1
|
Ding J, Wang Y, Wang Z, Hu S, Li Z, Le C, Huang J, Xu X, Huang J, Qiu P. Luteolin Ameliorates Methamphetamine-Induced Podocyte Pathology by Inhibiting Tau Phosphorylation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5909926. [PMID: 35368760 PMCID: PMC8970803 DOI: 10.1155/2022/5909926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/28/2022] [Indexed: 11/17/2022]
Abstract
Methamphetamine (METH) can cause kidney dysfunction. Luteolin is a flavonoid compound that can alleviate kidney dysfunction. We aimed to observe the renal-protective effect of luteolin on METH-induced nephropathies and to clarify the potential mechanism of action. The mice were treated with METH (1.0-20.0 mg/kg/d bodyweight) for 14 consecutive days. Morphological studies, renal function, and podocyte specific proteins were analyzed in the chronic METH model in vivo. Cultured podocytes were used to support the protective effects of luteolin on METH-induced podocyte injury. We observed increased levels of p-Tau and p-GSK3β and elevated glomerular pathology, renal dysfunction, renal fibrosis, foot process effacement, macrophage infiltration, and podocyte specific protein loss. Inhibition of GSK3β activation protected METH-induced kidney injury. Furthermore, luteolin could obliterate glomerular pathologies, inhibit podocyte protein loss, and stop p-Tau level increase. Luteolin could also abolish the METH-induced podocyte injury by inactivating GSK3β-p-Tau in cultured podocytes. These results indicate that luteolin might ameliorate methamphetamine-induced podocyte pathology through GSK3β-p-Tau axis.
Collapse
Affiliation(s)
- Jiuyang Ding
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuanhe Wang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Zhuo Wang
- Department of Infertility and Sexual Medicine, The Third Affiliated hospital of Sun Yat-sen University, Guangzhou 510630, Guangdong, China
| | - Shanshan Hu
- Good Clinical Practice Center, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Zhu Li
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Cuiyun Le
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Jian Huang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu 241000, Anhui, China
| | - Jiang Huang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Pingming Qiu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
2
|
Flores-Rodríguez P, Harrington CR, Wischik CM, Ibarra-Bracamontes V, Zarco N, Navarrete A, Martínez-Maldonado A, Guadarrama-Ortíz P, Villanueva-Fierro I, Ontiveros-Torres MA, Perry G, Alonso AD, Floran-Garduño B, Segovia J, Luna-Muñoz J. Phospho-Tau Protein Expression in the Cell Cycle of SH-SY5Y Neuroblastoma Cells: A Morphological Study. J Alzheimers Dis 2020; 71:631-645. [PMID: 31424392 DOI: 10.3233/jad-190155] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been reported that the main function of tau protein is to stabilize microtubules and promote the movement of organelles through the axon in neurons. In Alzheimer's disease, tau protein is the major constituent of the paired helical filament, and it undergoes post-translational modifications including hyperphosphorylation and truncation. Whether other functions of tau protein are involved in Alzheimer's disease is less clear. We used SH-SY5Y human neuroblastoma cells as an in vitro model to further study the functions of tau protein. We detected phosphorylated tau protein as small dense dots in the cell nucleus, which strongly colocalize with intranuclear speckle structures that were also labelled with an antibody to SC35, a protein involved in nuclear RNA splicing. We have shown further that tau protein, phosphorylated at the sites recognized by pT231, TG-3, and AD2 antibodies, is closely associated with cell division. Different functions may be characteristic of phosphorylation at specific sites. Our findings suggest that the presence of tau protein is involved in separation of sister chromatids in anaphase, and that tau protein also participates in maintaining the integrity of the DNA (pT231, prophase) and chromosomes during cell division (TG-3).
