1
|
Sellung D, Heil L, Daya N, Jacobsen F, Mertens-Rill J, Zhuge H, Döring K, Piran M, Milting H, Unger A, Linke WA, Kley R, Preusse C, Roos A, Fürst DO, Ven PFMVD, Vorgerd M. Novel Filamin C Myofibrillar Myopathy Variants Cause Different Pathomechanisms and Alterations in Protein Quality Systems. Cells 2023; 12:cells12091321. [PMID: 37174721 PMCID: PMC10177260 DOI: 10.3390/cells12091321] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Myofibrillar myopathies (MFM) are a group of chronic muscle diseases pathophysiologically characterized by accumulation of protein aggregates and structural failure of muscle fibers. A subtype of MFM is caused by heterozygous mutations in the filamin C (FLNC) gene, exhibiting progressive muscle weakness, muscle structural alterations and intracellular protein accumulations. Here, we characterize in depth the pathogenicity of two novel truncating FLNc variants (p.Q1662X and p.Y2704X) and assess their distinct effect on FLNc stability and distribution as well as their impact on protein quality system (PQS) pathways. Both variants cause a slowly progressive myopathy with disease onset in adulthood, chronic myopathic alterations in muscle biopsy including the presence of intracellular protein aggregates. Our analyses revealed that p.Q1662X results in FLNc haploinsufficiency and p.Y2704X in a dominant-negative FLNc accumulation. Moreover, both protein-truncating variants cause different PQS alterations: p.Q1662X leads to an increase in expression of several genes involved in the ubiquitin-proteasome system (UPS) and the chaperone-assisted selective autophagy (CASA) system, whereas p.Y2704X results in increased abundance of proteins involved in UPS activation and autophagic buildup. We conclude that truncating FLNC variants might have different pathogenetic consequences and impair PQS function by diverse mechanisms and to varying extents. Further studies on a larger number of patients are necessary to confirm our observations.
Collapse
Affiliation(s)
- Dominik Sellung
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Lorena Heil
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Nassam Daya
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Frank Jacobsen
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Janine Mertens-Rill
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Heidi Zhuge
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Kristina Döring
- Department of Human Genetics, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Misagh Piran
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany
| | - Andreas Unger
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Wolfgang A Linke
- Institute of Physiology II, University of Münster, 48149 Münster, Germany
| | - Rudi Kley
- Department of Neurology and Clinical Neurophysiology, St. Marien-Hospital Borken, 46325 Borken, Germany
| | - Corinna Preusse
- Department of Neuropathology, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Andreas Roos
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Matthias Vorgerd
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| |
Collapse
|
2
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
3
|
Schänzer A, Schumann E, Zengeler D, Gulatz L, Maroli G, Ahting U, Sprengel A, Gräf S, Hahn A, Jux C, Acker T, Fürst DO, Rupp S, Schuld J, van der Ven PFM. The p.Ala2430Val mutation in filamin C causes a "hypertrophic myofibrillar cardiomyopathy". J Muscle Res Cell Motil 2021; 42:381-397. [PMID: 33710525 DOI: 10.1007/s10974-021-09601-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 02/26/2021] [Indexed: 10/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) often leads to heart failure. Mutations in sarcomeric proteins are most frequently the cause of HCM but in many patients the gene defect is not known. Here we report on a young man who was diagnosed with HCM shortly after birth. Whole exome sequencing revealed a mutation in the FLNC gene (c.7289C > T; p.Ala2430Val) that was previously shown to cause aggregation of the mutant protein in transfected cells. Myocardial tissue from patients with this mutation has not been analyzed before and thus, the underlying etiology is not well understood. Myocardial tissue of our patient obtained during myectomy at the age of 23 years was analyzed in detail by histochemistry, immunofluorescence staining, electron microscopy and western blot analysis. Cardiac histology showed a pathology typical for myofibrillar myopathy with myofibril disarray and abnormal protein aggregates containing BAG3, desmin, HSPB5 and filamin C. Analysis of sarcomeric and intercalated disc proteins showed focally reduced expression of the gap junction protein connexin43 and Xin-positive sarcomeric lesions in the cardiomyocytes of our patient. In addition, autophagy pathways were altered with upregulation of LC3-II, WIPI1 and HSPB5, 6, 7 and 8. We conclude that the p.Ala2430Val mutation in FLNC most probably is associated with HCM characterized by abnormal intercalated discs, disarray of myofibrils and aggregates containing Z-disc proteins similar to myofibrillar myopathy, which supports the pathological effect of the mutation.
