1
|
Lycium barbarum Berries (Solanaceae) as Source of Bioactive Compounds for Healthy Purposes: A Review. Int J Mol Sci 2023; 24:ijms24054777. [PMID: 36902206 PMCID: PMC10003350 DOI: 10.3390/ijms24054777] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Lycium barbarum L. is a species widely used in dietary supplements and natural healthcare products. The berries, also known as goji or wolfberries, mostly grow in China, but recent reports on their outstanding bioactive properties have increased their popularity and cultivation around the world. Goji berries are a remarkable source of phenolic compounds (such as phenolic acids and flavonoids), carotenoids, organic acids, carbohydrates (fructose and glucose), and vitamins (ascorbic acid). Several biological activities, such as antioxidant, antimicrobial, anti-inflammatory, prebiotic, and anticancer activities, have been associated with its consumption. Hence, goji berries were highlighted as an excellent source of functional ingredients with promising applications in food and nutraceutical fields. This review aims to summarize the phytochemical composition and biological activities, along with various industrial applications, of L. barbarum berries. Simultaneously, the valorization of goji berries by-products, with its associated economic advantages, will be emphasized and explored.
Collapse
|
2
|
Arora V, Rani L, Grewal AS, Dureja H. Natural product-based antiinflammatory agents. RECENT DEVELOPMENTS IN ANTI-INFLAMMATORY THERAPY 2023:183-232. [DOI: 10.1016/b978-0-323-99988-5.00011-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Anti-Inflammatory Activity of Bilberry ( Vaccinium myrtillus L.). Curr Issues Mol Biol 2022; 44:4570-4583. [PMID: 36286028 PMCID: PMC9601269 DOI: 10.3390/cimb44100313] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/30/2022] Open
Abstract
Inflammation is important in the pathogenesis of several chronic diseases. The anti-inflammatory properties of berries have been investigated but the anti-inflammatory activity of bilberry has received little attention and a detailed review is yet to be published. Therefore, we compiled information on the phytochemicals of bilberry and preclinical and clinical studies of its anti-inflammatory properties. The review was based on studies from 2007 to date. Phytoconstituents of bilberries were phenolic acids, organic acids, anthocyanins, coumarins, flavonols, flavanols, tannins, terpenoids, and volatile chemicals. Data from cell and animal model studies show that bilberry has an anti-inflammatory effect by lowering tumor necrosis factor-α, interleukin (IL)-6, and IL-1β expression, inducing nitric oxide synthases and cyclooxygenases, and altering the nuclear factor kappa B and Janus kinase-signal transducer and activator of transcription signaling pathways. Bilberry supplementation as fruits (frozen, processed, and whole), juices, and anthocyanins reduced levels of inflammatory markers in most clinical studies of metabolic disorders. Therefore, bilberry may be useful for the prevention and treatment of chronic inflammatory disorders.
Collapse
|
4
|
Magalhães V, Silva AR, Silva B, Zhang X, Dias AC. Comparative studies on the anti-neuroinflammatory and antioxidant activities of black and red goji berries. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
5
|
Phytotherapeutic Approaches to the Prevention of Age-Related Changes and the Extension of Active Longevity. Molecules 2022; 27:molecules27072276. [PMID: 35408672 PMCID: PMC9000830 DOI: 10.3390/molecules27072276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Maintaining quality of life with an increase in life expectancy is considered one of the global problems of our time. This review explores the possibility of using natural plant compounds with antioxidant, anti-inflammatory, anti-glycation, and anti-neurodegenerative properties to slow down the onset of age-related changes. Age-related changes such as a decrease in mental abilities, the development of inflammatory processes, and increased risk of developing type 2 diabetes have a significant impact on maintaining quality of life. Herbal preparations can play an essential role in preventing and treating neurodegenerative diseases that accompany age-related changes, including Alzheimer’s and Parkinson’s diseases. Medicinal plants have known sedative, muscle relaxant, neuroprotective, nootropic, and antiparkinsonian properties. The secondary metabolites, mainly polyphenolic compounds, are valuable substances for the development of new anti-inflammatory and hypoglycemic agents. Understanding how mixtures of plants and their biologically active substances work together to achieve a specific biological effect can help develop targeted drugs to prevent diseases associated with aging and age-related changes. Understanding the mechanisms of the biological activity of plant complexes and mixtures determines the prospects for using metabolomic and biochemical methods to prolong active longevity.
Collapse
|
6
|
Shu C, Tian J, Si X, Xie X, Li B, Li D. Blueberry anthocyanin extracts protect against Helicobacter pylori-induced peptic epithelium injuries both in vitro and in vivo: the key role of MAPK/NF-κB pathway. Eur J Nutr 2022; 61:2749-2759. [PMID: 35288783 DOI: 10.1007/s00394-022-02830-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 02/04/2022] [Indexed: 01/06/2023]
Abstract
PURPOSE Anthocyanins are well-characterized by anti-oxidative and anti-inflammatory potentials. Peptic ulcers contribute to the development of severe gastric disorders. In the current study, the effects of blueberry anthocyanin extracts (BE) on the Helicobacter pylori lipopolysaccharide (LPS)-induced peptic epithelium injures were assessed and the associated mechanism driving the effects was explored by focusing on MAPK/NF-κB pathway. METHODS Peptic injures were induced in a mouse model using LPS plus ligation method and then the mice were treated with BE. Then changes in gastric histology, inflammatory response, and MAPK/NF-κB axis were detected. To reveal the role of MAPK/NF-κB axis in the effects of BE, human gastric epithelial cells (HGECs) were further subjected to co-treatment of BE, LPS, and MAPK activator. RESULTS The assays of mouse model showed that BE attenuated gastric epithelial injuries by improving epithelial structure and suppressing gastric inflammatory response, which was associated with the inhibition of MAPK/NF-κB axis. In in vitro assays, BE suppressed viability and production of cytokines, and induced apoptosis in LPS-treated HGECs. The re-activation of MAPK pathway counteracted the effects of BE by re-inducing cell viability and suppressing cell apoptosis. CONCLUSIONS The protective effects of BE against LPS-induced injuries in mouse stomach depended on the inhibition of both MAPK pathway and the downstream NF-κB signaling.
Collapse
Affiliation(s)
- Chi Shu
- Food Science College, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Jinlong Tian
- Food Science College, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xu Si
- Food Science College, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xu Xie
- Food Science College, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Bin Li
- Food Science College, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Dongnan Li
- Food Science College, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
7
|
Dietary Supplementation with Goji Berries (Lycium barbarum) Modulates the Microbiota of Digestive Tract and Caecal Metabolites in Rabbits. Animals (Basel) 2022; 12:ani12010121. [PMID: 35011227 PMCID: PMC8749899 DOI: 10.3390/ani12010121] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
Simple Summary The microbial community that inhabits specific areas of the body, developing a symbiotic relationship with the host, is termed the microbiota. The intestinal microbiota plays a pivotal role in different physiological processes and is influenced by many factors, including nutrition. Goji berries are a popular nutraceutical product that have been proposed as a dietary supplement in some livestock species, including rabbits, but their effects on the composition of the microbiota have never been investigated. This study evaluated the effects of Goji berry supplementation on the microbiota of different digestive tracts (stomach, duodenum, jejunum, ileum, caecum and colon) of the rabbit, using a modern method of analysis. Our results suggest that Goji berries could modulate the microbiota of the rabbit’s digestive tract increasing the growth of beneficial bacteria, such as Ruminococcaceae, Lachnospiraceae, Lactobacillaceae, and particularly, the genus Lactobacillus. These findings suggest that Goji berries could be used to produce innovative feeds for rabbits, although further studies are necessary to evaluate their impact on productive performance, gut immune system maturation, as well as resistance to gastrointestinal disorders. Abstract Goji berries show health benefits, although the possible mechanisms of action, including compositional changes in the gut microbiome, are still not fully understood. The aim of this study was to evaluate the effect of Goji berry supplementation on microbiota composition and metabolites in the digestive tracts of rabbits. Twenty-eight New Zealand White rabbits were fed with a commercial feed (control group, C; n = 14) or the same diet supplemented with 3% of Goji berries (Goji group, G; n = 14), from weaning (35 days old) until slaughter (90 days old). At slaughter, samples from the content of the gastrointestinal tracts were collected and analyzed by Next Generation 16S rRNA Gene Sequencing to evaluate the microbial composition. Ammonia and lactic acid were also quantified in caecum. Results showed differences in microbiota composition between the groups for two phyla (Cyanobacteria and Euryarchaeota), two classes (Methanobacteria and Bacilli), five orders, fourteen families, and forty-five genera. Ruminococcaceae (p < 0.05) and Lachnospiraceae (p < 0.01) were more abundant in G than in C group. Lactobacillaceae also showed differences between the two groups, with Lactobacillus as the predominant genus (p = 0.002). Finally, Goji berry supplementation stimulated lactic acid fermentation (p < 0.05). Thus, Goji berry supplementation could modulate gastrointestinal microbiota composition and caecal fermentation.
