1
|
Stasiłowicz-Krzemień A, Gościniak A, Formanowicz D, Cielecka-Piontek J. Natural Guardians: Natural Compounds as Radioprotectors in Cancer Therapy. Int J Mol Sci 2024; 25:6937. [PMID: 39000045 PMCID: PMC11241526 DOI: 10.3390/ijms25136937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/17/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Cancer remains a significant global health challenge, with millions of deaths attributed to it annually. Radiotherapy, a cornerstone in cancer treatment, aims to destroy cancer cells while minimizing harm to healthy tissues. However, the harmful effects of irradiation on normal cells present a formidable obstacle. To mitigate these effects, researchers have explored using radioprotectors and mitigators, including natural compounds derived from secondary plant metabolites. This review outlines the diverse classes of natural compounds, elucidating their roles as protectants of healthy cells. Furthermore, the review highlights the potential of these compounds as radioprotective agents capable of enhancing the body's resilience to radiation therapy. By integrating natural radioprotectors into cancer treatment regimens, clinicians may improve therapeutic outcomes while minimizing the adverse effects on healthy tissues. Ongoing research in this area holds promise for developing complementary strategies to optimize radiotherapy efficacy and enhance patient quality of life.
Collapse
Affiliation(s)
- Anna Stasiłowicz-Krzemień
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Anna Gościniak
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland; (A.S.-K.); (A.G.)
| |
Collapse
|
2
|
Nersesova L, Petrosyan M, Tsakanova G. Review of the evidence of radioprotective potential of creatine and arginine as dietary supplements. Int J Radiat Biol 2024; 100:849-864. [PMID: 38683545 DOI: 10.1080/09553002.2024.2345098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/10/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Creatine (Cr) and l-arginine are naturally occurring guanidino compounds, commonly used as ergogenic dietary supplements. Creatine and l-arginine exhibit also a number of non-energy-related features, such as antioxidant, anti-apoptotic, and anti-inflammatory properties, which contribute to their protective action against oxidative stress (OS). In this regard, there are a number of studies emphasizing the protective effect of Cr against OS, which develops in the process of aging, increased physical loads as part of athletes' workouts, as well as a number of neurological diseases and toxic effects associated with xenobiotics and UV irradiation. Against this backdrop, and since ionizing radiation causes OS in cells, leading to radiotoxicity, there is an increasing interest to understand whether Cr has the full potential to serve as an effective radioprotective agent. The extensive literature search did not provide any data on this issue. In this narrative review, we have summarized some of our own experimental data published over the last years addressing the respective radioprotective effects of Cr. Next, we have additionally reviewed the existing data on the radiomodifying effects of l-arginine presented earlier by other research groups. CONCLUSIONS Creatine possesses significant radioprotective potential including: (1) radioprotective effect on the survival rate of rats subjected to acute whole-body X-ray irradiation in a LD70/30 dose of 6.5 Gy, (2) radioprotective effect on the population composition of peripheral blood cells, (3) radioprotective effect on the DNA damage of peripheral blood mononuclear cells, (4) radioprotective effect on the hepatocyte nucleus-nucleolar apparatus, and (5) radioprotective effect on the brain and liver Cr-Cr kinase systems of the respective animals. Taking into account these cytoprotective, gene-protective, hepatoprotective and energy-stimulating features of Cr, as well as its significant radioprotective effect on the survival rate of rats, it can be considered as a potentially promising radioprotector for further preclinical and clinical studies. The review of the currently available data on radiomodifying effects of l-arginine has indicated its significant potential as a radioprotector, radiomitigator, and radiosensitizer. However, to prove the effectiveness of arginine (Arg) as a radioprotective agent, it appears necessary to expand and deepen the relevant preclinical studies, and, most importantly, increase the number of proof-of-concept clinical trials, which are evidently lacking as of now.
