidant, cardioprotective, metabolic, neuroprotective, anti-cancer, and antimicrobial effects and has now even been identified as effective against SARS-CoV-2. Above all, the AMPK pathway has been recognized as responsible for metformin's efficiency and effectiveness. Owing to its extensive potential, it has the capability to become a part of treatment regimens for diseases apart from T2DM.
Collapse
Affiliation(s)
- Sanjay Goel
- Government Medical College, Patiala, Punjab, India
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Varinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Neurology Clinic, University Hospital, Hradec Králové, Czechia
| | - Martin Valis
- Department of Neurology, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital, Hradec Králové, Czechia
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové, Czechia
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| |
Collapse
|
7
|
Hassan SS, Bedir EA, Hamza AEM, Ahmed AM, Ibrahim NM, Abd El‐Ghany MS, Khattab NN, Emeira BM, Salama MM, Mohamed EF, Fayed DB. The dual therapeutic effect of metformin nuclei‐based drugs modified with one of Tulbaghia violacea extract compounds. Appl Organomet Chem 2022; 36. [DOI: 10.1002/aoc.6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/13/2022] [Indexed: 09/01/2023]
Abstract
Novel Schiff base was synthesized from the condensation reaction of metformin with [4‐(Diethylamino) benzaldehyde (NBM). Different metal complexes were prepared using Pd (II), Pt (II), Cu (II), and V (IV) metal ions. All complexes showed the nonelectrolytic behavior. So, the expected molecular formulas for complexes were [Pd (NBM)Cl2], [Pt (NBM)Cl2], [Cu (NBM)2Cl2] and [VO (NBM)2]. The cytotoxicity of (NBM) Schiff base and its metal complexes on human cancer cell line, MCF‐7, was investigated. V (IV) and Cu (II) complexes showed potential blood glucose lowering effect higher than the commercial metformin drug. VO (II) complex has superior antioxidant activity more than the other synthesized compounds and the standard ascorbic acid. Molecular docking investigation proved the presence of interesting interactions between all synthesized compounds with the active site amino acids of EGFR tyrosine kinase (anticancer activity). The molecular docking of metal complexes has observed effective inhibition for the specific mTOR protein that is expected to aid the growth of the COVID‐19 virus.
Collapse
Affiliation(s)
- Safaa S. Hassan
- Department of Chemistry, Faculty of Science Cairo University Giza Egypt
| | - Elaria A. Bedir
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | | | - Ahmed M. Ahmed
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Nouran M. Ibrahim
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | | | - Nada N. Khattab
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Bassant M. Emeira
- Department of Biotechnology, Faculty of Science Cairo University Giza Egypt
| | - Mabrook M. Salama
- Department of Chemistry, Faculty of Science University of Benghazi Benghazi Libya
| | - Eman F. Mohamed
- Department of Chemistry, Faculty of Science (Girls) Al‐Azhar University Nasr City Egypt
| | - Dalia B. Fayed
- Therapeutic Chemistry Department National Research Centre Cairo Egypt
| |
Collapse
|
8
|
Liu Y, Zhou T, Hu J, Jin S, Wu J, Guan X, Wu Y, Cui J. Targeting Selective Autophagy as a Therapeutic Strategy for Viral Infectious Diseases. Front Microbiol 2022; 13:889835. [PMID: 35572624 PMCID: PMC9096610 DOI: 10.3389/fmicb.2022.889835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/13/2022] Open
Abstract
Autophagy is an evolutionarily conserved lysosomal degradation system which can recycle multiple cytoplasmic components under both physiological and stressful conditions. Autophagy could be highly selective to deliver different cargoes or substrates, including protein aggregates, pathogenic proteins or superfluous organelles to lysosome using a series of cargo receptor proteins. During viral invasion, cargo receptors selectively target pathogenic components to autolysosome to defense against infection. However, viruses not only evolve different strategies to counteract and escape selective autophagy, but also utilize selective autophagy to restrict antiviral responses to expedite viral replication. Furthermore, several viruses could activate certain forms of selective autophagy, including mitophagy, lipophagy, aggrephagy, and ferritinophagy, for more effective infection and replication. The complicated relationship between selective autophagy and viral infection indicates that selective autophagy may provide potential therapeutic targets for human infectious diseases. In this review, we will summarize the recent progress on the interplay between selective autophagy and host antiviral defense, aiming to arouse the importance of modulating selective autophagy as future therapies toward viral infectious diseases.