Collapse
|
8
|
Valls-Bellés V, Abad C, Hernández-Aguilar MT, Nacher A, Guerrero C, Baliño P, Romero FJ, Muriach M. Human Milk Antioxidative Modifications in Mastitis: Further Beneficial Effects of Cranberry Supplementation. Antioxidants (Basel) 2021; 11:antiox11010051. [PMID: 35052555 PMCID: PMC8772773 DOI: 10.3390/antiox11010051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/31/2022] Open
Abstract
Mastitis is the inflammation of one or several mammal lobes which can be accompanied by a mammary gland infection, and is the leading cause of undesired early weaning in humans. However, little information exists regarding the changes that this disease may induce in the biochemical composition of human milk, especially in terms of oxidative status. Given that newborns are subject to a significant increase in total ROS burden in their transition to neonatal life and that their antioxidant defense system is not completely developed, the aim of this study was to evaluate antioxidant defense (glutathione peroxidase (GPx), reduced glutathione (GSH), total polyphenol content (TPP), and total antioxidant capacity (TAC)) in milk samples from mothers suffering from mastitis and controls. We also measured the oxidative damage to lipids (malondyaldehyde (MDA)) and proteins (carbonyl group content (CGC)) in these samples. Finally, we tested whether dietary supplementation with cranberries (a product rich in antioxidants) in these breastfeeding mothers during 21 days could improve the oxidative status of milk. GPx activity, TPP, and TAC were increased in milk samples from mastitis-affected women, providing a protective mechanism to the newborn drinking mastitis milk. MDA concentrations were diminished in the mastitis group, confirming this proposal. Some oxidative damage might occur in the mammary gland since the CGC was increased in mastitis milk. Cranberries supplementation seems to strengthen the antioxidant system, further improving the antioxidative state of milk.
Collapse
Affiliation(s)
- Victoria Valls-Bellés
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Cristina Abad
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - María Teresa Hernández-Aguilar
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Amalia Nacher
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Carlos Guerrero
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Pablo Baliño
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
| | - Francisco J. Romero
- Hospital General de Requena, Conselleria de Sanitat, Generalitat Valenciana, 46340 Requena, Spain
- Correspondence: (F.J.R.); (M.M.)
| | - María Muriach
- Unitat Predepartamental de Medicina, Facultat de Ciencies de la Salud, Universitat Jaume I, 12071 Castellon de la Plana, Spain; (V.V.-B.); (C.A.); (M.T.H.-A.); (A.N.); (C.G.); (P.B.)
- Correspondence: (F.J.R.); (M.M.)
| |
Collapse
|
9
|
Goji Berry (Lycium barbarum) Supplementation during Pregnancy Influences Insulin Sensitivity in Rabbit Does but Not in Their Offspring. Animals (Basel) 2021; 12:ani12010039. [PMID: 35011145 PMCID: PMC8749738 DOI: 10.3390/ani12010039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/19/2022] Open
Abstract
This study investigated the effects of Goji berry (Lycium barbarum) dietary supplementation during pregnancy on insulin sensitivity of rabbit does and their offspring. Starting from two months before the artificial insemination, 75 New Zealand White does were fed only commercial standard diet (C) or supplemented with 1% (G1) and 3% (G3) of Goji berries. Their offspring received a standard diet but kept the nomenclature of the mother’s group. Fasting and intravenous glucose tolerance test-derived indices were estimated at 21 days of pregnancy on rabbit does and at 90 days of age on the offspring. No difference was found in the fasting indices, while the diet modulated the response to glucose load of rabbit does. In particular, G3 group had the lowest glucose concentrations 5 min after the bolus administration (p < 0.05) and, as a result, differed in the parameters calculated during the elimination phase such as the elimination rate constant (Kel), the half-life of the exogenous glucose load (t1/2), and apparent volume of distribution (Vd; for all, p < 0.05). The high dose of Goji supplementation could thus enhance the first-phase glucose-induced insulin secretion. Findings on the offspring were inconsistent and therefore a long-term effect of Goji supplementation during pregnancy could not be demonstrated. Further study on the effect of Goji on the secretory pathway of insulin could clarify its hypoglycaemic action, while different protocols are needed to investigate its potential effects on foetal programming.
Collapse
|
10
|
Triacylglycerol and Fatty Acid Compositions of Blackberry, Red Raspberry, Black Raspberry, Blueberry and Cranberry Seed Oils by Ultra-Performance Convergence Chromatography-Quadrupole Time-of-Flight Mass Spectrometry. Foods 2021; 10:foods10112530. [PMID: 34828811 PMCID: PMC8621136 DOI: 10.3390/foods10112530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/18/2022] Open
Abstract
The triacylglycerol (TAG) compositions of blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils were examined using ultra-performance convergence chromatography-quadrupole time-of-flight mass spectrometry (UPC2-QTOF MS). A total of 52, 53, 52, 59 and 58 TAGs were detected and tentatively identified from the blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils, respectively, according to their accurate molecular weight in MS1 and fragment ion profiles in MS2. OLL was the most abundant TAG in the blackberry, red raspberry and black raspberry seed oils. Furthermore, the fatty acid compositions of the five berry seed oils were directly determined by gas chromatography coupled with mass spectrometry (GC-MS). In addition, the seed oils had total phenolic contents ranging 13.68–177.06 µmol GAE (gallic acid equivalent)/L oil, and significant scavenging capacities against DPPH, peroxyl, and ABTS+ radicals. These results indicated that the combination of UPC2 and QTOF MS could effectively identify and semi-quantify the TAGs compositions of the berry seed oils with sn-position information for the fatty acids. Understanding the TAGs compositions of these berry seed oils could improve the utilization of these potentially high nutritional value oils for human health.
