1
|
Matthews J, Herat L, Schlaich MP, Matthews V. The Impact of SGLT2 Inhibitors in the Heart and Kidneys Regardless of Diabetes Status. Int J Mol Sci 2023; 24:14243. [PMID: 37762542 PMCID: PMC10532235 DOI: 10.3390/ijms241814243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic Kidney Disease (CKD) and Cardiovascular Disease (CVD) are two devastating diseases that may occur in nondiabetics or individuals with diabetes and, when combined, it is referred to as cardiorenal disease. The impact of cardiorenal disease on society, the economy and the healthcare system is enormous. Although there are numerous therapies for cardiorenal disease, one therapy showing a great deal of promise is sodium-dependent glucose cotransporter 2 (SGLT2) inhibitors. The SGLT family member, SGLT2, is often implicated in the pathogenesis of a range of diseases, and the dysregulation of the activity of SGLT2 markedly effects the transport of glucose and sodium across the luminal membrane of renal cells. Inhibitors of SGLT2 were developed based on the antidiabetic action initiated by inhibiting renal glucose reabsorption, thereby increasing glucosuria. Of great medical significance, large-scale clinical trials utilizing a range of SGLT2 inhibitors have demonstrated both metabolic and biochemical benefits via numerous novel mechanisms, such as sympathoinhibition, which will be discussed in this review. In summary, SGLT2 inhibitors clearly exert cardio-renal protection in people with and without diabetes in both preclinical and clinical settings. This exciting class of inhibitors improve hyperglycemia, high blood pressure, hyperlipidemia and diabetic retinopathy via multiple mechanisms, of which many are yet to be elucidated.
Collapse
Affiliation(s)
- Jennifer Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Lakshini Herat
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| | - Markus P. Schlaich
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Medicine, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Vance Matthews
- Royal Perth Hospital Unit, Dobney Hypertension Centre, School of Biomedical Sciences, University of Western Australia, Crawley, WA 6009, Australia; (J.M.); (L.H.)
| |
Collapse
|
2
|
Cheung JTK, Yang A, Wu H, Lau ESH, Shi M, Kong APS, Ma RCW, Luk AOY, Chan JCN, Chow E. Initiation of sodium-glucose cotransporter-2 inhibitors at lower HbA1c threshold attenuates eGFR decline in type 2 diabetes patients with and without cardiorenal disease: A propensity-matched cohort study. Diabetes Res Clin Pract 2023; 195:110203. [PMID: 36493912 DOI: 10.1016/j.diabres.2022.110203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/27/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
AIM To examine the association of initiation of sodium-glucose cotransporter-2 inhibitors (SGLT2i) at lower glycemic threshold with decline in estimated-glomerular filtration rate (eGFR). METHODS We analyzed a prospective cohort of Chinese patients with type 2 diabetes from Hong Kong. Patients initiating SGLT2i at HbA1c < 7.5 % (lower-HbA1c) versus ≥ 7.5 % (higher-HbA1c) were matched using 1:1 propensity score. We compared annual eGFR changes in the lower-HbA1c and higher-HbA1c groups using linear mixed-effect models. Binary logistic regression was used to explore associations of SGLT2i initiation at lower HbA1c with odds of rapid eGFR decline (>4% per year). RESULTS Among 3384 patients with a median follow-up of 1.9 years, the mean age was 60.2 ± 11.5 years and 62.1 % were male. The lower-HbA1c and higher-HbA1c groups had baseline HbA1c (%) of 6.9 ± 0.5 and 9.0 ± 1.3 respectively, with similar pre-index annual eGFR decline. The lower-HbA1c group had a slower post-index annual eGFR decline than the higher-HbA1c group (-0.99 versus -1.63 mL/min/1.73 m2, p < 0.001). Overall, the lower-HbA1c group had lower odds of rapid eGFR decline (OR = 0.15, 95 % CI: 0.07-0.29). Greater renoprotection from SGLT2i initiation at lower-HbA1c was observed in those with baseline eGFR < 60 mL/min/1.73 m2, albuminuria and/or treatment with renin-angiotensin-system inhibitors or insulin. CONCLUSIONS In this real-world study, SGLT2i initiation at HbA1c < 7.5 % was associated with slower eGFR decline especially in high risk patients, supporting the potential renal benefits of SGLT2i initiation at lower glycemic thresholds.
