1
|
Wu YJ, Yang YR, Yan YL, Yang HY, Du JR. Targeting mitochondrial dysfunction: an innovative strategy for treating renal fibrosis. Mol Cell Biochem 2025:10.1007/s11010-025-05297-w. [PMID: 40299265 DOI: 10.1007/s11010-025-05297-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/23/2025] [Indexed: 04/30/2025]
Abstract
The incidence and hospitalization rate of kidney disease, especially end-stage renal disease, have increased significantly, which seriously endangers the health of patients. Mitochondria are the core organelles of cellular energy metabolism, and their dysfunction can lead to kidney energy supply insufficiency and oxidative stress damage, which has become a global public health problem. Studies have shown that the disturbance of mitochondrial quality control mechanisms, including mitochondrial dynamics, autophagy, oxidative stress regulation and biosynthesis, is closely related to the occurrence and development of renal fibrosis (RF). As a multicellular pathological process, RF involves the injury and shedding of podocytes, the transdifferentiation of renal tubular epithelial cells, the activation of fibroblasts, and the infiltration of macrophages, among which the mitochondrial dysfunction plays an important role. This review systematically elaborates the molecular mechanisms of mitochondrial damage during RF progression, aiming to provide theoretical foundations for developing novel therapeutic strategies to delay RF advancement.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Yan-Rong Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Ling Yan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Han-Yinan Yang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. Wnt/β-catenin Pathway Aggravates Renal Fibrosis by Activating PUM2 Transcription to Repress YME1L-mediated Mitochondrial Homeostasis. Biochem Genet 2025; 63:1343-1360. [PMID: 38564095 DOI: 10.1007/s10528-024-10756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of people worldwide and is a leading cause of death. However, the pathogenesis of CKD remains elusive. The oxidative stress and mitochondrial membrane potential were detected using Enzyme-linked immunosorbent assay and JC-1 assay. Co-immunoprecipitation, dual-luciferase assay, chromatin IP, RNA IP and RNA pull-down were used to validate the interactions among genes. Exploiting a H2O2-induced fibrosis model in vitro, PUM2 expression was upregulated in Human kidney 2 cell (HK-2) cells, along with reduced cell viability, enhanced oxidative stress, impaired mitochondrial potential, and upregulated expressions of fibrosis-associated proteins. While PUM2 knockdown reversed the H2O2-induced injury in HK-2 cells. Mechanically, Wnt/β-catenin pathway activated PUM2 transcription via TCF4. It was further identified that Wnt/β-catenin pathway inhibited YME1L expression through PUM2-mediated destabilizing of its mRNA. PUM2 aggravated H2O2-induced oxidative stress, mitochondrial dysfunction, and renal fibrosis in HK-2 cell via suppressing YME1L expression. Our study revealed that Wnt/β-catenin aggravated renal fibrosis by activating PUM2 transcription to repress YME1L-mediated mitochondrial homeostasis, providing novel insights and potential therapeutic targets for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
3
|
Zhao Z, Zhu Y, Wan D. Exercise and tissue fibrosis: recent advances in therapeutic potential and molecular mechanisms. Front Endocrinol (Lausanne) 2025; 16:1557797. [PMID: 40182630 PMCID: PMC11965137 DOI: 10.3389/fendo.2025.1557797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/24/2025] [Indexed: 04/05/2025] Open
Abstract
Tissue fibrosis represents an aberrant repair process, occurring because of prolonged injury, sustained inflammatory response, or metabolic disorders. It is characterized by an excessive accumulation of extracellular matrix (ECM), resulting in tissue hardening, structural remodeling, and loss of function. This pathological phenomenon is a common feature in the end stage of numerous chronic diseases. Despite the advent of novel therapeutic modalities, including antifibrotic agents, these have only modest efficacy in reversing established fibrosis and are associated with adverse effects. In recent years, a growing body of research has demonstrated that exercise has significant benefits and potential in the treatment of tissue fibrosis. The anti-fibrotic effects of exercise are mediated by multiple mechanisms, including direct inhibition of fibroblast activation, reduction in the expression of pro-fibrotic factors such as transforming growth factor-β (TGF-β) and slowing of collagen deposition. Furthermore, exercise has been demonstrated to assist in maintaining the dynamic equilibrium of tissue repair, thereby indirectly reducing tissue damage and fibrosis. It can also help maintain the dynamic balance of tissue repair by improving metabolic disorders, exerting anti-inflammatory and antioxidant effects, regulating cellular autophagy, restoring mitochondrial function, activating stem cell activity, and reducing cell apoptosis, thereby indirectly alleviating tissue. This paper presents a review of the therapeutic potential of exercise and its underlying mechanisms for the treatment of a range of tissue fibrosis, including cardiac, pulmonary, renal, hepatic, and skeletal muscle. It offers a valuable reference point for non-pharmacological intervention strategies for the comprehensive treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Zheng Zhao