Collapse
Affiliation(s)
- Anne Schänzer
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany.
| | - Elisabeth Schumann
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Diana Zengeler
- Center for Genomics and Transcriptomics (CeGat) GmbH, Tübingen, Germany
| | - Lisann Gulatz
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Uwe Ahting
- Institute of Human Genetics, Technical University of Munich (TUM), Munich, Germany
| | - Anke Sprengel
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Sabine Gräf
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University, Giessen, Germany
| | - Christian Jux
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Till Acker
- Institute of Neuropathology, Justus Liebig University, Arndstr.16, 35392, Giessen, Germany
| | - Dieter O Fürst
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Stefan Rupp
- Pediatric Heart Center, Justus Liebig University, Giessen, Germany
| | - Julia Schuld
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Peter F M van der Ven
- Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
4
|
Structure and Function of Filamin C in the Muscle Z-Disc. Int J Mol Sci 2020; 21:ijms21082696. [PMID: 32295012 PMCID: PMC7216277 DOI: 10.3390/ijms21082696] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Filamin C (FLNC) is one of three filamin proteins (Filamin A (FLNA), Filamin B (FLNB), and FLNC) that cross-link actin filaments and interact with numerous binding partners. FLNC consists of a N-terminal actin-binding domain followed by 24 immunoglobulin-like repeats with two intervening calpain-sensitive hinges separating R15 and R16 (hinge 1) and R23 and R24 (hinge-2). The FLNC subunit is dimerized through R24 and calpain cleaves off the dimerization domain to regulate mobility of the FLNC subunit. FLNC is localized in the Z-disc due to the unique insertion of 82 amino acid residues in repeat 20 and necessary for normal Z-disc formation that connect sarcomeres. Since phosphorylation of FLNC by PKC diminishes the calpain sensitivity, assembly, and disassembly of the Z-disc may be regulated by phosphorylation of FLNC. Mutations of FLNC result in cardiomyopathy and muscle weakness. Although this review will focus on the current understanding of FLNC structure and functions in muscle, we will also discuss other filamins because they share high sequence similarity and are better characterized. We will also discuss a possible role of FLNC as a mechanosensor during muscle contraction.
Collapse
|
5
|
Verdonschot JAJ, Vanhoutte EK, Claes GRF, Helderman-van den Enden ATJM, Hoeijmakers JGJ, Hellebrekers DMEI, de Haan A, Christiaans I, Lekanne Deprez RH, Boen HM, van Craenenbroeck EM, Loeys BL, Hoedemaekers YM, Marcelis C, Kempers M, Brusse E, van Waning JI, Baas AF, Dooijes D, Asselbergs FW, Barge-Schaapveld DQCM, Koopman P, van den Wijngaard A, Heymans SRB, Krapels IPC, Brunner HG. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum Mutat 2020; 41:1091-1111. [PMID: 32112656 PMCID: PMC7318287 DOI: 10.1002/humu.24004] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Abstract
Filamin C (FLNC) variants are associated with cardiac and muscular phenotypes. Originally, FLNC variants were described in myofibrillar myopathy (MFM) patients. Later, high‐throughput screening in cardiomyopathy cohorts determined a prominent role for FLNC in isolated hypertrophic and dilated cardiomyopathies (HCM and DCM). FLNC variants are now among the more prevalent causes of genetic DCM. FLNC‐associated DCM is associated with a malignant clinical course and a high risk of sudden cardiac death. The clinical spectrum of FLNC suggests different pathomechanisms related to variant types and their location in the gene. The appropriate functioning of FLNC is crucial for structural integrity and cell signaling of the sarcomere. The secondary protein structure of FLNC is critical to ensure this function. Truncating variants with subsequent haploinsufficiency are associated with DCM and cardiac arrhythmias. Interference with the dimerization and folding of the protein leads to aggregate formation detrimental for muscle function, as found in HCM and MFM. Variants associated with HCM are predominantly missense variants, which cluster in the ROD2 domain. This domain is important for binding to the sarcomere and to ensure appropriate cell signaling. We here review FLNC genotype–phenotype correlations based on available evidence.