Collapse
Affiliation(s)
- Yishan Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tao Zhou
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiajia Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Shouheng Jin
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianfeng Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiangdong Guan
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaoxing Wu
- Department of Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jun Cui
- Ministry of Education (MOE) Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Saygili ES, Karakiliç E, Mert E, Şener A, Mirci A. Preadmission usage of metformin and mortality in COVID-19 patients including the post-discharge period. Ir J Med Sci 2022; 191:569-575. [PMID: 34713419 PMCID: PMC8553499 DOI: 10.1007/s11845-021-02823-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The effect of preadmission metformin usage (PMU) on the mortality of coronavirus disease-2019 (COVID-19) patients with diabetes is conflicting. Most studies have focused on in-hospital mortality; however, mortality after discharge also increases in COVID-19 patients. AIMS Examining the effect of PMU on all-cause mortality, including the post-discharge period. METHODS Patients with diabetes who were hospitalised in 2020 due to COVID-19 were included in the study. They were divided into two groups: those with a history of metformin use (MF( +)) and those without such history (MF( -)). Propensity score matching (PSM) was performed at a ratio of 1:1 for age and sex. COX regression analyses were used to demonstrate risk factors for mortality. RESULTS We investigated 4103 patients hospitalised for COVID-19. After excluding those without diabetes or with chronic liver/kidney disease, we included the remaining 586 patients, constituting 293 women (50%) with an overall mean age of 66 ± 11.9 years. After PSM analysis, the in-hospital and post-discharge mortality rates were higher in the MF( -) group though not significantly different. However, overall mortality was higher in the MF( -) group (51 (42.5%) vs. 35 (29.2%), p = 0.031). For overall mortality, the adjusted HR was 0.585 (95% CI: 0.371 - 0.920, p = 0.020) in the MF( +) group. CONCLUSION PMU is associated with reducing all-cause mortality. This effect starts from the in-hospital period and becomes more significant with the post-discharge period. The main limitations were the inability to evaluate the compliance with metformin and the effects of other medications due to retrospective nature.
Collapse
Affiliation(s)
- Emre Sedar Saygili
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey.
| | - Ersen Karakiliç
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, 17020, Turkey
| | - Erdal Mert
- Department of Internal Medicine, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Alper Şener
- Department of Infections Disease, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Arzu Mirci
- Department of Pulmonary Disease, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
10
|
Hassan S, Bedir EA, Hamza AERM, Ahmed AM, Ibrahim NM, El-Ghany MSA, Sayed NN, Eimera BM, Salama M, Mohamed EF, Mohamed DB. The Dual Therapeutic Effect of Metformin Nuclei Based Drugs Modified with One of Tulbaghia Violacea Extract Compounds. SSRN ELECTRONIC JOURNAL 2022. [DOI: 10.2139/ssrn.4015275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
11
|
Kifle ZD, Woldeyohanis AE, Demeke CA. A review on protective roles and potential mechanisms of metformin in diabetic patients diagnosed with COVID-19. Metabol Open 2021; 12:100137. [PMID: 34664036 PMCID: PMC8516148 DOI: 10.1016/j.metop.2021.100137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/12/2021] [Indexed: 12/21/2022] Open
Abstract
The novel coronavirus disease 2019 (COVID-19), is currently the leading threat to public health and a huge challenge to the healthcare systems across the globe and caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Obesity, a state of chronic inflammation, and diabetes mellitus are risk factors for severe SARS-CoV-2. Metformin is one of the most commonly used antidiabetic medications that displayed immunomodulatory activity through AMP-activated protein kinase. Metformin has sex-specific immunomodulatory and cytokine-reducing activities. Therefore, this review aimed to summarize the protective roles of Metformin and its possible molecular mechanisms for use in COVID-19 patients. To include studies, publications related to Metformin and its possible molecular mechanisms for COVID-19 were searched from the databases such as Web of Science, PubMed, Medline, Elsevier, Google Scholar, and SCOPUS, via English key terms. Maintaining proper blood glucose levels using oral antidiabetic drugs like Metformin reduced the detrimental effects of COVID-19 by different possible mechanisms such as Metformin-mediated anti-inflammatory and immunomodulatory activities; effect on viral entry and ACE2 stability; inhibition of virus infection; alters virus survival and endosomal pH; mTOR inhibition; and influence on gut microbiota. Fascinatingly, in diabetic patients with COVID-19, treatment with Metformin was associated with a noticeable reduction in mortality rates and disease severity among infected patients. Metformin was comprehensively investigated for its anti-inflammatory, antiviral capabilities, immunomodulatory, and antioxidant, which would elucidate its capability to confer vascular and cardiopulmonary protection in COVID-19.