Collapse
|
11
|
Kim JT, Qiu S, Zhou Y, Moon JH, Lee SB, Park HJ, Lee HJ. Freeze-Dried Powder of Rubus coreanus Miquel Ameliorates Isoproterenol-Induced Oxidative Stress and Tissue Damage in Rats. J Microbiol Biotechnol 2021; 31:1256-1261. [PMID: 34226405 PMCID: PMC9706019 DOI: 10.4014/jmb.2106.06047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Rubus coreanus Miquel (bokbunja), Korean black raspberry, is known to possess various phytochemicals that exert antioxidative, anti-inflammatory, and anti-cancer effects. However, most studies on Rubus coreanus Miquel have been performed with the solvent extracts and/or a single component to demonstrate the efficacy, while studies evaluating the effect of the whole fructus of Rubus coreanus Miquel are limited. In this study, therefore, we employed the isoproterenol (IPN)-induced myocardial infarction model and investigated the effect of freeze-dried powder of Rubus coreanus Miquel (RCP) on oxidative stress and prevention of organ damage. Oral administration of RCP reduced the level of toxicity markers, alanine transaminase (ALT), aspartate transaminase (AST), and lactate dehydrogenase (LDH) without affecting body weight and diet intake. The oxidative stress marker glutathione (GSH) increased about 45% and malonaldehyde (MDA) decreased about 27% compared to the IPN group with RCP-H (3%) administration. By histological analysis, IPN induced significant myocardial damage in the heart and vascular injury in the liver, and RCP administration ameliorated the damages in a dose-dependent manner. Taken together, RCP activated the antioxidant system leading to prevention of damage to organs by IPN in rats, making it possible to expect beneficial efficacies by consuming the whole fructus of Rubus coreanus Miquel.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Shuai Qiu
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Yimeng Zhou
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ji Hyun Moon
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Seung Beom Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Ho Jin Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea,Corresponding author Phone: +82-31-670-3030 Fax: +82-31-675-3108 E-mail:
| |
Collapse
|
12
|
Ni J, Au M, Kong H, Wang X, Wen C. Lycium barbarum polysaccharides in ageing and its potential use for prevention and treatment of osteoarthritis: a systematic review. BMC Complement Med Ther 2021; 21:212. [PMID: 34404395 PMCID: PMC8371808 DOI: 10.1186/s12906-021-03385-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Lycium barbarum polysaccharide (LBP), the most abundant functional component of wolfberry, is considered a potent antioxidant and an anti-ageing substance. This review aims to outline the hallmarks of ageing in the pathogenesis of osteoarthritis (OA), followed by the current understanding of the senolytic effect of LBP and its potential use in the prevention and treatment of OA. This will be discussed through the lens of molecular biology and herbal medicine. METHODS A literature search was performed from inception to March 2020 using following keywords: "Lycium barbarum polysaccharide", "DNA damage", antioxidant, anti-apoptosis, anti-inflammation, anti-ageing, osteoarthritis, chondrocytes, fibroblasts, osteoblasts, osteoclasts, and "bone mesenchymal stem cell". The initial search yielded 2287 papers, from which 35 studies were selected for final analysis after screening for topic relevancy by the authors. RESULTS In literature different in vitro and in vivo ageing models are used to demonstrate LBP's ability to reduce oxidative stress, restore mitochondrial function, mitigate DNA damage, and prevent cellular senescence. All the evidence hints that LBP theoretically attenuates senescent cell accumulation and suppresses the senescence-associated secretory phenotype as observed by the reduction in pro-inflammatory cytokines, like interleukin-1beta, and matrix-degrading enzymes, such as MMP-1 and MMP-13. However, there remains a lack of evidence on the disease-modifying effect of LBP in OA, although its chondroprotective, osteoprotective and anti-inflammatory effects were reported. CONCLUSION Our findings strongly support further investigations into the senolytic effect of LBP in the context of age-related OA.
Collapse
Affiliation(s)
- Junguo Ni
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Manting Au
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hangkin Kong
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xinluan Wang
- Centre for Translational Medical Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Science, Shen Zhen, China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
13
|
Zhurba MY, Klymenko SV, Szot I. Quality variation of fruits of species of the genus Lycium in Ukraine: A comparative morphological analysis. REGULATORY MECHANISMS IN BIOSYSTEMS 2021. [DOI: 10.15421/022103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Goji berries (Lycium L.) have been an important element of traditional Chinese medicine for centuries due to their health-promoting properties and chemical composition, and they deserve the term “superfruit”. The objective of this study was to evaluate the morphological parameters of Lycium (L. barbarum L., L. chinense Mill. and L. truncatum Y. C. Wang) fruits for 21 cultivars and varieties from the collections in the M. M. Gryshko National Botanical Garden of NAS of Ukraine (Kyiv). Cultivars and varieties differed by weight, shape, and size of fruits. Their morphometric parameters were the following: fruit weight from 0.44 (L. truncatum cv. Princess Tao) to 1.08 (L. chinense cv. Tybet) g, fruit length from 10.41 (L. chinense cv. Delikat) to 22.84 (L. truncatum cv. Super Sweet) mm, fruit diameter from 7.16 (L. truncatum cv. Princess Tao) to 13.48 (L. chinense cv. Delikat) mm, number of seeds in fruit from 1.0 to 49.0. The shape indexes of fruits were found ranging from 0.78 (L. chinense cv. Delikat) to 2.56 (L. truncatum cv. New Big). The analysis of coefficient of variation showed the difference of variability in morphometric characteristics between Lycium spp. cultivars and varieties. The most variable features are fruit weight (11.4–37.1%) and number of seeds in fruits (9.7–60.8%), which are important parameters for selection that indicates about potential success of selection. Using the cluster analysis with the Bray-Curtis similarity index allowed us to establish the relationships among the fruits Lycium spp. germplasm and arrange the cultivars and varieties into three relatively main clusters. Plants of the genus Lycium, due to the growing importance as functional food, require systematic research work. In cases of food use, large fruit size is important. In the results of our research on L. barbarum, L. chinense and L. truncatum, in terms of fruit sizes the following cultivars and varieties stand out : LB02, LC Amber Sweet and LT Super Sweet. The collected varieties can be the basis for obtaining new cultivars distinguished by the size of crops and their quality.
Collapse
|
14
|
Haque ME, Azam S, Balakrishnan R, Akther M, Kim IS. Therapeutic Potential of Lindera obtusiloba: Focus on Antioxidative and Pharmacological Properties. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1765. [PMID: 33322185 PMCID: PMC7763160 DOI: 10.3390/plants9121765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/22/2022]
Abstract
Lindera obtusiloba (LO) BLUME from the genus Lindera (Lauraceae) is a medicinal herb traditionally used in Southeast Asian countries. Indigenously, extracts of different parts of the plant have been used to improve blood circulation and treat allergy, inflammation, rheumatism, and liver diseases. LO is a rich source of therapeutically beneficial antioxidative phytochemicals, such as flavonoids, butenolides, lignans and neolignans. Moreover, recent studies have unravelled the pharmacological properties of several newly found active constituents of LO, such as anti-inflammatory antioxidants (+)-syringaresinol, linderin A, anti-atherosclerotic antioxidant (+)-episesamin, anti-melanogenic antioxidants quercitrin and afzelin, cytotoxic 2-(1-methoxy-11-dodecenyl)-penta-2,4-dien-4-olide, (2Z,3S,4S)-2-(11-dodecenylidene)-3-hydroxy-4-methyl butanolide, anti-allergic koaburaside, (6-hydroxyphenyl)-1-O-beta-d-glucopyranoside and 2,6-dimethoxy-4-hydroxyphenyl-1-O-beta-d-glucopyranoside and the antiplatelet-activity compound Secolincomolide A. These findings demonstrate that LO can be a potential source of antioxidants and other prospective therapeutically active constituents that can lead to the development of oxidative stress-mediated diseases, such as cardiovascular disorders, neurodegenerative disorders, allergies, inflammation, hepatotoxicity, and cancer. Here, the antioxidant properties of different species of Lindera genus are discussed briefly. The traditional use, phytochemistry, antioxidative and pharmacological properties of LO are also considered to help researchers screen potential lead compounds and design and develop future therapeutic agents to treat oxidative stress-mediated disorders.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, Konkuk University, Chungju 27478, Korea; (M.E.H.); (S.A.); (R.B.); (M.A.)