Collapse
Affiliation(s)
| | | | - Gohar Tsakanova
- Institute of Molecular Biology NAS RA, Yerevan, Armenia
- CANDLE Synchrotron Research Institute, Yerevan, Armenia
| |
Collapse
|
3
|
Meena SK, Joriya PR, Yadav SM, Kumar R, Meena P, Patel DD. Modulation of radiation-induced intestinal injury by radioprotective agents: a cellular and molecular perspectives. REVIEWS ON ENVIRONMENTAL HEALTH 2023; 38:295-311. [PMID: 35438851 DOI: 10.1515/reveh-2021-0108] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 06/02/2023]
Abstract
The gastrointestinal (GI) system has rapidly proliferating and differentiating cells, which make it one of the most radiosensitive organs in the body. Exposure to high dose of ionising radiation (IR) during radiotherapy may generate a variety of reactive oxygen species (ROS) and reactive nitrogen species (RNS) including radicals, cause some side effects such as nausea, vomiting, diarrhoea, pain, ulceration, mal-absorption etc. Irradiation disrupts GI system by damaging proliferating stem cells of the crypts that alters the histology and physiology of intestine. Radiation damage reflects the qualitative and quantitative changes in intestinal epithelial stem cells like enterocytes, enteroendocrine cells, goblet cells and Paneth cells. The damaging effects of radiation to bio-molecules and cellular structures can alter gene signalling cascades and grounds genomic instability, protein modifications, cell senescence and cell death. The signalling pathways of GI tract includes Wnt, BMP, Hedgehog, PTEN/PI3K and Notch plays an important role in self-renewal of intestinal stem cells (ISCs) and maintaining the balance between self-renewal and differentiation of ISCs. Various radiation countermeasures including radioprotectors and mitigators are under development phase globally but still not approved for clinical applications during any radiation emergencies. In view of above, present review highlights cellular and molecular interruptions of GI system due to acute and chronic GI radiation injury, role of radioprotectors in signalling cascade modulations in GI epithelium and involvement of ISC markers in radioprotection.
Collapse
Affiliation(s)
- Sunil Kumar Meena
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Pukha Raj Joriya
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Sanwar Mal Yadav
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Raj Kumar
- Institute of Nuclear Medicine and Allied Science, DRDO, Delhi, India
| | - Priyadarshi Meena
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| | - Dev Dutt Patel
- Department of Zoology, University of Rajasthan, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Ali YA, Soliman HA, Abdel-Gabbar M, Ahmed NA, Attia KAA, Shalaby FM, El-Nahass ES, Ahmed OM. Rutin and Hesperidin Revoke the Hepatotoxicity Induced by Paclitaxel in Male Wistar Rats via Their Antioxidant, Anti-Inflammatory, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2738351. [PMID: 37275575 PMCID: PMC10238143 DOI: 10.1155/2023/2738351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/29/2022] [Indexed: 06/07/2023]
Abstract
Paclitaxel, one of the most effective chemotherapeutic drugs, is used to treat various cancers but it is exceedingly toxic when used long-term and can harm the liver. This study aimed to see if rutin, hesperidin, and their combination could protect male Wistar rats against paclitaxel (Taxol)-induced hepatotoxicity. Adult male Wistar rats were subdivided into 5 groups (each of six rats). The normal group was orally given the equivalent volume of vehicles for 6 weeks. The paclitaxel-administered control group received intraperitoneal injection of paclitaxel at a dose of 2 mg/Kg body weight twice a week for 6 weeks. Treated paclitaxel-administered groups were given paclitaxel similar to the paclitaxel-administered control group together with oral supplementation of rutin, hesperidin, and their combination at a dose of 10 mg/Kg body weight every other day for 6 weeks. The treatment of paclitaxel-administered rats with rutin and hesperidin significantly reduced paclitaxel-induced increases in serum alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, and gamma-glutamyl transferase activities as well as total bilirubin level and liver lipid peroxidation. However, the levels of serum albumin, liver glutathione content, and the activities of liver superoxide dismutase and glutathione peroxidase increased. Furthermore, paclitaxel-induced harmful hepatic histological changes (central vein and portal area blood vessel congestion, fatty changes, and moderate necrotic changes with focal nuclear pyknosis, focal mononuclear infiltration, and Kupffer cell proliferation) were remarkably enhanced by rutin and hesperidin treatments. Moreover, the elevated hepatic proapoptotic mediator (caspase-3) and pro-inflammatory cytokine (tumor necrosis factor-α) expressions were decreased by the three treatments in paclitaxel-administered rats. The cotreatment with rutin and hesperidin was the most effective in restoring the majority of liver function and histological integrity. Therefore, rutin, hesperidin, and their combination may exert hepatic protective effects in paclitaxel-administered rats by improving antioxidant defenses and inhibiting inflammation and apoptosis.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Kandil A. A. Attia