Collapse
Affiliation(s)
- Johnny T K Cheung
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Hongjiang Wu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Eric S H Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Alice P S Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Ronald C W Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Andrea O Y Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Juliana C N Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
3
|
Matthews JR, Schlaich MP, Rakoczy EP, Matthews VB, Herat LY. The Effect of SGLT2 Inhibition on Diabetic Kidney Disease in a Model of Diabetic Retinopathy. Biomedicines 2022; 10:biomedicines10030522. [PMID: 35327323 PMCID: PMC8944990 DOI: 10.3390/biomedicines10030522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/18/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
Diabetic kidney disease (DKD) is a chronic disorder characterized by elevated urine albumin excretion, reduced glomerular filtration rate, or both. At present, angiotensin-converting enzyme inhibitors or angiotensin receptor blockers are the standard care for the treatment of DKD, resulting in improved outcomes. However, alternative treatments may be required because although the standard treatments have been found to slow the progression of DKD, they have not been found to halt the disease. In the past decade, sodium glucose co-transporter 2 (SGLT2) inhibitors have been widely researched in the area of cardiovascular disease and diabetes and have been shown to improve cardiovascular outcomes. SGLT2 inhibitors including canagliflozin and dapagliflozin have been shown to slow the progression of kidney disease. There is currently an omission of literature where three SGLT2 inhibitors have been simultaneously compared in a rodent diabetic model. After diabetic Akimba mice were treated with SGLT2 inhibitors for 8 weeks, there was not only a beneficial impact on the pancreas, signified by an increase in the islet mass and increased plasma insulin levels, but also on the kidneys, signified by a reduction in average kidney to body weight ratio and improvement in renal histology. These findings suggest that SGLT2 inhibition promotes improvement in both pancreatic and kidney health.
Collapse
Affiliation(s)
- Jennifer Rose Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (V.B.M.)
| | - Markus P. Schlaich
- Dobney Hypertension Centre, Medical School—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia;
- Department of Cardiology and Department of Nephrology, Royal Perth Hospital, Perth, WA 6000, Australia
| | - Elizabeth Piroska Rakoczy
- Department of Molecular Ophthalmology, University of Western Australia, Crawley, WA 6009, Australia;
| | - Vance Bruce Matthews
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (V.B.M.)
| | - Lakshini Yasaswi Herat
- Dobney Hypertension Centre, School of Biomedical Sciences—Royal Perth Hospital Unit, University of Western Australia, Crawley, WA 6009, Australia; (J.R.M.); (V.B.M.)
- Correspondence: ; Tel.: +61-8-9224-0239
| |
Collapse
|
4
|
Li J, Jin S, Barati MT, Rane S, Lin Q, Tan Y, Cai L, Rane MJ. ERK and p38 MAPK inhibition controls NF-E2 degradation and profibrotic signaling in renal proximal tubule cells. Life Sci 2021; 287:120092. [PMID: 34715142 PMCID: PMC8665041 DOI: 10.1016/j.lfs.2021.120092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
AIMS Transforming growth factor-β (TGF-β) mediates fibrotic manifestations of diabetic nephropathy. We demonstrated proteasomal degradation of anti-fibrotic protein, nuclear factor-erythroid derived 2 (NF-E2), in TGF-β treated human renal proximal tubule (HK-11) cells and in diabetic mouse kidneys. The current study examined the role of mitogen-activated protein kinase (MAPK) pathways in mediating NF-E2 proteasomal degradation and stimulating profibrotic signaling in HK-11 cells. MAIN METHODS HK-11 cells were pretreated with vehicle or appropriate proteasome and MAPK inhibitors, MG132 (0.5 μM), SB203580 (1 μM), PD98059 (25 μM) and SP600125 (10 μM), respectively, followed by treatment with/without TGF-β (10 ng/ml, 24 h). Cell lysates and kidney homogenates from FVB and OVE26 mice treated with/without MG132 were immunoblotted with appropriate antibodies. pUse vector and pUse-NF-E2 cDNA were transfected in HK-11 cells and effects of TGF-β on JNK MAPK phosphorylation (pJNK) was examined. KEY FINDINGS We demonstrated activation of p38, ERK, and JNK MAPK pathways in TGF-β treated HK-11 cells. Dual p38 and ERK MAPK blockade prevented TGF-β-induced pSer82Hsp27, fibronectin and connective tissue growth factor (CTGF) expression while preserving NF-E2 expression. Blockade of JNK MAPK inhibited TGF-β-induced CTGF expression without preserving NF-E2 expression. MG132 treatment prevented TGF-β-induced pJNK in HK-11 cells and in type 1 diabetic OVE26 mouse kidneys, demonstrating that TGF-β- and diabetes-induced pJNK occurs downstream of proteasome activation. A direct role for NF-E2 in modulating pJNK activation was demonstrated by NF-E2 over-expression. SIGNIFICANCE ERK and p38 MAPK promotes NF-E2 proteasomal degradation while proteasome activation promotes pJNK and profibrotic signaling in renal proximal tubule cells.