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Korea
| |
Collapse
|
15
|
Balta V, Đikić D, Crnić I, Odeh D, Orsolic N, Kmetič I, Murati T, Dragović Uzelac V, Landeka Jurčević I. Effects of Four-Week Intake of Blackthorn Flower Extract on Mice Tissue Antioxidant Status and Phenolic Content. POL J FOOD NUTR SCI 2020. [DOI: 10.31883/pjfns/128132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
16
|
Nunes S, Viana SD, Preguiça I, Alves A, Fernandes R, Teodoro JS, Figueirinha A, Salgueiro L, Silva S, Jarak I, Carvalho RA, Cavadas C, Rolo AP, Palmeira CM, Pintado MM, Reis F. Blueberry Consumption Challenges Hepatic Mitochondrial Bioenergetics and Elicits Transcriptomics Reprogramming in Healthy Wistar Rats. Pharmaceutics 2020; 12:pharmaceutics12111094. [PMID: 33202669 PMCID: PMC7697217 DOI: 10.3390/pharmaceutics12111094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022] Open
Abstract
An emergent trend of blueberries’ (BB) “prophylactic” consumption, due to their phytochemicals’ richness and well-known health-promoting claims, is widely scaled-up. However, the benefits arising from BB indiscriminate intake remains puzzling based on incongruent preclinical and human data. To provide a more in-depth elucidation and support towards a healthier and safer consumption, we conducted a translation-minded experimental study in healthy Wistar rats that consumed BB in a juice form (25 g/kg body weight (BW)/day; 14 weeks’ protocol). Particular attention was paid to the physiological adaptations succeeding in the gut and liver tissues regarding the acknowledged BB-induced metabolic benefits. Systemically, BB boosted serum antioxidant activity and repressed the circulating levels of 3-hydroxybutyrate (3-HB) ketone bodies and 3-HB/acetoacetate ratio. Moreover, BB elicited increased fecal succinic acid levels without major changes on gut microbiota (GM) composition and gut ultra-structural organization. Remarkably, an accentuated hepatic mitochondrial bioenergetic challenge, ensuing metabolic transcriptomic reprogramming along with a concerted anti-inflammatory pre-conditioning, was clearly detected upon long-term consumption of BB phytochemicals. Altogether, the results disclosed herein portray a quiescent mitochondrial-related metabolomics and hint for a unified adaptive response to this nutritional challenge. The beneficial or noxious consequences arising from this dietary trend should be carefully interpreted and necessarily claims future research.
Collapse
Affiliation(s)
- Sara Nunes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Sofia D. Viana
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Polytechnic Institute of Coimbra, ESTESC-Coimbra Health School, Pharmacy/Biomedical Laboratory Sciences, 3046-854 Coimbra, Portugal
| | - Inês Preguiça
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - André Alves
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - Rosa Fernandes
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
| | - João S. Teodoro
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- LAQV, REQUIMTE, Faculty of Pharmacy, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
- CIEPQPF, Chemical Process Engineering and Forest Products Research Centre, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sara Silva
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.M.P.)
| | - Ivana Jarak
- Department of Microscopy, Laboratory of Cell Biology and Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal;
| | - Rui A. Carvalho
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Associated Laboratory for Green Chemistry-Clean Technologies and Processes, REQUIMTE, Faculty of Sciences and Technology, University of Porto, 4050-313 Porto, Portugal
| | - Cláudia Cavadas
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; (A.F.); (L.S.)
| | - Anabela P. Rolo
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carlos M. Palmeira
- Department of Life Sciences, Faculty of Science and Technology (FCTUC), University of Coimbra, 3000-456 Coimbra, Portugal; (J.S.T.); (R.A.C.); (A.P.R.); (C.M.P.)
- Center for Neurosciences and Cell Biology of Coimbra (CNC), University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria M. Pintado
- CBQF—Centro de Biotecnologia e Química Fina—Laboratório Associado, Universidade Católica Portuguesa, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal; (S.S.); (M.M.P.)
| | - Flávio Reis
- Institute of Pharmacology & Experimental Therapeutics & Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal; (S.N.); (S.D.V.); (I.P.); (A.A.); (R.F.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3004-504 Coimbra, Portugal;
- Clinical Academic Center of Coimbra (CACC), 3004-504 Coimbra, Portugal
- Correspondence: ; Tel.: +351-239-480-053
| |
Collapse
|
17
|
An YJ, Lee JY, Kim Y, Jun W, Lee YH. Cranberry Powder Attenuates Benign Prostatic Hyperplasia in Rats. J Med Food 2020; 23:1296-1302. [PMID: 33136465 DOI: 10.1089/jmf.2020.4779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Cranberry powder (CR) is reported to be effective against lower urinary tract symptoms (LUTS) and recurrent urinary tract infections. Benign prostatic hyperplasia (BPH) in men older than 50 years is a common cause of LUTS. Here, we attempted to evaluate if CR is also effective for treating BPH using a BPH-induced rat model, which was orally administered CR. Male Sprague-Dawley rats weighing 200-250 g were randomly divided into the following six groups (n = 9): noncastration group; castration group; BPH group; BPH and cranberry for 8-week (CR8W) group; BPH and cranberry for 4-week (CR4W) group; and BPH and saw palmetto group (saw palmetto). Compared with the BPH group, the CR8W group showed a significant decrease in prostate weight (by 33%), dihydrotestosterone (DHT) levels (by 18% in serum and 28% in prostate), 5-alpha reductase levels (18% reduction of type 1 and 35% of type 2), and histological changes. These results indicate that CR could attenuate BPH by inhibiting 5-alpha reductase and by reducing other biomarkers such as prostate weight and DHT levels. Thus, CR may be an effective candidate for the development of a functional food for BPH treatment. IACUC (USW-IACUC-R-2015-004).
Collapse
Affiliation(s)
- Yeon Ju An
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| | - Jeong Yoon Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| | - Yulha Kim
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| | - Woojin Jun
- Department of Food and Nutrition, Chonnam National University, Gwangju, Korea
| | - Yoo-Hyun Lee
- Department of Food Science and Nutrition, The University of Suwon, Hwasung, Korea
| |
Collapse
|
18
|
Castrica M, Menchetti L, Balzaretti CM, Branciari R, Ranucci D, Cotozzolo E, Vigo D, Curone G, Brecchia G, Miraglia D. Impact of Dietary Supplementation with Goji Berries ( Lycium barbarum) on Microbiological Quality, Physico-Chemical, and Sensory Characteristics of Rabbit Meat. Foods 2020; 9:foods9101480. [PMID: 33081259 PMCID: PMC7603015 DOI: 10.3390/foods9101480] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 01/20/2023] Open
Abstract
Forty-two New Zealand White rabbits (n = 21/group) were fed with two different diets: a commercial diet (control group) and a diet supplemented with goji berries (3% w/w). After slaughtering, the effect of dietary supplementation on microbiological, physico-chemical, and sensory characteristics of the rabbit loins, packed in an oxygen-permeable package, was evaluated at 6 h post mortem (day 0), after 4 and 10 days of refrigerated storage. No relevant results were obtained for pH and total volatile basic Nitrogen (TVBN) values but with regards to the color, some significant differences were observed between the groups. The goji berries (GBs) dietary supplementation had positive effects by reducing thiobarbituric acid reactive substances (TBARS) values in all the observations (p < 0.001). Moreover, microbiological results showed that the supplementation had a significant impact on Lactobacillus spp. (p < 0.001) prevalence, indeed the goji group had higher means on day 0 (p < 0.05) and on day 4 (p < 0.001) than the control group. Lastly, with regards to the consumer's test, the tasters assigned a higher score to GBs rabbit meatballs and the purchase interest increased when the rabbit diet was known. Overall, these results indicate that the goji berries inclusion in the rabbit diet could represent a valuable strategy to improve quality and sensory traits of meat.
Collapse
Affiliation(s)
- Marta Castrica
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (M.C.); (C.M.B.)
| | - Laura Menchetti
- Department of Agricultural and Agri-Food Sciences and Technologies, University of Bologna, Viale Fanin 46, 40138 Bologna, Italy;
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| | - Claudia M. Balzaretti
- Department of Health, Animal Science and Food Safety “Carlo Cantoni”, Università degli Studi di Milano, Via Celoria 10, 20133 Milan, Italy; (M.C.); (C.M.B.)
| | - Raffaella Branciari
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| | - Elisa Cotozzolo
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy;
| | - Daniele Vigo
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (D.V.); (G.C.)
| | - Giulio Curone
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (D.V.); (G.C.)
| | - Gabriele Brecchia
- Department of Veterinary Medicine, University of Milan, Via dell’Università 6, 26900 Lodi, Italy; (D.V.); (G.C.)