- School of Physical Education, Anyang Normal University, Anyang, Henan, China
| | - Yongjia Zhu
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, China
| | - Dongfeng Wan
- School of Health, Shanghai Normal University Tianhua College, Shanghai, China
| |
Collapse
|
4
|
Wang S, Long H, Hou L, Feng B, Ma Z, Wu Y, Zeng Y, Cai J, Zhang DW, Zhao G. The mitophagy pathway and its implications in human diseases. Signal Transduct Target Ther 2023; 8:304. [PMID: 37582956 PMCID: PMC10427715 DOI: 10.1038/s41392-023-01503-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/03/2023] [Accepted: 05/16/2023] [Indexed: 08/17/2023] Open
Abstract
Mitochondria are dynamic organelles with multiple functions. They participate in necrotic cell death and programmed apoptotic, and are crucial for cell metabolism and survival. Mitophagy serves as a cytoprotective mechanism to remove superfluous or dysfunctional mitochondria and maintain mitochondrial fine-tuning numbers to balance intracellular homeostasis. Growing evidences show that mitophagy, as an acute tissue stress response, plays an important role in maintaining the health of the mitochondrial network. Since the timely removal of abnormal mitochondria is essential for cell survival, cells have evolved a variety of mitophagy pathways to ensure that mitophagy can be activated in time under various environments. A better understanding of the mechanism of mitophagy in various diseases is crucial for the treatment of diseases and therapeutic target design. In this review, we summarize the molecular mechanisms of mitophagy-mediated mitochondrial elimination, how mitophagy maintains mitochondrial homeostasis at the system levels and organ, and what alterations in mitophagy are related to the development of diseases, including neurological, cardiovascular, pulmonary, hepatic, renal disease, etc., in recent advances. Finally, we summarize the potential clinical applications and outline the conditions for mitophagy regulators to enter clinical trials. Research advances in signaling transduction of mitophagy will have an important role in developing new therapeutic strategies for precision medicine.
Collapse
Affiliation(s)
- Shouliang Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Haijiao Long
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
- Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lianjie Hou
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Baorong Feng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Zihong Ma
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Ying Wu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Yu Zeng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Jiahao Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China
| | - Da-Wei Zhang
- Group on the Molecular and Cell Biology of Lipids and Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan City People's Hospital, Qingyuan, Guangdong, China.
| |
Collapse
|
5
|
Li J, Lin Q, Shao X, Li S, Zhu X, Wu J, Mou S, Gu L, Wang Q, Zhang M, Zhang K, Lu J, Ni Z. HIF1α-BNIP3-mediated mitophagy protects against renal fibrosis by decreasing ROS and inhibiting activation of the NLRP3 inflammasome. Cell Death Dis 2023; 14:200. [PMID: 36928344 PMCID: PMC10020151 DOI: 10.1038/s41419-023-05587-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/20/2022] [Accepted: 01/12/2023] [Indexed: 03/18/2023]
Abstract
Chronic kidney disease affects approximately 14.3% of people worldwide. Tubulointerstitial fibrosis is the final stage of almost all progressive CKD. To date, the pathogenesis of renal fibrosis remains unclear, and there is a lack of effective treatments, leading to renal replacement therapy. Mitophagy is a type of selective autophagy that has been recognized as an important way to remove dysfunctional mitochondria and abrogate the excessive accumulation of mitochondrial-derived reactive oxygen species (ROS) to balance the function of cells. However, the role of mitophagy and its regulation in renal fibrosis need further examination. In this study, we showed that mitophagy was induced in renal tubular epithelial cells in renal fibrosis. After silencing BNIP3, mitophagy was abolished in vivo and in vitro, indicating the important effect of the BNIP3-dependent pathway on mitophagy. Furthermore, in unilateral ureteral obstruction (UUO) models and hypoxic conditions, the production of mitochondrial ROS, mitochondrial damage, activation of the NLRP3 inflammasome, and the levels of αSMA and TGFβ1 increased significantly following BNIP3 gene deletion or silencing. Following silencing BNIP3 and pretreatment with mitoTEMPO or MCC950, the protein levels of αSMA and TGFβ1 decreased significantly in HK-2 cells under hypoxic conditions. These findings demonstrated that HIF1α-BNIP3-mediated mitophagy played a protective role against hypoxia-induced renal epithelial cell injury and renal fibrosis by reducing mitochondrial ROS and inhibiting activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Jialin Li