Collapse
Affiliation(s)
- Paola Flores-Rodríguez
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México.,CIIDIR Durango, Instituto Politécnico Nacional, Becario COFAA, Durango, México
| | - Charles R Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Claude M Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Vanessa Ibarra-Bracamontes
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México
| | - Natanael Zarco
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Araceli Navarrete
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - Alejandra Martínez-Maldonado
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México.,Anahuac University North Mexico, CDMX, México
| | | | | | | | - George Perry
- College of Sciences, University of Texas at San Antonio, TX, USA
| | - Alejandra D Alonso
- Biology Department and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, USA
| | | | - José Segovia
- Deparment of Physiology, Biophysics and Neuroscience, CINVESTAV, CDMX, México
| | - José Luna-Muñoz
- Brain Bank, Laboratorio Nacional de Servicios Experimentales, LaNSE-CINVESTAV, CDMX, México
| |
Collapse
|
3
|
Magley RA, Rouhana L. Tau tubulin kinase is required for spermatogenesis and development of motile cilia in planarian flatworms. Mol Biol Cell 2019; 30:2155-2170. [PMID: 31141462 PMCID: PMC6743461 DOI: 10.1091/mbc.e18-10-0663] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/17/2022] Open
Abstract
Cilia are microtubule-based structures that protrude from the apical surface of cells to mediate motility, transport, intracellular signaling, and environmental sensing. Tau tubulin kinases (TTBKs) destabilize microtubules by phosphorylating microtubule-associated proteins (MAPs) of the MAP2/Tau family, but also contribute to the assembly of primary cilia during embryogenesis. Expression of TTBKs is enriched in testicular tissue, but their relevance to reproductive processes is unknown. We identified six TTBK homologues in the genome of the planarian Schmidtea mediterranea (Smed-TTBK-a, -b, -c, -d, -e, and -f), all of which are preferentially expressed in testes. Inhibition of TTBK paralogues by RNA interference (RNAi) revealed a specific requirement for Smed-TTBK-d in postmeiotic regulation of spermatogenesis. Disrupting expression of Smed-TTBK-d results in loss of spermatozoa, but not spermatids. In the soma, Smed-TTBK-d RNAi impaired the function of multiciliated epidermal cells in propelling planarian movement, as well as the osmoregulatory function of protonephridia. Decreased density and structural defects of motile cilia were observed in the epidermis of Smed-TTBK-d(RNAi) by phase contrast, immunofluorescence, and transmission electron microscopy. Altogether, these results demonstrate that members of the TTBK family of proteins are postmeiotic regulators of sperm development and also contribute to the formation of motile cilia in the soma.
Collapse
Affiliation(s)
- Robert Alan Magley
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| | - Labib Rouhana
- Department of Biological Sciences, Wright State University, Dayton, OH 45435
| |
Collapse
|
4
|
Akingbade OES, Gibson C, Kalaria RN, Mukaetova-Ladinska EB. Platelets: Peripheral Biomarkers of Dementia? J Alzheimers Dis 2019; 63:1235-1259. [PMID: 29843245 DOI: 10.3233/jad-180181] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dementia continues to be the most burdening neurocognitive disorder, having a negative impact on the lives of millions. The search for biomarkers to improve the clinical diagnosis of dementia is ongoing, with the focus on effective use of readily accessible peripheral markers. In this review, we concentrate on platelets as biomarkers of dementia and analyze their potential as easily-accessible clinical biomarkers for various subtypes of dementia. Current platelet protein biomarkers that have been investigated for their clinical utility in the diagnosis of dementia, in particular Alzheimer's disease, include amyloid-β protein precursor (AβPP), the AβPP secretases (BACE1 and ADAM10), α-synuclein, tau protein, serotonin, cholesterol, phospholipases, clusterin, IgG, surface receptors, MAO-B, and coated platelets. Few of them, i.e., platelet tau, AβPP (particularly with regards to coated platelets) and secreted ADAM10 and BACE1 show the most promise to be taken forward into clinical setting to diagnose dementia. Aside from protein biomarkers, changes in factors such as mean platelet volume have the potential to play a very specific role in both the dementia diagnosis and prognosis. This review raises a number of research questions for consideration before application of the above biomarkers to routine clinical setting. It is without doubt that there is a need for more clarification on the effects of dementia on platelet morphology and protein content before these changes can be clinically applied as dementia biomarkers and explored further in differentiating distinct dementia subtypes.
Collapse
Affiliation(s)
- Oluwatomi E S Akingbade
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Claire Gibson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| | - Raj N Kalaria
- Institute of Neuroscience, Newcastle University, Newcastle, UK
| | - Elizabeta B Mukaetova-Ladinska
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK.,Evington Centre, Leicester General Hospital, Leicester, UK
| |
Collapse
|
5
|
Sotiropoulos I, Galas MC, Silva JM, Skoulakis E, Wegmann S, Maina MB, Blum D, Sayas CL, Mandelkow EM, Mandelkow E, Spillantini MG, Sousa N, Avila J, Medina M, Mudher A, Buee L. Atypical, non-standard functions of the microtubule associated Tau protein. Acta Neuropathol Commun 2017; 5:91. [PMID: 29187252 PMCID: PMC5707803 DOI: 10.1186/s40478-017-0489-6] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 10/30/2017] [Indexed: 12/21/2022] Open
Abstract
Since the discovery of the microtubule-associated protein Tau (MAPT) over 40 years ago, most studies have focused on Tau's role in microtubule stability and regulation, as well as on the neuropathological consequences of Tau hyperphosphorylation and aggregation in Alzheimer's disease (AD) brains. In recent years, however, research efforts identified new interaction partners and different sub-cellular localizations for Tau suggesting additional roles beyond its standard function as microtubule regulating protein. Moreover, despite the increasing research focus on AD over the last decades, Tau was only recently considered as a promising therapeutic target for the treatment and prevention of AD as well as for neurological pathologies beyond AD e.g. epilepsy, excitotoxicity, and environmental stress. This review will focus on atypical, non-standard roles of Tau on neuronal function and dysfunction in AD and other neurological pathologies providing novel insights about neuroplastic and neuropathological implications of Tau in both the central and the peripheral nervous system.