Collapse
Affiliation(s)
- Zemene Demelash Kifle
- Department of Pharmacology, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Alem Endeshaw Woldeyohanis
- Department of Social Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Chilot Abiyu Demeke
- Department of Pharmaceutics, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
12
|
Microbiota and Its Impact on the Immune System in COVID-19-A Narrative Review. J Clin Med 2021; 10:jcm10194537. [PMID: 34640553 PMCID: PMC8509181 DOI: 10.3390/jcm10194537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 01/08/2023] Open
Abstract
The microbiota is of interest for the development of a therapeutic strategy against SARS-CoV-2 coronavirus disease 2019 (COVID-19) due to its impact on the host immune system. Proven communications of the gut microbiota with the pulmonary microbiota (gut-lung axis) and the pathway of neural connections between the gut and brain (gut-brain axis) may be important in the face of the pandemic. SARS-CoV-2 was shown to affect almost all organs because of the presence of a host receptor known as angiotensin converting enzyme 2 (ACE2). The ACE2 receptor is mainly present in the brush border of intestinal enterocytes, ciliary cells, and type II alveolar epithelial cells in the lungs. The transport function of ACE2 has been linked to the ecology of gut microbes in the digestive tract, suggesting that COVID-19 may be related to the gut microbiota. The severity of COVID-19 may be associated with a number of comorbidities, such as hypertension, diabetes, obesity, and/or old age; therefore, attention is also paid to multiple morbidities and the modulation of microbiota through comorbidities and medications. This paper reviews the research in the context of the state of the intestinal microbiota and its impact on the cells of the immune system during the SARS-CoV-2 pandemic.
Collapse
|
13
|
Poly TN, Islam MM, Li YC(J, Lin MC, Hsu MH, Wang YC. Metformin Use Is Associated with Decreased Mortality in COVID-19 Patients with Diabetes: Evidence from Retrospective Studies and Biological Mechanism. J Clin Med 2021; 10:3507. [PMID: 34441802 PMCID: PMC8397144 DOI: 10.3390/jcm10163507] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND AIMS The coronavirus disease 2019 (COVID-19) increases hyperinflammatory state, leading to acute lung damage, hyperglycemia, vascular endothelial damage, and a higher mortality rate. Metformin is a first-line treatment for type 2 diabetes and is known to have anti-inflammatory and immunosuppressive effects. Previous studies have shown that metformin use is associated with decreased risk of mortality among patients with COVID-19; however, the results are still inconclusive. This study investigated the association between metformin and the risk of mortality among diabetes patients with COVID-19. METHODS Data were collected from online databases such as PubMed, EMBASE, Scopus, and Web of Science, and reference from the most relevant articles. The search and collection of relevant articles was carried out between 1 February 2020, and 20 June 2021. Two independent reviewers extracted information from selected studies. The random-effects model was used to estimate risk ratios (RRs), with a 95% confidence interval. RESULTS A total of 16 studies met all inclusion criteria. Diabetes patients given metformin had a significantly reduced risk of mortality (RR, 0.65; 95% CI: 0.54-0.80, p < 0.001, heterogeneity I2 = 75.88, Q = 62.20, and τ2 = 0.06, p < 0.001) compared with those who were not given metformin. Subgroup analyses showed that the beneficial effect of metformin was higher in the patients from North America (RR, 0.43; 95% CI: 0.26-0.72, p = 0.001, heterogeneity I2 = 85.57, Q = 34.65, τ2 = 0.31) than in patients from Europe (RR, 0.67; 95% CI: 0.47-0.94, p = 0.02, heterogeneity I2 = 82.69, Q = 23.11, τ2 = 0.10) and Asia (RR, 0.90; 95% CI: 0.43-1.86, p = 0.78, heterogeneity I2 = 64.12, Q = 11.15, τ2 = 0.40). CONCLUSIONS This meta-analysis shows evidence that supports the theory that the use of metformin is associated with a decreased risk of mortality among diabetes patients with COVID-19. Randomized control trials with a higher number of participants are warranted to assess the effectiveness of metformin for reducing the mortality of COVID-19 patients.
