1
|
Dhariwal S, Maan K, Baghel R, Sharma A, Kumari M, Aleem M, Manda K, Trivedi R, Rana P. Comparative lipid profiling reveals the differential response of distinct lipid subclasses in blast and blunt-induced mild traumatic brain injury. Exp Neurol 2025; 385:115141. [PMID: 39788308 DOI: 10.1016/j.expneurol.2025.115141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/12/2025]
Abstract
Head trauma from blast exposure is a growing health concern, particularly among active military personnel, and is considered the signature injury of the Gulf War. However, it remains elusive whether fundamental differences exist between blast-related Traumatic Brain Injuries (TBI) and TBI due to other mechanisms. Considering the importance of lipid metabolism associated with neuronal membrane integrity and its compromise during TBI, we sought to find changes in lipidomic profiling during blast or blunt (Stereotaxically Controlled Contusison-SCC)-mediated TBI. In the current study, we have developed the mild TBI (mTBI) model of blast (130 ± 10 kPa) and SCC (1.5 mm dorsal-ventral) on C57BL/6 mice, followed by the serum collection on days 1 and 7. Lipidomics was performed via ultra-high performance liquid chromatography (UHPLC) quadrupole time-of-flight mass spectrometry (qTOF-MS). Additionally, neurobehavioral outcomes were estimated using a revised neurobehavioral severity score for mice (mNSS-R) and an open field test (OFT). The study found that blast-exposed group exhibited more lipid dysregulation, as evidenced by a higher number of significant lipids and associated pathways at both time points. However, the comparative investigation further reveals eight significantly common lipids that can characterize the mTBI regardless of the manner of induction (blast or blunt). Besides, modulated neurobehavioral, locomotor and anxiety functions were also observed post-mTBI. The study illustrates the distinct systemic lipid metabolism intended to preserve the brain's lipid homeostasis post-mTBI. This approach may provide novel insights into lipid metabolism and identification of individual lipid species that aids in understanding the pathophysiology of mTBI.
Collapse
Affiliation(s)
- Seema Dhariwal
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Kiran Maan
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Ruchi Baghel
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Apoorva Sharma
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Megha Kumari
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Mohd Aleem
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India
| | - Kailash Manda
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Richa Trivedi
- Neurobehavioural Research Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| | - Poonam Rana
- Traumatic Brain Injury & Metabolomics Department, DRDO, Institute of Nuclear Medicine and Allied Sciences (INMAS), S. K Mazumdar Road, Timarpur, New Delhi 110054, India.
| |
Collapse
|
2
|
Kawauchi S, Kono A, Muramatsu Y, Hennes G, Seki S, Tominaga S, Haruyama Y, Komuta Y, Nishidate I, Matsukuma S, Wang Y, Sato S. Meningeal Damage and Interface Astroglial Scarring in the Rat Brain Exposed to a Laser-Induced Shock Wave(s). J Neurotrauma 2024; 41:e2039-e2053. [PMID: 38534205 DOI: 10.1089/neu.2023.0572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024] Open
Abstract
In the past decade, signature clinical neuropathology of blast-induced traumatic brain injury has been under intense debate, but interface astroglial scarring (IAS) seems to be convincing. In this study, we examined whether IAS could be replicated in the rat brain exposed to a laser-induced shock wave(s) (LISW[s]), a tool that can produce a pure shock wave (primary mechanism) without dynamic pressure (tertiary mechanism). Under certain conditions, we observed astroglial scarring in the subpial glial plate (SGP), gray-white matter junctions (GM-WM), ventricular wall (VW), and regions surrounding cortical blood vessels, accurately reproducing clinical IAS. We also observed shock wave impulse-dependent meningeal damage (dural microhemorrhage) in vivo by transcranial near-infrared (NIR) reflectance imaging. Importantly, there were significant correlations between the degree of dural microhemorrhage and the extent of astroglial scarring more than 7 days post-exposure, suggesting an association of meningeal damage with astroglial scarring. The results demonstrated that the primary mechanism alone caused the IAS and meningeal damage, both of which are attributable to acoustic impedance mismatching at multi-layered tissue boundaries. The time course of glial fibrillary acidic protein (GFAP) immunoreactivity depended not only on the LISW conditions but also on the regions. In the SGP, significant increases in GFAP immunoreactivity were observed at 3 days post-exposure, whereas in the GM-WM and VW, GFAP immunoreactivity was not significantly increased before 28 days post-exposure, suggesting different pathological mechanisms. With the high-impulse single exposure or the multiple exposure (low impulse), fibrotic reaction or fibrotic scar formation was observed, in addition to astroglial scarring, in the cortical surface region. Although there are some limitations, this seems to be the first report on the shock-wave-induced IAS rodent model. The model may be useful to explore potential therapeutic approaches for IAS.