- Correspondence:
| | - Dino Miraglia
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06126 Perugia, Italy; (R.B.); (D.R.); (D.M.)
| |
Collapse
|
19
|
Nunes CDR, Barreto Arantes M, Menezes de Faria Pereira S, Leandro da Cruz L, de Souza Passos M, Pereira de Moraes L, Vieira IJC, Barros de Oliveira D. Plants as Sources of Anti-Inflammatory Agents. Molecules 2020; 25:E3726. [PMID: 32824133 PMCID: PMC7465135 DOI: 10.3390/molecules25163726] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 02/08/2023] Open
Abstract
Plants represent the main source of molecules for the development of new drugs, which intensifies the interest of transnational industries in searching for substances obtained from plant sources, especially since the vast majority of species have not yet been studied chemically or biologically, particularly concerning anti-inflammatory action. Anti-inflammatory drugs can interfere in the pathophysiological process of inflammation, to minimize tissue damage and provide greater comfort to the patient. Therefore, it is important to note that due to the existence of a large number of species available for research, the successful development of new naturally occurring anti-inflammatory drugs depends mainly on a multidisciplinary effort to find new molecules. Although many review articles have been published in this regard, the majority presented the subject from a limited regional perspective. Thus, the current article presents highlights from the published literature on plants as sources of anti-inflammatory agents.
Collapse
Affiliation(s)
- Clara dos Reis Nunes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Mariana Barreto Arantes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Silvia Menezes de Faria Pereira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Larissa Leandro da Cruz
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Michel de Souza Passos
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UniversidadeEstadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (M.d.S.P.); (I.J.C.V.)
| | - Luana Pereira de Moraes
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| | - Ivo José Curcino Vieira
- Laboratório de Ciências Químicas, Centro de Ciências e Tecnologia, UniversidadeEstadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (M.d.S.P.); (I.J.C.V.)
| | - Daniela Barros de Oliveira
- Laboratório de Tecnologia de Alimentos, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil; (C.d.R.N.); (M.B.A.); (S.M.d.F.P.); (L.L.d.C.); (L.P.d.M.)
| |
Collapse
|
20
|
Lee BW, Ha JH, Shin HG, Jeong SH, Kim JH, Lee J, Park JY, Kwon HJ, Jung K, Lee WS, Ryu YB, Jeong JH, Lee IC. Lindera obtusiloba Attenuates Oxidative Stress and Airway Inflammation in a Murine Model of Ovalbumin-Challenged Asthma. Antioxidants (Basel) 2020; 9:antiox9070563. [PMID: 32605045 PMCID: PMC7402094 DOI: 10.3390/antiox9070563] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/17/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022] Open
Abstract
Lindera obtusiloba is widespread in northeast Asia and used for treatment of improvement of blood circulation and anti-inflammation. In this study, we investigated anti-inflammatory and anti-oxidant effects of the methanolic extract of L. obtusiloba leaves (LOL) in an ovalbumin (OVA)-challenged allergic asthma model and tumor necrosis factor (TNF)-α-stimulated NCI-H292 cell. Female BALB/c mice were sensitized with OVA by intraperitoneal injection on days 0 and 14, and airway-challenged with OVA from days 21 to 23. Mice were administered 50 and 100 mg/kg of LOL by oral gavage 1 h before the challenge. LOL treatment effectively decreased airway hyper-responsiveness and inhibited inflammatory cell recruitment, Th2 cytokines, mucin 5AC (MUC5AC) in bronchoalveolar lavage fluid in OVA-challenged mice, which were accompanied by marked suppression of airway inflammation and mucus production in the lung tissue. LOL pretreatment inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs) and nuclear factor-kappa B (NF-κB) with suppression of activator protein (AP)-1 and MUC5AC in the lung tissue. LOL also down-regulated expression of inflammatory cytokines, and inhibited the activation of NF-κB in TNF-α-stimulated NCI-H292 cells. LOL elevated the translocation of nuclear factor-erythroid 2-related factor (Nrf-2) into nucleus concurrent with increase of heme oxyngenase-1 (HO-1) and NAD(P)H quinine oxidoreductase 1 (NQO1). Moreover, LOL treatment exhibited a marked increase in the anti-oxidant enzymes activities, whereas effectively suppressed the production of reactive oxygen species and nitric oxide, as well as lipid peroxidation in lung tissue of OVA-challenged mice and TNF-α-stimulated NCI-H292 cells. These findings suggest that LOL might serve as a therapeutic agent for the treatment of allergic asthma.
Collapse
Affiliation(s)
- Ba-Wool Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Ji-Hye Ha
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Korea
| | - Han-Gyo Shin
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Ju-Hong Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Jihye Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Ji-Young Park
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Kyungsook Jung
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Woo-Song Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Young-Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61186, Korea
- Correspondence: (J.-H.J.); (I.-C.L.); Tel.: +82-61-379-2747 (J.-H.J.); +82-63-570-5241 (I.-C.L.); Fax: +82-62-232-9708 (J.-H.J.); +82-63-570-5239 (I.-C.L.)
| | - In-Chul Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Jeollabuk-do 56212, Korea; (B.-W.L.); (J.-H.H.); (H.-G.S.); (S.-H.J.); (J.-H.K.); (J.L.); (J.-Y.P.); (H.-J.K.); (K.J.); (W.-S.L.); (Y.-B.R.)
- Correspondence: (J.-H.J.); (I.-C.L.); Tel.: +82-61-379-2747 (J.-H.J.); +82-63-570-5241 (I.-C.L.); Fax: +82-62-232-9708 (J.-H.J.); +82-63-570-5239 (I.-C.L.)
| |
Collapse
|
21
|
Beneficial effects of lingonberry (Vaccinium vitis-idaea L.) supplementation on metabolic and inflammatory adverse effects induced by high-fat diet in a mouse model of obesity. PLoS One 2020; 15:e0232605. [PMID: 32379797 PMCID: PMC7205235 DOI: 10.1371/journal.pone.0232605] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity is a constantly increasing health problem worldwide. It is associated with a systemic low-grade inflammation, which contributes to the development of metabolic disorders and comorbidities such as type 2 diabetes. Diet has an important role in the prevention of obesity and its adverse health effects; as a part of healthy diet, polyphenol-rich berries, such as lingonberry (Vaccinium vitis-idaea L.) have been proposed to have health-promoting effects. In the present study, we investigated the effects of lingonberry supplementation on high-fat diet induced metabolic and inflammatory changes in a mouse model of obesity. Thirty male C57BL/6N mice were divided into three groups (n = 10/group) to receive low-fat (LF), high-fat (HF) and lingonberry-supplemented high-fat (HF+LGB) diet for six weeks. Low-fat and high-fat diet contained 10% and 46% of energy from fat, respectively. Lingonberry supplementation prevented the high-fat diet induced adverse changes in blood cholesterol and glucose levels and had a moderate effect on the weight and visceral fat gain, which were 26% and 25% lower, respectively, in the lingonberry group than in the high-fat diet control group. Interestingly, lingonberry supplementation also restrained the high-fat diet induced increases in the circulating levels of the proinflammatory adipocytokine leptin (by 36%) and the inflammatory acute phase reactant serum amyloid A (SAA; by 85%). Similar beneficial effects were discovered in the hepatic expression of the inflammatory factors CXCL-14, S100A10 and SAA by lingonberry supplementation. In conclusion, the present results indicate that lingonberry supplementation significantly prevents high-fat diet induced metabolic and inflammatory changes in a murine model of obesity. The results encourage evaluation of lingonberries as a part of healthy diet against obesity and its comorbidities.