Collapse
Affiliation(s)
- Tahmina Nasrin Poly
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (T.N.P.); (M.M.I.); (Y.-C.L.); (M.-C.L.)
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110301, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Md. Mohaimenul Islam
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (T.N.P.); (M.M.I.); (Y.-C.L.); (M.-C.L.)
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110301, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan
| | - Yu-Chuan (Jack) Li
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (T.N.P.); (M.M.I.); (Y.-C.L.); (M.-C.L.)
- International Center for Health Information Technology (ICHIT), Taipei Medical University, Taipei 110301, Taiwan
- Research Center of Big Data and Meta-Analysis, Wan Fang Hospital, Taipei Medical University, Taipei 110301, Taiwan
- Department of Dermatology, Wan Fang Hospital, Taipei 116081, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Ming-Chin Lin
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110301, Taiwan; (T.N.P.); (M.M.I.); (Y.-C.L.); (M.-C.L.)
- Department of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, Taipei 110301, Taiwan
- Professional Master Program in Artificial Intelligence in Medicine, Taipei Medical University, Taipei 110301, Taiwan
| | - Min-Huei Hsu
- Graduate Institute of Data Science, Taipei Medical University, Taipei 110301, Taiwan;
| | - Yao-Chin Wang
- Department of Emergency, Min-Sheng General Hospital, Taoyuan 33044, Taiwan
- Graduate Institute of Injury Prevention and Control, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Rosalia R. Perspectives on Repurposed Drugs Based on Globally Accepted Therapeutic Guidelines to Combat SARS-CoV-2 Infection. Drug Healthc Patient Saf 2021; 13:11-18. [PMID: 33536792 PMCID: PMC7850415 DOI: 10.2147/dhps.s272411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
A beta coronavirus was identified in Wuhan, China, in December 2019 and was named severe acute respiratory syndrome coronavirus-2. It spread globally at a rapid rate and killed innumerable people. The SARS-CoV-2 infection, also called coronavirus disease 2019, was declared a pandemic by WHO on March 11, 2020. The increasing number of SARS-CoV-2 related deaths is due to a number of reasons. A few antiviral, antimicrobial, and immune-based drugs have been repurposed for treatment as well as improvement of patient prognosis. These drugs are currently being studied in clinical trials conducted by the World Health Organization (WHO), National Institutes of Health (NIH), and other global health organizations to identify the agents that produce maximum positive patient outcomes and reduction in mortality rate. The aim of this article is to discuss the safety and efficacy of the repurposed drugs in SARS-CoV-2 infection based on currently available clinical evidence and to emphasize the importance of caution required whilst employing the international therapeutic guidelines. Also highlighted in this article are certain specific comorbid conditions, that either involve treatment with the repurposed drugs or have a direct impact of the virus in patients owing to their vulnerability.
Collapse
Affiliation(s)
- Rina Rosalia
- Department of Health Sciences, College of Science, Health, Engineering and Education (SHEE), Murdoch University – Dubai Campus, Dubai, United Arab Emirates
| |
Collapse
|
15
|
Zangiabadian M, Nejadghaderi SA, Zahmatkesh MM, Hajikhani B, Mirsaeidi M, Nasiri MJ. The Efficacy and Potential Mechanisms of Metformin in the Treatment of COVID-19 in the Diabetics: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:645194. [PMID: 33815295 PMCID: PMC8017386 DOI: 10.3389/fendo.2021.645194] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/03/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Diabetes mellitus (DM) is one of the most common comorbidities among patients with coronavirus disease 2019 (COVID-19) which may exacerbate complications of this new viral infection. Metformin is an anti-hyperglycemic agent with host-directed immune-modulatory effects, which relieve exaggerated inflammation and reduce lung tissue damage. The current systematic review aimed to summarize the available evidence on the potential mechanism of action and the efficacy of metformin in COVID-19 patients with DM. METHODS A systematic search was carried out in PubMed/Medline, EMBASE, the Cochrane Controlled Register of Trials (CENTRAL), and Web of Science up to July 30, 2020. The following keywords were used: "COVID-19", "SARS-CoV-2", "2019-nCoV", "metformin", and "antidiabetic drug". RESULTS Fourteen studies were included in our systematic review. Three of them were observational with 6,659 participants. Decreasing insulin resistance, reduction of some inflammatory cytokines like IL-6 and TNF-α, modulation of angiotensin-converting enzyme 2 (ACE2) receptor, and improving neutrophil to lymphocyte ratio are some of the potential mechanisms of metformin in COVID-19 patients with DM. Nine out of fourteen articles revealed the positive effect of metformin on the prognosis of COVID-19 in diabetic or even non-diabetic patients. Moreover, different studies have shown that metformin is more effective in women than men. CONCLUSIONS The use of metformin may lead to improve the clinical outcomes of patients with mild to moderate SARS-CoV-2, especially in diabetic women. Further observational studies should be conducted to clarify the effects of metformin as a part of the treatment strategy of COVID-19.