- Clinical Nutrition Department, College of Applied Medical Sciences, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Evaluation of Natural Resources, Environmental Studies and Research Institute, El-Sadat City University, El-Sadat City 32897, Egypt
| | - Fatma M. Shalaby
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
5
|
Prades-Sagarra È, Yaromina A, Dubois LJ. Polyphenols as Potential Protectors against Radiation-Induced Adverse Effects in Patients with Thoracic Cancer. Cancers (Basel) 2023; 15:cancers15092412. [PMID: 37173877 PMCID: PMC10177176 DOI: 10.3390/cancers15092412] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Radiotherapy is one of the standard treatment approaches used against thoracic cancers, occasionally combined with chemotherapy, immunotherapy and molecular targeted therapy. However, these cancers are often not highly sensitive to standard of care treatments, making the use of high dose radiotherapy necessary, which is linked with high rates of radiation-induced adverse effects in healthy tissues of the thorax. These tissues remain therefore dose-limiting factors in radiation oncology despite recent technological advances in treatment planning and delivery of irradiation. Polyphenols are metabolites found in plants that have been suggested to improve the therapeutic window by sensitizing the tumor to radiotherapy, while simultaneously protecting normal cells from therapy-induced damage by preventing DNA damage, as well as having anti-oxidant, anti-inflammatory or immunomodulatory properties. This review focuses on the radioprotective effect of polyphenols and the molecular mechanisms underlying these effects in the normal tissue, especially in the lung, heart and esophagus.
Collapse
Affiliation(s)
- Èlia Prades-Sagarra
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ala Yaromina
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine, GROW-School for Oncology and Reproduction, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Ali YA, Ahmed OM, Soliman HA, Abdel-Gabbar M, Al-Dossari M, El-Gawaad NSA, El-Nahass ES, Ahmed NA. Rutin and Hesperidin Alleviate Paclitaxel-Induced Nephrocardiotoxicity in Wistar Rats via Suppressing the Oxidative Stress and Enhancing the Antioxidant Defense Mechanisms. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5068304. [PMID: 36874615 PMCID: PMC9977529 DOI: 10.1155/2023/5068304] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/05/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023]
Abstract
Paclitaxel is a primary chemotherapy agent that displays antitumor activity against a variety of solid tumors. However, the clinical effectiveness of the drug is hampered by its nephrotoxic and cardiotoxic side effects. Thus, this investigation aimed at assessing the protective effects of rutin, hesperidin, and their combination to alleviate nephrotoxicity caused by paclitaxel (Taxol), cardiotoxicity in male Wistar rats, as well as oxidative stress. Rutin (10 mg/kg body weight), hesperidin (10 mg/kg body weight), and their mixture were given orally every other day for six weeks. Rats received intraperitoneal injections of paclitaxel twice weekly, on the second and fifth days of the week, at a dose of 2 mg/kg body weight. In paclitaxel-treated rats, the treatment of rutin and hesperidin decreased the elevated serum levels of creatinine, urea, and uric acid, indicating a recovery of kidney functions. The cardiac dysfunction in paclitaxel-treated rats that got rutin and hesperidin treatment also diminished, as shown by a substantial reduction in elevated CK-MB and LDH activity. Following paclitaxel administration, the severity of the kidney and the heart's histopathological findings and lesion scores were markedly decreased by rutin and hesperidin administration. Moreover, these treatments significantly reduced renal and cardiac lipid peroxidation while markedly increased GSH content and SOD and GPx activities. Thus, paclitaxel likely induces toxicity in the kidney and the heart by producing oxidative stress. The treatments likely countered renal and cardiac dysfunction and histopathological changes by suppressing oxidative stress and augmenting the antioxidant defenses. Rutin and hesperidin combination was most efficacious in rescuing renal and cardiac function as well as histological integrity in paclitaxel-administered rats.