Collapse
Affiliation(s)
- Satoko Kawauchi
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Akemi Kono
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Yuriko Muramatsu
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Grant Hennes
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada
| | - Shuta Seki
- Pharmacy Selection, Medical Material Department, Japan Self Defense Force Central Hospital, Setagaya, Tokyo, Japan
| | - Susumu Tominaga
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasue Haruyama
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Yukari Komuta
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| | - Izumi Nishidate
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Susumu Matsukuma
- Department of Pathology and Laboratory Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yushan Wang
- Defence Research and Development Canada, Suffield Research Centre, Medicine Hat, Alberta, Canada
| | - Shunichi Sato
- Division of Bioinformation and Therapeutic Systems, National Defense Medical College Research Institute, Tokorozawa, Saitama, Japan
| |
Collapse
|
3
|
Zhu X, Chu X, Wang H, Liao Z, Xiang H, Zhao W, Yang L, Wu P, Liu X, Chen D, Xie J, Dai W, Li L, Wang J, Zhao H. Investigating neuropathological changes and underlying neurobiological mechanisms in the early stages of primary blast-induced traumatic brain injury: Insights from a rat model. Exp Neurol 2024; 375:114731. [PMID: 38373483 DOI: 10.1016/j.expneurol.2024.114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/21/2024]
Abstract
The utilization of explosives and chemicals has resulted in a rise in blast-induced traumatic brain injury (bTBI) in recent times. However, there is a dearth of diagnostic biomarkers and therapeutic targets for bTBI due to a limited understanding of biological mechanisms, particularly in the early stages. The objective of this study was to examine the early neuropathological characteristics and underlying biological mechanisms of primary bTBI. A total of 83 Sprague Dawley rats were employed, with their heads subjected to a blast shockwave of peak overpressure ranging from 172 to 421 kPa in the GI, GII, and GIII groups within a closed shock tube, while the body was shielded. Neuromotor dysfunctions, morphological changes, and neuropathological alterations were detected through modified neurologic severity scores, brain water content analysis, MRI scans, histological, TUNEL, and caspase-3 immunohistochemical staining. In addition, label-free quantitative (LFQ)-proteomics was utilized to investigate the biological mechanisms associated with the observed neuropathology. Notably, no evident damage was discernible in the GII and GI groups, whereas mild brain injury was observed in the GIII group. Neuropathological features of bTBI were characterized by morphologic changes, including neuronal injury and apoptosis, cerebral edema, and cerebrovascular injury in the shockwave's path. Subsequently, 3153 proteins were identified and quantified in the GIII group, with subsequent enriched neurological responses consistent with pathological findings. Further analysis revealed that signaling pathways such as relaxin signaling, hippo signaling, gap junction, chemokine signaling, and sphingolipid signaling, as well as hub proteins including Prkacb, Adcy5, and various G-protein subunits (Gnai2, Gnai3, Gnao1, Gnb1, Gnb2, Gnb4, and Gnb5), were closely associated with the observed neuropathology. The expression of hub proteins was confirmed via Western blotting. Accordingly, this study proposes signaling pathways and key proteins that exhibit sensitivity to brain injury and are correlated with the early pathologies of bTBI. Furthermore, it highlights the significance of G-protein subunits in bTBI pathophysiology, thereby establishing a theoretical foundation for early diagnosis and treatment strategies for primary bTBI.