Collapse
Affiliation(s)
- Moein Zangiabadian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Aria Nejadghaderi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Zahmatkesh
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahareh Hajikhani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Department of Medicine, Division of Pulmonary, Critical Care, Sleep and Allergy, University of Miami, Coral Gables, FL, United States
- *Correspondence: Mohammad Javad Nasiri, ; Mehdi Mirsaeidi,
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Mohammad Javad Nasiri, ; Mehdi Mirsaeidi,
| |
Collapse
|
16
|
EL‐Arabey AA, Abdalla M. Metformin and COVID-19: A novel deal of an old drug. J Med Virol 2020; 92:2293-2294. [PMID: 32347974 PMCID: PMC7267392 DOI: 10.1002/jmv.25958] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 04/27/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Amr Ahmed EL‐Arabey
- Department of Pharmacology and Toxicology, Faculty of PharmacyAl‐Azhar UniversityCairoEgypt
| | - Mohnad Abdalla
- Department of Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of SciencesCAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic BiologyQingdaoShandongChina
| |
Collapse
|
17
|
Semiz S, Serdarevic F. Prevention and Management of Type 2 Diabetes and Metabolic Syndrome in the Time of COVID-19: Should We Add a Cup of Coffee? Front Nutr 2020; 7:581680. [PMID: 33123550 PMCID: PMC7573071 DOI: 10.3389/fnut.2020.581680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/07/2020] [Indexed: 01/08/2023] Open
Abstract
Recent evidence shows that COVID-19 patients with existing metabolic disorders, such as diabetes and metabolic syndrome, are exposed to a high risk of morbidity and mortality. At the same time, in order to manage the pandemic, the health authorities around the world are advising people to stay at home. This results in decreased physical activity and an increased consumption of an unhealthy diet, which often leads to an increase in body weight, risk for diabetes, insulin resistance, and metabolic syndrome, and thus, paradoxically, to a high risk of morbidity and mortality due to COVID-19 complications. Here we summarize the evidence demonstrating that the promotion of a healthy life style, including physical activity and a dietary intake of natural polyphenols present in coffee and tea, has the potential to improve the prevention and management of insulin resistance and diabetes in the time of COVID-19 pandemic. Particularly, it would be pertinent to evaluate further the potential positive effects of coffee beverages, rich in natural polyphenols, as an adjuvant therapy for COVID-19, which appear not to be studied sufficiently.