Collapse
Affiliation(s)
- Yasmine A. Ali
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanan A. Soliman
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mohamed Abdel-Gabbar
- Biochemistry Department, Faculty of Science, Beni-Sued University, P.O. Box 62521, Beni-Suef, Egypt
| | - M. Al-Dossari
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - N. S. Abd El-Gawaad
- Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 62529, Saudi Arabia
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Noha A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
7
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
8
|
Zygo-Albuside A: New Saponin from Zygophyllum album L. with Significant Antioxidant, Anti-Inflammatory and Antiapoptotic Effects against Methotrexate-Induced Testicular Damage. Int J Mol Sci 2022; 23:ijms231810799. [PMID: 36142712 PMCID: PMC9501557 DOI: 10.3390/ijms231810799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 12/23/2022] Open
Abstract
Chemical investigation of the crude extract of the aerial part of Zygophyllum album L. (Z. album) led to the isolation of a new saponin, Zygo-albuside A (7), together with seven known compounds, one of them (caffeic acid, compound 4) is reported in the genus for the first time. NMR (1D and 2D) and mass spectrometric analysis, including high-resolution mass spectrometry (HRMS), were utilized to set up the chemical structures of these compounds. The present biological study aimed to investigate the protective antioxidant, anti-inflammatory, and antiapoptotic activities of the crude extract from the aerial part of Z. album and two of its isolated compounds, rutin and the new saponin zygo-albuside A, against methotrexate (MTX)-induced testicular injury, considering the role of miRNA-29a. In all groups except for the normal control group, which received a mixture of distilled water and DMSO (2:1) as vehicle orally every day for ten days, testicular damage was induced on the fifth day by intraperitoneal administration of MTX at a single dose of 20 mg/kg. Histopathological examination showed that pre-treatment with the crude extract of Z. album, zygo-albuside A, or rutin reversed the testicular damage induced by MTX. In addition, biochemical analysis in the protected groups showed a decrease in malondialdehyde (MDA), interleukin-6 (IL-6) and IL-1β, Bcl-2-associated-protein (Bax), and an increase in B-cell lymphoma 2 (Bcl-2) protein, catalase (CAT), superoxide dismutase (SOD) in the testis, along with an increase in serum testosterone levels compared with the unprotected (positive control) group. The mRNA expression levels of nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), p53, and miRNA-29a were downregulated in the testicular tissues of the protected groups compared with the unprotected group. In conclusion, the study provides sufficient evidence that Z. album extract, and its isolated compounds, zygo-albuside A and rutin, could alleviate testicular damage caused by the chemotherapeutic agent MTX.
Collapse
|
9
|
Abbot V, Bhardwaj V, Sharma P. Investigation of intermolecular interactions of anionic surfactant SDS and rutin: A physico-chemical approach for pharmaceutical application. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Sustained DDB-2 and TRX transcriptional response of quercetin-treated lymphocytes exposed to Co-60 radiation. GENE REPORTS 2019. [DOI: 10.1016/j.genrep.2019.100416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
The protective effects of 1,2-propanediol against radiation-induced hematopoietic injury in mice. Biomed Pharmacother 2019; 114:108806. [PMID: 30928804 DOI: 10.1016/j.biopha.2019.108806] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Agents that provide protection against irradiation-induced hematopoietic injury are urgently needed for radiotherapy. We examined the effects of the small molecule, 1,2-propanediol (PPD), on total body irradiation (TBI)-induced hematopoietic injury in C57BL/6 mice. PPD administration 1 h before TBI significantly increased hematopoietic parameters such as white blood cell, platelet, red blood cell, and lymphocyte counts in vivo and enhanced the survival of mice exposed to TBI (7.0 and 7.5 Gy). PPD administration 1 h before TBI improved bone marrow (BM) and spleen recovery after TBI, with increases in both BM cellularity and spleen index. The number of colony-forming-units in bone marrow mononuclear cells (BMNCs) in vitro also increased significantly. PPD pretreatment increased the numbers of hematopoietic stem cells and hematopoietic progenitor cells in BM. Importantly, PPD also maintained endogenous antioxidant status by decreasing levels of malondialdehyde and increasing the expression of reduced glutathione, superoxide dismutase and catalase in the serum of irradiated mice. PPD alleviated the levels of apoptosis in HSCs induced by TBI, thus increasing the proportion of dividing BMNCs. These results suggest that PPD protects against TBI-induced hematopoietic injury through the increased activities of antioxidant enzymes and the inhibition of apoptosis in HSCs. PPD increased the serum levels of granulocyte-colony stimulating factor and interleukin-6 irrespective of TBI. In conclusion, these data suggest that PPD acts as a radioprotector against radiation-induced hematopoietic injury.