Collapse
Affiliation(s)
- Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| | | | - Joana M Silva
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Efthimios Skoulakis
- Division of Neuroscience, Biomedical Sciences Research Centre "Alexander Fleming", 16672, Vari, Greece
| | - Susanne Wegmann
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Mahmoud Bukar Maina
- School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex, BN1 9QG, UK
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, 59000, Lille, France
| | - Carmen Laura Sayas
- Centre for Biomedical Research of the Canary Islands (CIBICAN), Institute for Biomedical Technologies (ITB), Universidad de La Laguna (ULL), Tenerife, Spain
| | - Eva-Maria Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Institute, Bonn, Germany; Max-Planck-Institute for Metabolism Research, Köln, Germany
| | - Eckhard Mandelkow
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany; CAESAR Research Institute, Bonn, Germany; Max-Planck-Institute for Metabolism Research, Köln, Germany
| | | | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), Medical School, University of Minho, Braga, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Jesus Avila
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28041, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" CSIC-UAM, Universidad Autónoma de Madrid, C/ Nicolás Cabrera 1, 28049, Madrid, Spain
| | - Miguel Medina
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Madrid, Spain
- CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Amrit Mudher
- Faculty of Natural and Environmental Sciences, University of Southampton Highfield Campus, Center for Biological Sciences, Southampton, UK
| | - Luc Buee
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc, 59000, Lille, France
| |
Collapse
|
6
|
Sigala J, Jumeau F, Buée L, Sergeant N, Mitchell V. [The testicular microtubule-associated protein Tau: Where, when during spermatogenesis?]. Morphologie 2015; 99:141-148. [PMID: 25908520 DOI: 10.1016/j.morpho.2015.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/05/2015] [Accepted: 03/16/2015] [Indexed: 06/04/2023]
Abstract
The Tau protein (Tubulin Associated Unit) is a phosphoprotein of the microtubule-associated protein family (MAPs). Its role is the regulation of the microtubule polymerization. The Tau protein is naturally present in brain, heart, muscle, lung, kidney, pancreas and liver. An expression of Tau protein and RNA messengers was also highlighted in the testis that is an organ rich in microtubules. The role of microtubules is essential in the stabilization of the cellular shape and in cell divisions. In the testis, Tau protein could be involved in the division process of the spermatogenesis by acting on the microtubular dynamics in the arrangement of the spermatozoon polarity. This review synthesizes the current knowledge, the localization and the main functions of the Tau protein focused on the testis. The localization and the potential roles of the Tau protein during the spermatogenesis are discussed by emphasizing the link with the microtubular structures of seminiferous tubules.
Collapse
Affiliation(s)
- J Sigala
- Institut de biologie de la reproduction-spermiologie, CECOS, hôpital Jeanne-de-Flandre, centre hospitalier régional universitaire de Lille, avenue Eugène-Avinée, 59037 Lille cedex, France; EA 4308 gamétogenèse et qualité du gamète, France; Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France
| | - F Jumeau
- EA 4308 gamétogenèse et qualité du gamète, France; Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France; Laboratoire de biologie de la reproduction, CECOS, centre hospitalier universitaire de Rouen, 1, rue de Germont, 76031 Rouen cedex, France
| | - L Buée
- Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France
| | - N Sergeant
- Inserm UMR-S 1172 Alzheimer et tauopathies, place de Verdun, 59045 Lille cedex, France
| | - V Mitchell
- Institut de biologie de la reproduction-spermiologie, CECOS, hôpital Jeanne-de-Flandre, centre hospitalier régional universitaire de Lille, avenue Eugène-Avinée, 59037 Lille cedex, France; EA 4308 gamétogenèse et qualité du gamète, France.
| |
Collapse
|