Collapse
Affiliation(s)
- Sabina Semiz
- College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates.,Association South East European Network for Medical Research-SOVE, Sarajevo, Bosnia and Herzegovina
| | - Fadila Serdarevic
- Association South East European Network for Medical Research-SOVE, Sarajevo, Bosnia and Herzegovina.,Department of Child and Adolescent Psychiatry, Erasmus Medical Centre Rotterdam, Rotterdam, Netherlands
| |
Collapse
|
18
|
Cadegiani FA. Repurposing existing drugs for COVID-19: an endocrinology perspective. BMC Endocr Disord 2020; 20:149. [PMID: 32993622 PMCID: PMC7523486 DOI: 10.1186/s12902-020-00626-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus Disease 2019 (COVID-19) is a multi-systemic infection caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), that has become a pandemic. Although its prevailing symptoms include anosmia, ageusia, dry couch, fever, shortness of brief, arthralgia, myalgia, and fatigue, regional and methodological assessments vary, leading to heterogeneous clinical descriptions of COVID-19. Aging, uncontrolled diabetes, hypertension, obesity, and exposure to androgens have been correlated with worse prognosis in COVID-19. Abnormalities in the renin-angiotensin-aldosterone system (RAAS), angiotensin-converting enzyme-2 (ACE2) and the androgen-driven transmembrane serine protease 2 (TMPRSS2) have been elicited as key modulators of SARS-CoV-2. MAIN TEXT While safe and effective therapies for COVID-19 lack, the current moment of pandemic urges for therapeutic options. Existing drugs should be preferred over novel ones for clinical testing due to four inherent characteristics: 1. Well-established long-term safety profile, known risks and contraindications; 2. More accurate predictions of clinical effects; 3. Familiarity of clinical management; and 4. Affordable costs for public health systems. In the context of the key modulators of SARS-CoV-2 infectivity, endocrine targets have become central as candidates for COVID-19. The only endocrine or endocrine-related drug class with already existing emerging evidence for COVID-19 is the glucocorticoids, particularly for the use of dexamethasone for severely affected patients. Other drugs that are more likely to present clinical effects despite the lack of specific evidence for COVID-19 include anti-androgens (spironolactone, eplerenone, finasteride and dutasteride), statins, N-acetyl cysteine (NAC), ACE inhibitors (ACEi), angiotensin receptor blockers (ARB), and direct TMPRSS-2 inhibitors (nafamostat and camostat). Several other candidates show less consistent plausibility. In common, except for dexamethasone, all candidates have no evidence for COVID-19, and clinical trials are needed. CONCLUSION While dexamethasone may reduce mortality in severely ill patients with COVID-19, in the absence of evidence of any specific drug for mild-to-moderate COVID-19, researchers should consider testing existing drugs due to their favorable safety, familiarity, and cost profile. However, except for dexamethasone in severe COVID-19, drug treatments for COVID-19 patients must be restricted to clinical research studies until efficacy has been extensively proven, with favorable outcomes in terms of reduction in hospitalization, mechanical ventilation, and death.
Collapse
Affiliation(s)
- Flavio A Cadegiani
- Adrenal and Hypertension Unit, Division of Endocrinology and Metabolism, Department of Medicine, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), Rua Pedro de Toledo 781 - 13th floor, São Paulo, SP, 04039-032, Brazil.
| |
Collapse
|
19
|
Role of metformin in various pathologies: state-of-the-art microcapsules for improving its pharmacokinetics. Ther Deliv 2020; 11:733-753. [PMID: 32967584 DOI: 10.4155/tde-2020-0102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metformin was originally derived from a botanical ancestry and became the most prescribed, first-line therapy for Type 2 diabetes in most countries. In the last century, metformin was discovered twice for its antiglycemic properties in addition to its antimalarial and anti-influenza effects. Metformin exhibits flip-flop pharmacokinetics with limited oral bioavailability. This review outlines metformin pharmacokinetics, pharmacodynamics and recent advances in polymeric particulate delivery systems as a potential tool to target metformin delivery to specific tissues/organs. This interesting biguanide is being rediscovered this century for multiple clinical indications as anticancer, anti-aging, anti-inflammatory, anti-Alzheimer's and much more. Microparticulate delivery systems of metformin may improve its oral bioavailability and optimize the therapeutic goals expected.
Collapse
|
20
|
Chen X, Guo H, Qiu L, Zhang C, Deng Q, Leng Q. Immunomodulatory and Antiviral Activity of Metformin and Its Potential Implications in Treating Coronavirus Disease 2019 and Lung Injury. Front Immunol 2020; 11:2056. [PMID: 32973814 PMCID: PMC7461864 DOI: 10.3389/fimmu.2020.02056] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
The pandemic of coronavirus disease 2019 (COVID-19), a disease which causes severe lung injury and multiple organ damage, presents an urgent need for new drugs. The case severity and fatality of COVID-19 are associated with excessive inflammation, namely, a cytokine storm. Metformin, a widely used drug to treat type 2 diabetes (T2D) mellitus and metabolic syndrome, has immunomodulatory activity that reduces the production of proinflammatory cytokines using macrophages and causes the formation of neutrophil extracellular traps (NETs). Metformin also inhibits the cytokine production of pathogenic Th1 and Th17 cells. Importantly, treatment with metformin alleviates various lung injuries in preclinical animal models. In addition, a recent proteomic study revealed that metformin has the potential to directly inhibit SARS-CoV-2 infection. Furthermore, retrospective clinical studies have revealed that metformin treatment reduces the mortality of T2D with COVID-19. Therefore, metformin has the potential to be repurposed to treat patients with COVID-19 at risk of developing severe illness. This review summarizes the immune pathogenesis of SARS-CoV-2 and addresses the effects of metformin on inhibiting cytokine storms and preventing SARS-CoV-2 infection, as well as its side effects.