Collapse
|
12
|
Joshi C, Thimmaiah N, Patil R, Khandagale A, Somashekarappa HM, Ananda D, Manjunath HM. Mitigation of radiation-induced oxidative stress by methanolic extract of Tragia involucrata in swiss albino mice. Pharmacognosy Res 2019. [DOI: 10.4103/pr.pr_177_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
13
|
Radiation-Induced Reactions in The Liver - Modulation of Radiation Effects by Lifestyle-Related Factors. Int J Mol Sci 2018; 19:ijms19123855. [PMID: 30513990 PMCID: PMC6321068 DOI: 10.3390/ijms19123855] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Radiation has a wide variety of effects on the liver. Fibrosis is a concern in medical fields as one of the acute effects of high-dose irradiation, such as with cancer radiotherapies. Cancer is also an important concern following exposure to radiation. The liver has an active metabolism and reacts to radiations. In addition, effects are modulated by many environmental factors, such as high-calorie foods or alcohol beverages. Adaptations to other environmental conditions could also influence the effects of radiation. Reactions to radiation may not be optimally regulated under conditions modulated by the environment, possibly leading to dysregulation, disease or cancer. Here, we introduce some reactions to ionizing radiation in the liver, as demonstrated primarily in animal experiments. In addition, modulation of radiation-induced effects in the liver due to factors such as obesity, alcohol drinking, or supplements derived from foods are reviewed. Perspectives on medical applications by modulations of radiation effects are also discussed.
Collapse
|
14
|
Levels and fluxes in enzymatic antioxidants following gamma irradiation are inadequate to confer radiation resistance in Drosophila melanogaster. Mol Biol Rep 2018; 45:1175-1186. [DOI: 10.1007/s11033-018-4270-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 07/16/2018] [Indexed: 10/28/2022]
|
15
|
Riaz H, Raza S, Aslam M, Ahmad M, Ahmad M, Maria P. An Updated Review of Pharmacological, Standardization Methods and Formulation Development of Rutin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018; 12:127-132. [DOI: https:/doi.org/10.22207/jpam.12.1.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024] Open
|
16
|
Riaz H, Raza S, Aslam M, Ahmad M, Ahmad M, Maria P. An Updated Review of Pharmacological, Standardization Methods and Formulation Development of Rutin. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018; 12:127-132. [DOI: 10.22207/jpam.12.1.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Ganeshpurkar A, Saluja AK. Protective effect of rutin on humoral and cell mediated immunity in rat model. Chem Biol Interact 2017; 273:154-159. [PMID: 28606468 DOI: 10.1016/j.cbi.2017.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/08/2016] [Accepted: 06/06/2017] [Indexed: 01/08/2023]
Abstract
Diet and dietary intake can persuade the development, safeguard and proper functioning of immune system. Ruin, an important bioflavonoid, is abundantly found in various foodstuffs. Rutin has been acknowledged for its protective and beneficial effects on various aspects of the biological system. The present study was aimed to examine the effect of rutin on the regulation of the immune response in experimental animal models. Effect of rutin of cellular immunity was determined by delayed-type hypersensitivity (DTH) response, carbon clearance assay, leucocyte mobilization test, and cyclophosphamide-induced myelosuppression, whereas humoral immunity was analyzed by the haemagglutinating antibody (HA) titre assay. Rutin (25, 50 and 100 mg/kg, p.o.) evoked a significant increase in antibody titre in the haemagglutination test, increased immunoglobulin levels, and enhanced the delayed type hypersensitivity reaction induced by sheep red blood cells. It also significantly restored the functioning of leucocytes in cyclophosphamide treated rats and augmented phagocytic index in the carbon clearance assay. The outcomes from the present study indicate that rutin possesses sufficient potential for increasing immune activity by cellular and humoral mediated mechanisms.