Collapse
Affiliation(s)
- Jia Li
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA; Department of Nephrology, the First Hospital of Jilin University, Changchun, Jilin 130021, China; Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Shunying Jin
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA
| | - Michelle T Barati
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA
| | - Sanjana Rane
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA
| | - Qian Lin
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville School of Medicine, Louisville, KY 40292, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40292, USA; Departments of Radiation Oncology, University of Louisville School of Medicine, Louisville, KY 40292, USA
| | - Madhavi J Rane
- Department of Medicine, Division Nephrology, University of Louisville, Louisville, KY 40292, USA; Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40292, USA.
| |
Collapse
|
5
|
Reifsnider OS, Kansal AR, Wanner C, Pfarr E, Koitka-Weber A, Brand SB, Stargardter M, Wang C, Kuti E, Ustyugova A. Cost-Effectiveness of Empagliflozin in Patients With Diabetic Kidney Disease in the United States: Findings Based on the EMPA-REG Outcome Trial. Am J Kidney Dis 2021; 79:796-806. [PMID: 34752913 DOI: 10.1053/j.ajkd.2021.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 09/18/2021] [Indexed: 01/06/2023]
Abstract
RATIONALE & OBJECTIVE Benefits of sodium-glucose co-transporter 2 inhibitors on kidney outcomes have been demonstrated in clinical trials. Among patients with type 2 diabetes and established cardiovascular (CV) disease enrolled in EMPA-REG Outcome Study (NCT01131676), empagliflozin added to standard of care (SoC) reduced the risk of incident or worsening nephropathy compared to SoC alone. This analysis evaluated the cost-effectiveness of empagliflozin versus SoC alone in the subpopulation with diabetic kidney disease (DKD) from the perspective of United States (US) commercial insurers and Medicare. STUDY DESIGN Discrete event simulation model. SETTING & POPULATION Patients with DKD in a US healthcare system. INTERVENTIONS Empagliflozin 10 or 25 mg with SoC versus SoC alone. SoC included glucose-lowering therapies and medications to treat CV risk factors. OUTCOMES Incremental cost-effectiveness ratios (ICERs, 2020 US dollars per quality-adjusted life-year [QALY] gained). Costs and QALYs were discounted 3.0%/year. Model, Perspective, & Timeframe: Cost-effectiveness analysis, commercial insurers and Medicare perspective, lifetime horizon. RESULTS The ICER of empagliflozin with SoC versus SoC alone was $25,974/QALY. Empagliflozin added 0.67 QALYs and $17,322/patient over a lifetime horizon. Results were driven by fewer clinical events (including CV death, heart failure [HF] hospitalization, albuminuria progression, and a composite kidney outcome) experienced by patients receiving empagliflozin with SoC versus SoC alone. Results were sensitive to rates of CV death, non-fatal MI, and HF hospitalization, as well as to drug costs, and time horizon. Probabilistic sensitivity analyses indicated 91% of simulations falling below $50,000/QALY. LIMITATIONS The EMPA-REG Outcome Study was not powered to assess treatment benefits in a subgroup and excluded patients with estimated glomerular filtration rate <30 mL/min/1.73m2. CONCLUSION Based on EMPA-REG Outcome Study, this cost-effectiveness analysis suggests that for commercial insurers and Medicare, adding empagliflozin to SoC may be a cost-effective treatment option for patients with DKD.