Collapse
Affiliation(s)
- Xianyang Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Huifang Guo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Li Qiu
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Chengdong Zhang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| | - Qiang Deng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qibin Leng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Rahimi L, Malek M, Ismail-Beigi F, Khamseh ME. Challenging Issues in the Management of Cardiovascular Risk Factors in Diabetes During the COVID-19 Pandemic: A Review of Current Literature. Adv Ther 2020; 37:3450-3462. [PMID: 32632851 PMCID: PMC7338141 DOI: 10.1007/s12325-020-01417-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 02/06/2023]
Abstract
The COVID-19 outbreak was declared a pandemic on March 2020. Many patients with SARS-CoV-2 infection have underlying chronic medical conditions such as diabetes, cardiovascular disease (CVD), and hypertension. Patient-related outcomes are worse if there are associated comorbidities. We do not have enough evidence regarding the most appropriate management of patients with diabetes during COVID-19 infection. Insulin resistance and CVD together increase the inflammatory state of the body, which can contribute to and perhaps mediate the increase of COVID-19 severity. Hence, in addition to management of dysglycemia, other CVD risk factors should be targeted. We explore the possible pathophysiologic links between diabetes and COVID-19 and discuss various options to treat dysglycemia, hypertension, and dyslipidemia in the era of COVID-19.
Collapse
Affiliation(s)
- Leili Rahimi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Disease, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA
| | - Mohammad E Khamseh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
22
|
Sharma S, Ray A, Sadasivam B. Metformin in COVID-19: A possible role beyond diabetes. Diabetes Res Clin Pract 2020; 164:108183. [PMID: 32360697 PMCID: PMC7190487 DOI: 10.1016/j.diabres.2020.108183] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Swati Sharma
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Madhya Pradesh, India.
| | - Avik Ray
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Madhya Pradesh, India
| | - Balakrishnan Sadasivam
- Department of Pharmacology, All India Institute of Medical Sciences Bhopal, Madhya Pradesh, India
| |
Collapse
|
23
|
Mueller AL, McNamara MS, Sinclair DA. Why does COVID-19 disproportionately affect older people? Aging (Albany NY) 2020; 12:9959-9981. [PMID: 32470948 PMCID: PMC7288963 DOI: 10.18632/aging.103344] [Citation(s) in RCA: 628] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
The severity and outcome of coronavirus disease 2019 (COVID-19) largely depends on a patient's age. Adults over 65 years of age represent 80% of hospitalizations and have a 23-fold greater risk of death than those under 65. In the clinic, COVID-19 patients most commonly present with fever, cough and dyspnea, and from there the disease can progress to acute respiratory distress syndrome, lung consolidation, cytokine release syndrome, endotheliitis, coagulopathy, multiple organ failure and death. Comorbidities such as cardiovascular disease, diabetes and obesity increase the chances of fatal disease, but they alone do not explain why age is an independent risk factor. Here, we present the molecular differences between young, middle-aged and older people that may explain why COVID-19 is a mild illness in some but life-threatening in others. We also discuss several biological age clocks that could be used in conjunction with genetic tests to identify both the mechanisms of the disease and individuals most at risk. Finally, based on these mechanisms, we discuss treatments that could increase the survival of older people, not simply by inhibiting the virus, but by restoring patients' ability to clear the infection and effectively regulate immune responses.
Collapse
Affiliation(s)
- Amber L. Mueller
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - Maeve S. McNamara
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| | - David A. Sinclair
- Glenn Center for Biology of Aging Research, Blavatnik Institute, Harvard Medical School, Boston, MA 20115, USA
| |
Collapse
|