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qisheng Lin
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xinghua Shao
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shu Li
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xuying Zhu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jingkui Wu
- Shuguang Hospital Affilliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201200, China
| | - Shan Mou
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Leyi Gu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Qin Wang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Minfang Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Kaiqi Zhang
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jiayue Lu
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Zhaohui Ni
- Department of Nephrology, Molecular Cell Lab for Kidney Disease, Shanghai Peritoneal Dialysis Research Center, Ren Ji Hospital, Uremia Diagnosis and Treatment Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
6
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
7
|
Possible benefits of exogenous melatonin for individuals on dialysis: a narrative review on potential mechanisms and clinical implications. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1599-1611. [PMID: 34097094 DOI: 10.1007/s00210-021-02099-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/06/2021] [Indexed: 10/21/2022]
Abstract
Prevention of oxidative stress and inflammation in chronic kidney disease patients (CKD) on dialysis may reduce dialysis-associated complications. Administration of powerful antioxidants may improve the consequences of peritoneal dialysis (PD) and hemodialysis (HD). This narrative review aimed to show the potential therapeutic effects of melatonin (MLT) on the consequences of CKD patients receiving HD or PD. The results of preclinical and clinical studies have proven that CKD and dialysis are accompanied by reduced endogenous MLT levels and related complications such as sleep disorders. Enhanced oxidative stress, inflammation, cellular damages, and renal fibrosis, along with dysregulation of the renin-angiotensin system (RAS), have been observed in CKD and patients on dialysis. Results of studies have revealed that the restoration of MLT via the exogenous source may regulate oxidative stress, inflammation, and RAS functions, inhibit fibrosis, and improve complications in patients with long-term dialysis patients. In summary, treatment of patients with CKD and dialysis with exogenous MLT is suggested as a practical approach in reducing the outcomes and improving the quality of life in patients via antioxidant, anti-inflammatory, and anti-fibrotic signaling pathways. Therefore, this hormone can be considered in clinical practice to manage dialysis-related complications.
Collapse
|
8
|
Lin X, Li J, Tan R, Zhong X, Yang J, Wang L. Identification of Hub Genes Associated with the Development of Acute Kidney Injury by Weighted Gene Co-Expression Network Analysis. Kidney Blood Press Res 2021; 46:63-73. [PMID: 33401265 DOI: 10.1159/000511661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/17/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a severe clinical syndrome, causing a profound medical and socioeconomic burden worldwide. This study aimed to explore underlying molecular targets related to the progression of AKI. METHODS A public database originated from the NCBI GEO database (serial number: GSE121190) and a well-established and unbiased method of weighted gene co-expression network analysis (WGCNA) to identify hub genes and potential pathways were used. Furthermore, the unbiased hub genes were validated in 2 classic models of AKI in a rodent model: chemically established AKI by cisplatin- and ischemia reperfusion-induced AKI. RESULTS A total of 17 modules were finally obtained by the unbiased method of WGCNA, where the genes in turquoise module displayed strong correlation with the development of AKI. In addition, the results of gene ontology revealed that the genes in turquoise module were involved in renal injury and renal fibrosis. Thus, the hub genes were further validated by experimental methods and primarily obtained Rplp1 and Lgals1 as key candidate genes related to the progression of AKI by the advantage of quantitative PCR, Western blotting, and in situ tissue fluorescence. Importantly, the expression of Rplp1 and Lgals1 at the protein level showed positive correlation with renal function, including serum Cr and BUN. CONCLUSIONS By the advantage of unbiased bioinformatic method and consequent experimental verification, this study lays the foundation basis for the pathogenesis and therapeutic agent development of AKI.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jianchun Li
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Ruizhi Tan
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xia Zhong
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Jieke Yang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Li Wang