Collapse
Affiliation(s)
- Xiyan Zhu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xiang Chu
- Cognitive Development and Learning and Memory Disorders Translational Medicine Laboratory, Children's Hospital, Chongqing Medical University, Chongqing, China; Emergency department, Daping Hospital, Army Medical University, Chongqing, China
| | - Hao Wang
- Neurosurgery department, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhikang Liao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Hongyi Xiang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wenbing Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Li Yang
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Pengfei Wu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Liu
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Diyou Chen
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Jingru Xie
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Wei Dai
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China
| | - Lei Li
- Trauma Medical Center, Daping Hospital, Army Medical University, Chongqing, China
| | - Jianmin Wang
- Department of Weapon Bioeffect Assessment, Daping Hospital, Army Medical University, Chongqing, China.
| | - Hui Zhao
- Department of Military Traffic Injury Prevention and Control, Daping Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
4
|
Abstract
Injury mechanism and treatment of blast-induced traumatic brain injury (bTBI) has not made a breakthrough so far. Previous reports demonstrate autophagy is involved in regulating the pathophysiological process after TBI. Therefore, this study explored whether autophagy was activated after bTBI. A total of 108 mice were divided randomly into six groups: 6 h, 1 d, 3 d, 7 d, 14 d after bTBI groups and sham group. The protein levels of anti-microtubule associated protein 1 light chain 3B (LC3B, hereafter referred to as LC3), beclin1 and p62 were detected using western blot. Moreover, HO-1 and Nrf2 were localized using histologic staining. Immunofluorescence of LC3 and immunohistochemistry of beclin1 were performed. The autophagy-related ultrastructure was observed by TEM. LC3-II and beclin1 reached their peak on day 3 after bTBI, while p62 showed a continuous downward trend. Immunofluorescence and immunohistochemistry also confirmed that the expression levels of LC3 and beclin1 were the highest at 3 days after bTBI. Autophagic vesicles containing lysosomes or digestive residual structures were observed then. Autophagy was induced in the frontal lobe tissues of bTBI mice induced by moderate-intensity explosion, with a peak at 3d and a gradual decline thereafter.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Nanjing Univ, Nanjing, Jiangsu, China
| | | | | |
Collapse
|
5
|
Bibineyshvili Y, Schiff ND, Calderon DP. Dexmedetomidine-mediated sleep phase modulation ameliorates motor and cognitive performance in a chronic blast-injured mouse model. Front Neurol 2022; 13:1040975. [PMID: 36388181 PMCID: PMC9663850 DOI: 10.3389/fneur.2022.1040975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/17/2022] [Indexed: 10/22/2024] Open
Abstract
Multiple studies have shown that blast injury is followed by sleep disruption linked to functional sequelae. It is well established that improving sleep ameliorates such functional deficits. However, little is known about longitudinal brain activity changes after blast injury. In addition, the effects of directly modulating the sleep/wake cycle on learning task performance after blast injury remain unclear. We hypothesized that modulation of the sleep phase cycle in our injured mice would improve post-injury task performance. Here, we have demonstrated that excessive sleep electroencephalographic (EEG) patterns are accompanied by prominent motor and cognitive impairment during acute stage after secondary blast injury (SBI) in a mouse model. Over time we observed a transition to more moderate and prolonged sleep/wake cycle disturbances, including changes in theta and alpha power. However, persistent disruptions of the non-rapid eye movement (NREM) spindle amplitude and intra-spindle frequency were associated with lasting motor and cognitive deficits. We, therefore, modulated the sleep phase of injured mice using subcutaneous (SC) dexmedetomidine (Dex), a common, clinically used sedative. Dex acutely improved intra-spindle frequency, theta and alpha power, and motor task execution in chronically injured mice. Moreover, dexmedetomidine ameliorated cognitive deficits a week after injection. Our results suggest that SC Dex might potentially improve impaired motor and cognitive behavior during daily tasks in patients that are chronically impaired by blast-induced injuries.