Collapse
Affiliation(s)
| | - Anuraag R Kansal
- Evidera, 7101 Wisconsin Ave., Suite 1400, Bethesda, MD 20814, USA
| | - Christoph Wanner
- Department of Medicine, Division of Nephrology, Würzburg University Clinic, Würzburg, Germany
| | - Egon Pfarr
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
| | - Audrey Koitka-Weber
- Department of Medicine, Division of Nephrology, Würzburg University Clinic, Würzburg, Germany; Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Australia
| | - Sarah B Brand
- Evidera, 7101 Wisconsin Ave., Suite 1400, Bethesda, MD 20814, USA
| | | | - Cheng Wang
- Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Effie Kuti
- Boehringer Ingelheim Pharmaceuticals, Inc. 900 Ridgebury Road, Ridgefield, CT 06877, USA
| | - Anastasia Ustyugova
- Boehringer Ingelheim International GmbH, Binger Strasse 173, 55216, Ingelheim am Rhein, Germany
| |
Collapse
|
6
|
Torres Á, Muñoz K, Nahuelpán Y, R. Saez AP, Mendoza P, Jara C, Cappelli C, Suarez R, Oyarzún C, Quezada C, San Martín R. Intraglomerular Monocyte/Macrophage Infiltration and Macrophage-Myofibroblast Transition during Diabetic Nephropathy Is Regulated by the A 2B Adenosine Receptor. Cells 2020; 9:1051. [PMID: 32340145 PMCID: PMC7226348 DOI: 10.3390/cells9041051] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 02/08/2023] Open
Abstract
Diabetic nephropathy (DN) is considered the main cause of kidney disease in which myofibroblasts lead to renal fibrosis. Macrophages were recently identified as the major source of myofibroblasts in a process known as macrophage-myofibroblast transition (MMT). Adenosine levels increase during DN and in vivo administration of MRS1754, an antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerular fibrosis (glomerulosclerosis). We aimed to investigate the association between A2BAR and MMT in glomerulosclerosis during DN. Kidneys/glomeruli of non-diabetic, diabetic, and MRS1754-treated diabetic (DM+MRS1754) rats were processed for histopathologic, transcriptomic, flow cytometry, and cellular in vitro analyses. Macrophages were used for in vitro cell migration/transmigration assays and MMT studies. In vivo MRS1754 treatment attenuated the clinical and histopathological signs of glomerulosclerosis in DN rats. Transcriptomic analysis demonstrated a decrease in chemokine-chemoattractants/cell-adhesion genes of monocytes/macrophages in DM+MRS1754 glomeruli. The number of intraglomerular infiltrated macrophages and MMT cells increased in diabetic rats. This was reverted by MRS1754 treatment. In vitro cell migration/transmigration decreased in macrophages treated with MRS1754. Human macrophages cultured with adenosine and/or TGF-β induced MMT, a process which was reduced by MRS1754. We concluded that pharmacologic blockade of A2BAR attenuated some clinical signs of renal dysfunction and glomerulosclerosis, and decreased intraglomerular macrophage infiltration and MMT in DN rats.
Collapse
Affiliation(s)
- Ángelo Torres
- Correspondence: (A.Á.); (R.S.M.); Tel.: +56-940195158 (A.Á.); +56-63-2221524 (R.S.M.)
| | | | | | | | | | | | | | | | | | | | - Rody San Martín
- Laboratorio de Patología Molecular, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia 511-0566, Chile; (K.M.); (Y.N.); (A.-P.R.S.); (P.M.); (C.J.); (C.C.); (R.S.); (C.O.); (C.Q.)
| |
Collapse
|