Collapse
Affiliation(s)
- Job A J Verdonschot
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands
| | - Els K Vanhoutte
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Godelieve R F Claes
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | - Debby M E I Hellebrekers
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Amber de Haan
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Imke Christiaans
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ronald H Lekanne Deprez
- Department of Clinical Genetics, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Hanne M Boen
- Department of Cardiology, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | | | - Bart L Loeys
- Department of Medical Genetics, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Yvonne M Hoedemaekers
- Department of Clinical Genetics, University Medical Centre Groningen, Groningen, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carlo Marcelis
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Marlies Kempers
- Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Esther Brusse
- Department of Neurology, Erasmus MC University Medical Centre, Rotterdam, The Netherlands
| | - Jaap I van Waning
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cardiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Annette F Baas
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Folkert W Asselbergs
- Department of Cardiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Stephane R B Heymans
- Department of Cardiology, Cardiovascular Research Institute (CARIM), Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium.,The Netherlands Heart Institute, Utrecht, The Netherlands
| | - Ingrid P C Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands.,Department of Clinical Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands.,Department of Genetics and Cell Biology, GROW Institute for Developmental Biology and Cancer, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
6
|
Lee HCH, Wong S, Sheng B, Pan NYK, Leung YKF, Lau KKD, Cheng YS, Ho LC, Li R, Lee CN, Tsoi TH, Cheung YFN, Fu YPM, Kan NCA, Chu YP, Au WCL, Yeung HMJ, Li SH, Cheung CFM, Tong HF, Hung LYE, Chan TYC, Li CT, Tong TYT, Tong TWC, Leung HYC, Lee KH, Yeung SYS, Lee SYB, Lau TCG, Lam CW, Mak CM, Chan AYW. Clinical and pathological characterization of FLNC-related myofibrillar myopathy caused by founder variant c.8129G>A in Hong Kong Chinese. Clin Genet 2020; 97:747-757. [PMID: 32022900 DOI: 10.1111/cge.13715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/17/2020] [Accepted: 01/28/2020] [Indexed: 12/18/2022]
Abstract
FLNC-related myofibrillar myopathy could manifest as autosomal dominant late-onset slowly progressive proximal muscle weakness; involvements of cardiac and/or respiratory functions are common. We describe 34 patients in nine families of FLNC-related myofibrillar myopathy in Hong Kong ethnic Chinese diagnosed over the last 12 years, in whom the same pathogenic variant c.8129G>A (p.Trp2710*) was detected. Twenty-six patients were symptomatic when diagnosed; four patients died of pneumonia and/or respiratory failure. Abnormal amorphous material or granulofilamentous masses were detected in half of the cases, with mitochondrial abnormalities noted in two-thirds. We also show by haplotype analysis the founder effect associated with this Hong Kong variant, which might have occurred 42 to 71 generations ago or around Tang and Song dynasties, and underlain a higher incidence of myofibrillar myopathy among Hong Kong Chinese. The late-onset nature and slowly progressive course of the highly penetrant condition could have significant impact on the family members, and an early diagnosis could benefit the whole family. Considering another neighboring founder variant in FLNC in German patients, we advocate development of specific therapies such as chaperone-based or antisense oligonucleotide strategies for this particular type of myopathy.
Collapse
Affiliation(s)
| | - Shun Wong
- Department of Pathology, Princess Margaret Hospital, Hong Kong.,Pathology Department, St. Paul's Hospital, Hong Kong
| | - Bun Sheng
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Nin-Yuan Keith Pan
- Department of Diagnostic Radiology, Princess Margaret Hospital, Hong Kong
| | | | | | - Yue Sandy Cheng
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong.,Department of Clinical Laboratory, Gleneagles Hong Kong Hospital, Hong Kong
| | - Luen-Cheung Ho
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong
| | - Richard Li
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Chi-Nam Lee
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | - Tak-Hong Tsoi
- Department of Medicine, Pamela Youde Nethersole Eastern Hospital, Hong Kong
| | | | | | | | - Yim-Pui Chu
- Department of Medicine and Geriatrics, Princess Margaret Hospital, Hong Kong
| | - Wing-Chi Lisa Au
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | - Siu-Hung Li
- Department of Medicine, North District Hospital, Hong Kong
| | | | - Hok-Fung Tong
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | | | - Chi Terence Li
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | | | | | - Ka-Ho Lee
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | | | | | | - Ching-Wan Lam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Chloe Miu Mak
- Department of Pathology, Princess Margaret Hospital, Hong Kong
| | | |
Collapse
|