Collapse
Affiliation(s)
- Yelena Bibineyshvili
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
| | - Nicholas D. Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| | - Diany P. Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York, NY, United States
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
6
|
Chen B, Shi QX, Nie C, Zhao ZP, Luo L, Zhao QJ, Si SY, Xu BX, Wang T, Gao LY, Gu JW. Establishment and Evaluation of a Novel High-Efficiency Model of Graded Traumatic Brain Injury in Mice. World Neurosurg 2021; 154:e7-e18. [PMID: 33992827 DOI: 10.1016/j.wneu.2021.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although previous studies have made significant contributions to establishing animal traumatic brain injury (TBI) models for simulation of human TBI, the accuracy, controllability, and modeling efficiency of animal TBI models need to be further improved. This study established a novel high-efficiency graded mouse TBI model induced by shock wave. METHODS A total of 125 mice were randomly divided into sham, 0.7 mm, 0.6 mm, and 0.5 mm groups according to the depth of the cross groove of the aluminum sheets. The stability and repeatability of apparatus were evaluated, and the integrity of the blood-brain barrier, cerebral edema, neuropathologic immunohistochemistry, apoptosis-related protein, and behavioral tests of neurologic function were used to validate this new model. RESULTS The results showed that 4 mice were injured simultaneously in 1 experiment. They received the same intensity of shock waves. Moreover, the mortality rates caused by 3 different aluminum sheets were consistent with the mortality rates of mild TBI, moderate TBI, and severe TBI. Compared with the sham group, mice in different injured groups significantly increased brain water content, blood-brain barrier permeability, and neuronal apoptosis. And the mice in all injured groups showed poor motor ability, balancing, spatial learning, and memory abilities. CONCLUSIONS The novel TBI apparatus has advantages in its small size, simple operation, high repeatability, high efficiency, and graded severity. Our TBI apparatus provides a novel tool to investigate the neuropathologic changes and underlying mechanisms of TBI with various levels of severities.
Collapse
Affiliation(s)
- Bing Chen
- Savaid Medical College, University of Chinese Academy of Sciences, Hangzhou, China
| | - Quan-Xing Shi
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Chuang Nie
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Zhi-Ping Zhao
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ling Luo
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Quan-Jun Zhao
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Shao-Yan Si
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Bing-Xin Xu
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Tao Wang
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China
| | - Ling-Yu Gao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Jian-Wen Gu
- People's Liberation Army Strategic Support Force Medical Center, Hangzhou, China.
| |
Collapse
|
7
|
Gamboa J, Horvath J, Simon A, Islam MS, Gao S, Perk D, Thoman A, Calderon DP. Secondary-blast injury in rodents produces cognitive sequelae and distinct motor recovery trajectories. Brain Res 2021; 1755:147275. [PMID: 33422537 DOI: 10.1016/j.brainres.2020.147275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/16/2020] [Accepted: 12/30/2020] [Indexed: 11/25/2022]
Affiliation(s)
- Jasmine Gamboa
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Jessica Horvath
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Amanda Simon
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Md Safiqul Islam
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Sijia Gao
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Dror Perk
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Amy Thoman
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States
| | - Diany Paola Calderon
- Department of Anesthesiology, Weill Cornell Medical College, New York 10065, United States.
| |
Collapse
|
8
|
Improvement in cognitive dysfunction following blast induced traumatic brain injury by thymosin α1 in rats: Involvement of inhibition of tau phosphorylation at the Thr205 epitope. Brain Res 2020; 1747:147038. [PMID: 32738231 DOI: 10.1016/j.brainres.2020.147038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022]
Abstract
Cognitive impairment is a significant sequela of traumatic brain injury (TBI) especially blast induced traumatic brain injury (bTBI), which is characterized by rapid impairments of learning and memory ability. Although several neuroprotective agents have been postulated as promising drugs for bTBI in animal studies, very few ideal therapeutic options exist to improve cognitive impairment following bTBI. Thymosin α1(Tα1), a 28-amino-acid protein that possesses immunomodulatory functions, has exhibited beneficial effects in the treatment of infectious diseases, immunodeficiency diseases and cancers. However, it remains unclear whether Tα1 has a therapeutic role in bTBI. Thus, we hypothesized that Tα1 administration could reverse the outcomes of bTBI. The blast induced TBI (bTBI) rat model was established with the compressed gas driven blast injury model system. A consecutive Tα1 therapy (in 1 ml saline, twice a day) at a dose of 200 µg/kg or normal saline (NS) (1 ml, twice a day) for 3 days or 2 weeks was performed. Utilizing our newly designed bTBI model, we investigated the beneficial effects of Tα1 therapy on rats exposed to bTBI including: cognitive functions, general histology, regulatory T (Treg) cells, edema, inflammation reactions and the expression and phosphorylation level of tau via Morris Water Maze test (MWM test), HE staining, flow cytometry, brain water content (BWC) calculation, IL-6 assay and Western blotting, respectively. Tα1 treatment seemed to reduce the 24-hour mortality, albeit with no statistical significance. Moreover, Tα1 treatment markedly improved cognitive dysfunction by decreasing the escape latency in the acquisition phase, and increasing the crossing numbers in the probe phase of MWM test. More interestingly, Tα1 significantly inhibited tau phosphorylation at the Thr205 epitope, but not at the Ser404 and Ser262 epitopes. Tα1 increased the percentage of Treg cells and inhibited plasma IL-6 production on 3d post bTBI. Moreover, Tα1 suppressed brain edema as demonstrated by decrease of BWC. However, there was a lack of obvious change in histopathology in the brain upon Tα1 treatment. This is the first study showing that Tα1 improves neurological deficits after bTBI in rats, which is potentially related to the inhibition of tau phosphorylation at the Thr205 epitope, increased Treg cells and decreased inflammatory reactions and brain edema.