- Laboratory of Organ Fibrosis Prophylaxis and Treatment by Combine Traditional Chinese and Western Medicine, Research Center of Integrated Traditional Chinese and Western Medicine, Affiliated Traditional Medicine Hospital, Southwest Medical University, Luzhou, China,
| |
Collapse
|
9
|
Srivastava SP, Kanasaki K, Goodwin JE. Loss of Mitochondrial Control Impacts Renal Health. Front Pharmacol 2020; 11:543973. [PMID: 33362536 PMCID: PMC7756079 DOI: 10.3389/fphar.2020.543973] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Disruption of mitochondrial biosynthesis or dynamics, or loss of control over mitochondrial regulation leads to a significant alteration in fuel preference and metabolic shifts that potentially affect the health of kidney cells. Mitochondria regulate metabolic networks which affect multiple cellular processes. Indeed, mitochondria have established themselves as therapeutic targets in several diseases. The importance of mitochondria in regulating the pathogenesis of several diseases has been recognized, however, there is limited understanding of mitochondrial biology in the kidney. This review provides an overview of mitochondrial dysfunction in kidney diseases. We describe the importance of mitochondria and mitochondrial sirtuins in the regulation of renal metabolic shifts in diverse cells types, and review this loss of control leads to increased cell-to-cell transdifferentiation processes and myofibroblast-metabolic shifts, which affect the pathophysiology of several kidney diseases. In addition, we examine mitochondrial-targeted therapeutic agents that offer potential leads in combating kidney diseases.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| | - Keizo Kanasaki
- Internal Medicine 1, Shimane University Faculty of Medicine, Izumo, Japan
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
10
|
Jiang M, Bai M, Lei J, Xie Y, Xu S, Jia Z, Zhang A. Mitochondrial dysfunction and the AKI-to-CKD transition. Am J Physiol Renal Physiol 2020; 319:F1105-F1116. [PMID: 33073587 DOI: 10.1152/ajprenal.00285.2020] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acute kidney injury (AKI) has been widely recognized as an important risk factor for the occurrence and development of chronic kidney disease (CKD). Even milder AKI has adverse consequences and could progress to renal fibrosis, which is the ultimate common pathway for various terminal kidney diseases. Thus, it is urgent to develop a strategy to hinder the transition from AKI to CKD. Some mechanisms of the AKI-to-CKD transition have been revealed, such as nephron loss, cell cycle arrest, persistent inflammation, endothelial injury with vascular rarefaction, and epigenetic changes. Previous studies have elucidated the pivotal role of mitochondria in acute injuries and demonstrated that the fitness of this organelle is a major determinant in both the pathogenesis and recovery of organ function. Recent research has suggested that damage to mitochondrial function in early AKI is a crucial factor leading to tubular injury and persistent renal insufficiency. Dysregulation of mitochondrial homeostasis, alterations in bioenergetics, and organelle stress cross talk contribute to the AKI-to-CKD transition. In this review, we focus on the pathophysiology of mitochondria in renal recovery after AKI and progression to CKD, confirming that targeting mitochondria represents a potentially effective therapeutic strategy for the progression of AKI to CKD.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Mi Bai
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Juan Lei
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Yifan Xie
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Shuang Xu
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| | - Zhanjun Jia
- Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Effect of inositol 1, 4, 5-trisphosphate receptor dependent Ca2+ release in atrial fibrillation. Chin Med J (Engl) 2020; 133:1732-1734. [PMID: 32541358 PMCID: PMC7401769 DOI: 10.1097/cm9.0000000000000898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Mitophagy in Acute Kidney Injury and Kidney Repair. Cells 2020; 9:cells9020338. [PMID: 32024113 PMCID: PMC7072358 DOI: 10.3390/cells9020338] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is a major kidney disease characterized by rapid decline of renal function. Besides its acute consequence of high mortality, AKI has recently been recognized as an independent risk factor for chronic kidney disease (CKD). Maladaptive or incomplete repair of renal tubules after severe or episodic AKI leads to renal fibrosis and, eventually, CKD. Recent studies highlight a key role of mitochondrial pathology in AKI development and abnormal kidney repair after AKI. As such, timely elimination of damaged mitochondria in renal tubular cells represents an important quality control mechanism for cell homeostasis and survival during kidney injury and repair. Mitophagy is a selective form of autophagy that selectively removes redundant or damaged mitochondria. Here, we summarize our recent understanding on the molecular mechanisms of mitophagy, discuss the role of mitophagy in AKI development and kidney repair after AKI, and present future research directions and therapeutic potential.
Collapse
|