Collapse
|
22
|
da Rosa JS, Nascimento MVPDS, Parisotto EB, Lima TC, Santin JR, Biavatti MW, Zamoner A, Dalmarco EM, Fröde TS. Phenolic Compounds Isolated from Calea uniflora Less. Promote Anti-Inflammatory and Antioxidant Effects in Mice Neutrophils ( Ex Vivo) and in Mice Pleurisy Model ( In Vivo). Mediators Inflamm 2019; 2019:1468502. [PMID: 31780857 PMCID: PMC6875232 DOI: 10.1155/2019/1468502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 11/18/2022] Open
Abstract
The literature shows that phenolic compounds possess important antioxidant and anti-inflammatory activities; however, the mechanism underlying these effects is not elucidated yet. The genus Calea is used in folk medicine to treat rheumatism, respiratory diseases, and digestive problems. In this context, some phenolic compounds were isolated with high purity from Calea uniflora Less. and identified as noreugenin (NRG) and α-hydroxy-butein (AH-BU). The aim of this study was to analyze the effect of these compounds on cell viability, the activity of myeloperoxidase (MPO), and apoptosis of mouse neutrophils using ex vivo tests. Furthermore, the effect of these compounds on the cytokines, interleukin 1 beta (IL-1β), interleukin 17A (IL-17A), and interleukin 10 (IL-10), and oxidative stress was investigated by analyzing lipid peroxidation (the concentration of thiobarbituric acid reactive substances (TBARS)) and activities of antioxidant enzymes, superoxide dismutase (SOD), catalase (CAT), and glutathione S-transferase (GST), using a murine model of neutrophilic inflammation. The NRG and AH-BU reduce MPO activity and increase neutrophil apoptosis (p < 0.05). These compounds reduced the generation of oxygen reactive species and IL-1β and IL-17A levels but increased IL-10 levels (p < 0.05). This study demonstrated that NRG and AH-BU show a significant anti-inflammatory effect by inhibiting the MPO activity and increasing neutrophil apoptosis in primary cultures of mouse neutrophils. These effects were at least partially associated with blocking reactive species generation, inhibiting IL-1β and IL-17A, and increasing IL-10 levels.
Collapse
Affiliation(s)
- Julia Salvan da Rosa
- Graduate Course of Pharmacy, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | - Eduardo Benedetti Parisotto
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tamires Cardoso Lima
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - José Roberto Santin
- Núcleo de Investigações Químico-Farmacêuticas, University of Vale do Itajaí (UNIVALI), Itajaí, SC, Brazil
| | - Maique Weber Biavatti
- Department of Pharmaceutical Sciences, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Ariane Zamoner
- Department of Biochemistry, Center of Biological Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Eduardo Monguilhott Dalmarco
- Graduate Course of Pharmacy, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Tânia Silvia Fröde
- Graduate Course of Pharmacy, Center of Health Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| |
Collapse
|
23
|
Li Q, Liu L, Sun H, Cao K. Carnosic acid protects against lipopolysaccharide-induced acute lung injury in mice. Exp Ther Med 2019; 18:3707-3714. [PMID: 31611929 PMCID: PMC6781802 DOI: 10.3892/etm.2019.8042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 05/31/2019] [Indexed: 12/12/2022] Open
Abstract
Acute respiratory distress syndrome is a well-known inflammatory disease associated with high rates of morbidity and mortality due to a lack of effective treatment methods. Carnosic acid (CA) is a phenolic diterpene compound that serves a central role in cytoprotective responses to inflammation. In the present study, the protective mechanism of CA on acute lung injury (ALI) induced by lipopolysaccharide (LPS) was investigated. Mice were randomly assigned to the following five groups: Control group, LPS group, and LPS plus CA groups (at 10, 20 and 40 mg/kg doses). Following pre-treatment with vehicle or CA, ALI was induced by the administration of LPS. At 6 h after LPS treatment, mice were sacrificed and lung tissues were harvested for histologic analysis and the determination of wet-to-dry ratio, myeloperoxidase activity and toll-like receptor 4 (TLR4) and NF-κB expression. Additionally, the levels of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α (TNF-α) were determined in bronchoalveolar lavage fluid (BALF) and lung tissues, as well as the rate of apoptosis of the isolated neutrophils from BALF. The alleviation of LPS-induced ALI by CA was confirmed by histologic results and a reduction in the wet-to-dry ratio of lung tissues. Additionally, CA was revealed to significantly suppress the inhibitory effect of LPS on neutrophil apoptosis and the promoting effects of LPS on IL-1β, IL-6, TNF-α, TLR4 and NF-κB expression, and NF-κB phosphorylation. The current results indicated that CA protects against LPS-induced ALI via a mechanism that inhibits inflammation.
Collapse
Affiliation(s)
- Quan Li
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Ling Liu
- Intensive Care Unit, Zhongda Hospital Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Haijun Sun
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| | - Kunyue Cao
- Intensive Care Unit, Suqian First Hospital, Suqian, Jiangsu 223800, P.R. China
| |
Collapse
|
24
|
Driscoll K, Deshpande A, Datta R, Ramakrishna W. Anti-inflammatory Effects of Northern Highbush Blueberry Extract on an In Vitro Inflammatory Bowel Disease Model. Nutr Cancer 2019; 72:1178-1190. [DOI: 10.1080/01635581.2019.1673449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kyle Driscoll
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Aparna Deshpande
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
| | - Wusirika Ramakrishna
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
- Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
25
|
Gastroprotective and anti-inflammatory effects of Prunus cerasus phytochemicals and their possible mechanisms of action. J Tradit Complement Med 2019; 10:345-353. [PMID: 32695651 PMCID: PMC7365781 DOI: 10.1016/j.jtcme.2019.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 05/23/2019] [Accepted: 06/01/2019] [Indexed: 01/27/2023] Open
Abstract
Prunus cerasus (P. cerasus) is an alternative-medicine used traditionally for amelioration of chronic-ailments marked by elevation in oxidative-stress like neuropathy. The oxidative-stress control was reported to ameliorate the inflammatory-process. This study aimed to phytochemically-investigate P. cerasus most-active phytochemicals utilizing in-vivo biological models to explore their gastroprotective, anti-inflammatory, and antinociceptive potentials and their possible mechanisms of action. Sonication with EtAc was used to extract P. cerasus fruit (Scf), and seed (Scs). The phytochemical-investigation of Scf was performed by RP-HPLC, while that of Scs was explored utilizing GC-FID. A bio-guided-fraction and isolation method was done utilizing column-chromatography, and have shown that cyanidin-3-glucoside (Cy3G) was the most-active constituent in Scf, while linoleic-acid (LA) was the most-active constituent in Scs. Scf, Scs, Cy3G, and LA significantly (p ˂ 0.05) protected the gastric-mucosa against HCl/EtOH-induced gastric-lesions. Scs (200 mg/kg) has shown the most gastroprotective-potentials, and had comparable-results to ranitidine (50 mg/kg). Scf, Scs, Cy3G, and LA have shown significant anti-inflammatory and antinociceptive potentials against carrageenan induced-edema and nociceptive-pain, respectively, where Scs (200 mg/kg) has shown the most anti-inflammatory and antinociceptive potentials, and had comparable results to ibuprofen (100 mg/kg). Scf, Scs, Cy3G, and LA have counter-acted carrageenan-induced oxidative-stress markers, with increased serum-catalase and reduced-glutathione levels, and decreased lipid-peroxidation. Histopathological-studies demonstrated gastroprotective potentials, regeneration and improvement of the spleen-structural architecture when treated with highest doses of Scs and Scf. The reduction of the pro-inflammatory TNF-alpha and IL-6, and elevation the anti-inflammatory factor IL-10 levels, spleen regenerative-capacity and oxidative-stress amelioration might be the main-mechanism responsible for P. cerasus anti-inflammatory potentials. P. cerasus appears to aid in ameliorating the inflammatory process, and reducing pain-thresholds while preserving the stomach.