Collapse
|
9
|
A novel model of blast induced traumatic brain injury caused by compressed gas produced sustained cognitive deficits in rats: involvement of phosphorylation of tau at the Thr205 epitope. Brain Res Bull 2020; 157:149-161. [PMID: 32044361 DOI: 10.1016/j.brainresbull.2020.02.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/05/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022]
Abstract
Improvised explosive devices (IEDs) represent the leading causes for casualties among civilians and soldiers in the present war (including counter-terrorism). Traumatic brain injury (TBI) caused by IEDs results in different degrees of impairment of cognition and behavior, but the exact brain pathophysiological mechanism following exposure to blast has not been clearly investigated. Here, we sought to establish a rat model of closed-head blast injury using compressed gas to deliver a single blast only to the brain without systemic injuries. The cognitive functions of these bTBI models were assessed by Morris Water Maze test (MWM test). The HE staining, flow cytometry, ELISA and Western Blotting were used to measure the effects of shock wave on general histology, regulatory T (Treg) cells percentage, inflammatory reactions, the expression and phosphorylation level of tau, respectively. In addition, the brain water content and 24 -h mortality were also assessed. As the distance from the blast source increased, the input pressure did not change, the overpressure decreased, and the mortality decreased. Receiver operating characteristic (ROC) curves for predicting 24 -h mortality using peak overpressure fits with the following areas under ROC curves: 0.833. In 2 weeks after blast injury, cognitive tests revealed significantly decreased performance at 20 cm distance from the blast (about 136.44 kPa) as demonstrated by increased escape latency in the acquisition phase, and decreased crossing numbers in the probe phase of MWM test. Interestingly, a single blast exposure (at 20 cm) lead to significantly increased tau phosphorylation at the Thr205 epitope but not at the Ser404 and Ser262 epitopes at 12 h, 24 h, 3d, and 7d after blast injury. Blast decreased the percentage of CD4+T cells, CD8+T cells, Treg cells and lymphocytes at different time points after blast injury, and blast increased the percentage of neutrophils at 12 h after blast injury and significantly increased IL-6 production at 12 h, 24 h and 3d after blast injury. In addition, blast lead to an increase of brain edema at 24 h and 3d after blast injury. However, no obvious alterations in brain gross pathology were found acutely in the blast-exposed rats. In conclusion, we established a rat model of simple craniocerebral blast injury characterized by impairment of cognitive function, Thr205 phosphorylation of tau, decreased Treg cells and increased inflammatory reactions and brain edema. We expect this model may help clarify the underlying mechanism after blast injury and possibly serve as a useful animal model in the development of novel therapeutic and diagnostic approaches.
Collapse
|
10
|
Zhou Y, Tian M, Wang HD, Gao CC, Zhu L, Lin YX, Fang J, Ding K. Activation of the Nrf2-ARE signal pathway after blast induced traumatic brain injury in mice. Int J Neurosci 2019; 129:801-807. [PMID: 30648894 DOI: 10.1080/00207454.2019.1569652] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Mi Tian
- Department of Anesthesiology, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Han-Dong Wang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Chao-Chao Gao
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Lin Zhu
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Yi-Xing Lin
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Jiang Fang
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| | - Ke Ding
- Department of Neurosurgery, Jinling Hospital, Jinling School of Clinical Medicine, Nanjing Medical University, Jiangsu, Nanjing, China
| |
Collapse
|