Collapse
Affiliation(s)
- Aditya Ganeshpurkar
- Faculty of Pharmacy, Gujarat Technological University, Ahmedabad, Gujarat, India; Shri Ram Institute of Technology- Pharmacy, Jabalpur, Madhya Pradesh, India.
| | - Ajay K Saluja
- A.R. College of Pharmacy, Vallabh Vidyanagar, Gujarat, India.
| |
Collapse
|
18
|
Patil SL, Swaroop K, Kakde N, Somashekarappa HM. In vitro Protective Effect of Rutin and Quercetin against Radiation-induced Genetic Damage in Human Lymphocytes. Indian J Nucl Med 2017; 32:289-295. [PMID: 29142345 PMCID: PMC5672749 DOI: 10.4103/ijnm.ijnm_30_17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Purpose of the Study: Rutin (RUT) and quercetin (QRT) which are dietary compounds were investigated for their ability to protect against ionizing radiation (IR)-induced genotoxicity in human lymphocytes. Materials and Methods: The radiation antagonistic potential of RUT and QRT was assessed by alkaline comet and cytokinesis-block micronucleus (CBMN) assay. Results: Treatment of lymphocytes with RUT and QRT (25 μg/ml) prior exposure to 2 Gy gamma radiation resulted in a significant reduction of frequency of micronuclei as compared to the control set of cells evaluated by CBMN assay. Similarly, treatment of lymphocytes with RUT and QRT before radiation exposure showed significant decrease in the DNA damage as assessed by comet parameters, such as percent tail DNA and olive tail moment. Conclusion: The study demonstrates the protective effect of RUT and QRT against IR-induced DNA damage in human lymphocytes, which may be partly attributed to scavenging of IR-induced free radicals and also by the inhibition of IR-induced oxidative stress.
Collapse
Affiliation(s)
- Shrikant L Patil
- Department of Physiology, K. S. Hegde Medical Academy, Nitte University, Mangalore, Karnataka, India
| | - K Swaroop
- Centre for Application of Radioisotopes and Radiation Technology, USIC, Mangalore University, Mangalore, Karnataka, India
| | - Nilesh Kakde
- Department of Botany, Shri Vyankatesh Arts, Commerce and Science College, Buldhana, Maharashtra, India
| | - H M Somashekarappa
- Centre for Application of Radioisotopes and Radiation Technology, USIC, Mangalore University, Mangalore, Karnataka, India
| |
Collapse
|
19
|
Abstract
The contemporary scientific community has presently recognized flavonoids to be a unique class of therapeutic molecules due to their diverse therapeutic properties. Of these, rutin, also known as vitamin P or rutoside, has been explored for a number of pharmacological effects. Tea leaves, apples, and many more possess rutin as one of the active constituents. Today, rutin has been observed for its nutraceutical effect. The present review highlights current information and health-promoting effects of rutin. Along with this, safety pharmacology issues and SAR of the same have also been discussed.
Collapse
|
20
|
Manna K, Khan A, Biswas S, Das U, Sengupta A, Mukherjee D, Chakraborty A, Dey S. Naringin ameliorates radiation-induced hepatic damage through modulation of Nrf2 and NF-κB pathways. RSC Adv 2016. [DOI: 10.1039/c6ra01102k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Naringin ameliorates the toxic effects of radiation in murine liver and decreases the oxidative stress through the modulation of redox-regulated cellular signaling system.
Collapse
Affiliation(s)
- Krishnendu Manna
- Department of Physiology
- DST-PURSE & UGC-CPEPA supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009
| | - Amitava Khan
- Department of Physiology
- DST-PURSE & UGC-CPEPA supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009
| | - Sushobhan Biswas
- Department of Physiology
- DST-PURSE & UGC-CPEPA supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009
| | - Ujjal Das
- Department of Physiology
- DST-PURSE & UGC-CPEPA supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009
| | - Aaveri Sengupta
- Department of Physiology
- DST-PURSE & UGC-CPEPA supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009
| | - Dipanwita Mukherjee
- Radiation Biology Division
- UGC-DAE Consortium for Scientific Research
- Kolkata-700098
- India
| | - Anindita Chakraborty
- Radiation Biology Division
- UGC-DAE Consortium for Scientific Research
- Kolkata-700098
- India
| | - Sanjit Dey
- Department of Physiology
- DST-PURSE & UGC-CPEPA supported Department
- Centre for Research in Nanoscience & Nanotechnology (CRNN)
- University of Calcutta
- Kolkata-700009
| |
Collapse
|
21
|
Al-Dhabi NA, Arasu MV, Park CH, Park SU. An up-to-date review of rutin and its biological and pharmacological activities. EXCLI JOURNAL 2015; 14:59-63. [PMID: 26535031 PMCID: PMC4614038 DOI: 10.17179/excli2014-663] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/15/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Chang Ha Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea
| | - Sang Un Park
- Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 305-764, Korea ; Visiting Professor Program (VPP), King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|