Collapse
Key Words
- Anti-inflammatory
- Antinociceptive effects
- Cy3G, Cyanidin 3-glucoside
- EtAc, Ethyl acetate
- EtOH, ethanol
- FID, flame-ionization detector
- GSH, reduced glutathione
- Gastroprotective
- H and E staining, Hematoxylin and Eosin staining
- HAc, acetic acid
- IL-10, Interleukin 10
- IL-6, Interleukin 6
- Ib, Ibuprofen
- LA, Linoleic acid
- LPO, lipid peroxidation
- MeOH, methanol
- NSAIDs, Non-steroidal anti-inflammatory drugs
- Oxidative stress
- P. cerasus, Prunus cerasus
- PWT, paw withdrawal threshold
- Prunus cerasus
- Scf, sour cherry fruit ethyl acetate extract
- Scs, sour cherry seed ethyl acetate extract
- TBARS, Thiobarbituric acid reactive substances
- TNF-alpha, Tumor necrosis factor alpha
- VEH, vehicle control
- e, edema
- er, erosions
- h, hemorrhage
- ic, infiltration of inflammatory cell in the sub-mucosa
- mu, mucosa
- sm, sub-mucosa
Collapse
|
26
|
Cásedas G, González-Burgos E, Smith C, López V, Gómez-Serranillos MP. Regulation of redox status in neuronal SH-SY5Y cells by blueberry (Vaccinium myrtillus L.) juice, cranberry (Vaccinium macrocarpon A.) juice and cyanidin. Food Chem Toxicol 2018; 118:572-580. [PMID: 29860017 DOI: 10.1016/j.fct.2018.05.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/14/2018] [Accepted: 05/31/2018] [Indexed: 12/11/2022]
Abstract
Blueberry and cranberry are fruits with high polyphenol content, particularly anthocyanins. As cyanidin derivatives have been identified as one of the most representative polyphenols in berry juices, cyanidin has been designated for a better comparison and understanding of the potential neuroprotection of juices obtained from two Vaccinium species. Neuroblastoma SH-SY5Y cells were previously treated with different concentrations of lyophilized blueberry juice, cranberry juice or cyanidin for 24 h and oxidative stress was then generated with hydrogen peroxide (100 μM) for 30 min. Cytoprotective properties of cranberry juice, blueberry juice or cyanidin were evaluated using different methodologies such as mitochondrial activity (MTT), TBARS and ROS production, antioxidant enzymes (CAT, SOD) and antioxidant properties (ORAC, FRAP). Results indicated that blueberry and cranberry juices as well as cyanidin increased mitochondrial activity and reduced intracellular ROS production and lipid peroxidation induced by hydrogen peroxide. Furthermore, these berry juices and cyanidin upregulated the activity of the antioxidant enzymes catalase and superoxide dismutase. Finally, in vitro antioxidant capacities were confirmed by ORAC and FRAP assays demonstrating the potential of cyanidin and cyanidin-containing products for pharmaceutical or nutritional applications to prevent oxidative stress in neuronal cells.
Collapse
Affiliation(s)
- Guillermo Cásedas
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50.830 Villanueva de Gállego, Zaragoza, Spain
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Carine Smith
- Department of Physiological Sciences, Science Faculty, Stellenbosch University, Stellenbosch, South Africa
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, 50.830 Villanueva de Gállego, Zaragoza, Spain.
| | - María Pilar Gómez-Serranillos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
27
|
Vaccinium macrocarpon Aiton Extract Ameliorates Inflammation and Hyperalgesia through Oxidative Stress Inhibition in Experimental Acute Pancreatitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9646937. [PMID: 29861777 PMCID: PMC5976997 DOI: 10.1155/2018/9646937] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/04/2018] [Indexed: 12/23/2022]
Abstract
We evaluated the effect of the hydroethanolic extract of fruits of Vaccinium macrocarpon (HEVm) in a model of acute pancreatitis (AP) in mice. AP was induced by two injections of L-arginine and animals were treated with HEVm (50, 100, and 200 mg/kg, p.o.) or vehicle (saline) every 24 h, starting 1 h after the induction of AP. Phytochemical analysis of the extract and measurement of inflammatory and oxidative stress parameters, as well as abdominal hyperalgesia, were performed. Catechin, epicatechin, rutin, and anthocyanins were identified in HEVm. Treatment with HEVm decreased L-arginine-induced abdominal hyperalgesia (from 48 to 72 h). Also, treatment with HEVm decreased L-arginine-induced pancreatic edema, pancreatic and pulmonary neutrophil infiltration, and levels of tumor necrosis factor-α, interleukin-1β, and interleukin-6, after 72 h of induction. L-arginine-induced hyperamylasemia and hyperlipasemia were also reduced by the treatment with HEVm in comparison to vehicle-treated group. Moreover, lipoperoxidation, carbonyl radicals, nonprotein sulfhydryl groups, and activity of catalase and superoxide dismutase, but not glutathione peroxidase, were restored by the treatment with HEVm. These results show that treatment with HEVm decreased hyperalgesia and pancreatic/extrapancreatic inflammation and oxidative damage in L-arginine-induced AP, making this extract attractive for future approaches designed to treat this condition.
Collapse
|
28
|
Law BYK, Wu AG, Wang MJ, Zhu YZ. Chinese Medicine: A Hope for Neurodegenerative Diseases? J Alzheimers Dis 2018; 60:S151-S160. [PMID: 28671133 DOI: 10.3233/jad-170374] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
With the increase in the proportion of aged population due to the rapid increase of life expectancy, the worldwide prevalence rate of multiple neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, and Huntington's disease has been increased dramatically. The demographic trend toward an older population has drawn the attention to new drug discovery and treatment on age-related diseases. Although a panel of drugs and/or therapies are currently available for treating the neurodegenerative diseases, side effects or insufficient drug efficacy have been reported. With the long history in prescription of Chinese medicine or natural compounds for modulating aged-related diseases, emerging evidence was reported to support the pharmacological role of Chinese medicine in ameliorating the symptoms, or interfering with the pathogenesis of several neurodegenerative diseases. This review brings evidence about today's trends and development of a list of potential neuroprotective herbal compounds from both the traditional and modern pharmacological point of view. With future projections, the potential hope and implication of using Chinese medicine as an alternative source for novel drug discovery for neurodegenerative diseases is proposed.
Collapse
Affiliation(s)
- Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - An Guo Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Min Jun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| | - Yi Zhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
29
|
Thibado SP, Thornthwaite JT, Ballard TK, Goodman BT. Anticancer effects of Bilberry anthocyanins compared with NutraNanoSphere encapsulated Bilberry anthocyanins. Mol Clin Oncol 2017; 8:330-335. [PMID: 29399357 DOI: 10.3892/mco.2017.1520] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 10/27/2017] [Indexed: 12/20/2022] Open
Abstract
Rapidly accumulating laboratory and clinical research evidence indicates that anthocyanins exhibit anticancer activity and the evaluation of bilberry anthocyanins as chemo-preventive agents is progressing. It has previously been demonstrated that anthocyanins upregulate tumor suppressor genes, induce apoptosis in cancer cells, repair and protect genomic DNA integrity, which is important in reducing age-associated oxidative stress, and improve neuronal and cognitive brain function. Bilberry anthocyanins have pronounced health effects, even though they have a low bioavailability. To increase the bioavailability, Bilberry was encapsulated in 5.5 nm diameter liposomal micelles, called NutraNanoSpheres (NNS), at a concentration of 2.5 mg/50 µl [25% (w/w) anthocyanins]. These Bilberry NNS were used to study the apoptotic/cytotoxic effects on K562 Human Erythroleukemic cancer cells. Flow cytometric fluorescent quantification of the uptake of propidium iodide in a special cell viability formulation into dead K562 cells was used to determine the effects of Bilberry on the viability of K562 cells. The concentrations of Bilberry that demonstrated the greatest levels of percentage inhibition, relative to the control populations, were biphasic, revealing a 60-70% inhibition between 0.018-1.14 mg/ml (n=6) and 60% inhibition at 4 mg/ml. The lowest percentage inhibition (30%) occurred at 2 mg/ml. The lethal dose 50 was determined to be 0.01-0.04 mg/ml of Bilberry per 105 K562 cells at 72 h of cell culture exposure. At 48 h incubation, the highest percentage of inhibition was only 27%, suggesting involvement of a long-term apoptotic event. These levels, which demonstrated direct cytotoxic effects, were 8-40 times lower than levels required for Bilberry that is not encapsulated. The increase in bioavailability with the Bilberry NNS and its water solubility demonstrated the feasibility of using Bilberry NNS in cancer patient clinical trials.
Collapse
Affiliation(s)
- Seth P Thibado
- Department, of Chemistry, Union University, Jackson, TN 38305, USA
| | | | - Thomas K Ballard
- Cancer Research Institute of West Tennessee, Henderson, TN 38340, USA
| | - Brandon T Goodman
- Cancer Research Institute of West Tennessee, Henderson, TN 38340, USA
| |
Collapse
|
30
|
de Souza Zanchet MZ, Nardi GM, de Oliveira Souza Bratti L, Filippin-Monteiro FB, Locatelli C. Lycium barbarum Reduces Abdominal Fat and Improves Lipid Profile and Antioxidant Status in Patients with Metabolic Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9763210. [PMID: 28685012 PMCID: PMC5480053 DOI: 10.1155/2017/9763210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/04/2017] [Accepted: 05/02/2017] [Indexed: 01/23/2023]
Abstract
Natural antioxidants present in fruits have attracted considerable interest due to their presumed safety and potential nutritional value. Even though antioxidant activities of many fruits have been reported, the effects of phytochemicals of goji berry (GB) in patients with metabolic syndrome have not been investigated. In this study, we examined anthropometric and biochemical parameters in patients with metabolic syndrome after the consumption of GB. The patients were divided into two groups, control (C) and supplemented (S), and followed up for 45 days. Participants were individually instructed to carry out a healthy diet, but additionally, an inclusion of 14 g of the natural form of goji berry in the diet during 45 days for the S group was proposed. After 45 days of study, a significant reduction in transaminases as well as an improvement in lipid profile in the S group was observed. Likewise, a significant reduction in the waist circumference of the S group was observed when compared with that of the C group, and increased glutathione and catalase levels associated with a reduction of lipid peroxidation. These results suggest that this is an effective dietary supplement for the prevention of cardiovascular diseases in individuals with metabolic syndrome.
Collapse
Affiliation(s)
| | - Geisson Marcos Nardi
- Curso de Medicina, Instituto de Ciências Exatas e Naturais (ICEN), Universidade Federal de Mato Grosso (UFMT), Rondonópolis, MT, Brazil
| | | | | | - Claudriana Locatelli
- Laboratório de Bioquimica Experimental, Universidade do Oeste de Santa Catarina (UNOESC), Joaçaba, SC, Brazil
| |
Collapse
|
31
|
Cranberry (Vaccinium macrocarpon) extract treatment improves triglyceridemia, liver cholesterol, liver steatosis, oxidative damage and corticosteronemia in rats rendered obese by high fat diet. Eur J Nutr 2017; 57:1829-1844. [DOI: 10.1007/s00394-017-1467-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
|
32
|
Skarpańska-Stejnborn A, Basta P, Trzeciak J, Michalska A, Kafkas ME, Woitas-Ślubowska D. Effects of cranberry ( Vaccinum macrocarpon) supplementation on iron status and inflammatory markers in rowers. J Int Soc Sports Nutr 2017; 14:7. [PMID: 28261001 PMCID: PMC5330006 DOI: 10.1186/s12970-017-0165-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/21/2017] [Indexed: 12/21/2022] Open
Abstract
Background The aim of this study was to analyze the effect of supplementation with cranberry (Vaccinum macrocarpon) on the levels of pro-inflammatory cytokines, hepcidin and selected markers of iron metabolism in rowers subjected to exhaustive exercise. Methods This double-blind study included 16 members of the Polish Rowing Team. The subjects were randomly assigned to the supplemented group (n = 9), receiving 1200 mg of cranberry extract for 6 weeks, or to the placebo group (n = 7). The participants performed a 2000-m test on a rowing ergometer at the beginning and at the end of the preparatory camp. Blood samples were obtained from the antecubital vein prior to each exercise test, one minute after completing the test, and after a 24-h recovery period. The levels of hepcidin, interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-alpha), ferritin, iron, soluble transferrin receptor (sTfR) and myoglobin were determined, along with total iron-binding capacity (TIBC), unbound iron-binding capacity (UIBC) and total antioxidant capacity (TAC). Results Both prior and after the supplementation, a significant post-exercise increase in the concentration of IL-6 was observed in both groups. At the end of the study period, cranberry-supplemented athletes presented with significantly higher resting, post-exercise and post-recovery levels of TAC than the controls. However, a significant exercise-induced increase in the concentrations of TNF-alpha, myoglobin and hepcidin was observed solely in the control group. Conclusion Supplementation with cranberry extract contributed to a significant strengthening of antioxidant potential in individuals exposed to strenuous physical exercise. However, supplementation did not exert direct effects on other analyzed parameters: inflammatory markers and indices of iron metabolism (TNF-alpha, hepcidin and myoglobin).
Collapse
Affiliation(s)
- Anna Skarpańska-Stejnborn
- Department of Morphological and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp. Poland, 13 Estkowskiego Str. 66 - 400, Gorzów Wlkp., Poland
| | - Piotr Basta
- University School of Physical Education in Poznañ, Branch in Gorzów Wlkp., Faculty of Physical Culture, Water Sports, Gorzów Wlkp., Poland
| | - Jerzy Trzeciak
- University School of Physical Education in Poznań, Branch in Gorzów Wlkp., Gorzów Wlkp., Poland
| | - Alicja Michalska
- Department of Morphological and Health Sciences, Faculty of Physical Culture in Gorzów Wlkp. Poland, 13 Estkowskiego Str. 66 - 400, Gorzów Wlkp., Poland
| | - M Emin Kafkas
- Department of Coaching Education, Inonu University, School of Physical Education and Sport, Malatya, Turkey
| | - Donata Woitas-Ślubowska
- Kazimierz Wielki University Faculty of Physical Education, Health and Tourism, Bydgoszcz, Poland
| |
Collapse
|
33
|
Debom G, Gazal M, Soares MSP, do Couto CAT, Mattos B, Lencina C, Kaster MP, Ghisleni GC, Tavares R, Braganhol E, Chaves VC, Reginatto FH, Stefanello F, Spanevello RM. Preventive effects of blueberry extract on behavioral and biochemical dysfunctions in rats submitted to a model of manic behavior induced by ketamine. Brain Res Bull 2016; 127:260-269. [PMID: 27769874 DOI: 10.1016/j.brainresbull.2016.10.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/14/2016] [Accepted: 10/17/2016] [Indexed: 12/20/2022]
Abstract
The aim of the present study was to evaluate the protective effects of blueberry extract on oxidative stress and inflammatory parameters in a model of mania induced by ketamine administration in rats. Male rats were pretreated with blueberry extract (200mg/kg, once a day for 14days), lithium chloride (45mg/kg, mood stabilizer used as a positive control, twice a day for 14days), or vehicle. Between the 8th and 14th days, rats also received an injection of ketamine (25mg/kg) or vehicle. In the 15th day, thirty minutes after ketamine administration the hyperlocomotion of the animals was assessed in the open - field apparatus. Immediately after the behavioral analysis brain and blood were collected for biochemical determinations. ketamine treatment induced hyperlocomotion and oxidative damage in cerebral cortex, hippocampus and striatum such as an increase in lipid peroxidation and a decrease in the antioxidant enzymes activities (superoxide dismutase, catalase e glutatione peroxidase). Ketamine administration also increased the IL-6 levels in serum in rats. Pretreatment of rats with blueberry extract or lithium prevented the hyperlocomotion, pro - oxidant effects and inflammation induced by ketamine. Our findings suggest that blueberry consumption has a neuroprotective potential against behavioral and biochemical dysfunctions induced in a preclinical model that mimic some aspects of the manic behavior.
Collapse
Affiliation(s)
- Gabriela Debom
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Marta Gazal
- Programa de Pós Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara Sandrielly Pereira Soares
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Carlus Augustu Tavares do Couto
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Bruna Mattos
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Claiton Lencina
- Curso de Farmácia, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Manuella Pinto Kaster
- Programa de Pós Graduação em Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | | | - Rejane Tavares
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Elizandra Braganhol
- Programa de Pós Graduação em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Vitor Clasen Chaves
- Programa de Pós - Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Flávio Henrique Reginatto
- Programa de Pós - Graduação em Biotecnologia e Biociências, Universidade Federal de Santa Catarina, Florianópolis, SC, Brazil
| | - Francieli Stefanello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós Graduação em Bioquímica e Bioprospecção, Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Pelotas, RS, Brazil.
| |
Collapse
|