1
|
Hermo L, Oliveira R, Dufresne J, Gregory M, Cyr DG. Basal and Immune Cells of the Epididymis: An Electron Microscopy View of Their Association. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:67-87. [PMID: 40301253 DOI: 10.1007/978-3-031-82990-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The epididymis is a highly coiled duct divided into the initial segment, caput, corpus, and cauda regions. It is a pseudostratified epithelium consisting of principal, narrow, apical, basal, and clear cells. Circulating halo cells, identified as nonepithelial cells, monocytes/macrophages (M/M) and T-lymphocytes, in addition to dendritic cells and a resident population of M/M cells, also inhabit the epididymal epithelium. Using electron microscopy (EM), we characterized the ultrastructural features of each of these different cell types. Basal cells with stem cell characteristics suggest a role in sustaining the epithelium following injury and inflammation, as well as maintaining the steady state of the epithelium. Interestingly, a close morphological affiliation was noted between circulating M/M cells with basal cells and an intraepithelial resident M/M population of cells, as well as between T-lymphocytes and dendritic cells. The association of all these cell types with one another suggests complex interactions enabling the coordination of their functions related to maturation, protection, survival of sperm, and renewal of the epithelium.
Collapse
Affiliation(s)
- Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Regiana Oliveira
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Daniel G Cyr
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
| |
Collapse
|
2
|
Cyr DG, Gregory M, Hermo L, Dufresne J. Molecular Pathways Implicated in the Differentiation and Function of Epididymal Basal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:89-113. [PMID: 40301254 DOI: 10.1007/978-3-031-82990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The postnatal development of the epididymis is a complex and poorly understood process. Our recent studies have shown that undifferentiated primitive small columnar cells are stem cells and can differentiate in vitro into basal and principal cells. This process represents a key aspect of early epididymal development. As such, the genes and signaling pathways implicated in the differentiation of stem cells are critical. In the rat, epididymal development has been subdivided into three phases consisting of an undifferentiated epithelium (birth to day 14), differentiation (days 14 to 44), and expansion (day 45 to adult). During this period, changes in gene expression in the epididymis are the most significant, as almost 1500 genes are differentially expressed between epididymides of 7 and 18 days of age. In the adult rat, basal cells appear to represent a quiescent adult stem cell population that can be cultured under 3D conditions and can differentiate into principal cells. Gene expression in basal cells of adults compared with epididymides from day 7 rats reveals approximately 400 genes that are common to both. Analyses of these genes predict multiple signaling pathways and master regulator genes. Their roles in early epididymal development suggest that the process is complex and involves multiple regulators, cell surface factors, signaling pathways, and hormones that are interconnected and which promote the differentiation of epididymal basal cells into other epididymal cell types.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Québec, QC, Canada.
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
3
|
Savekar PL, Nadaf SJ, Killedar SG, Kumbar VM, Hoskeri JH, Bhagwat DA, Gurav SS. Citric acid cross-linked pomegranate peel extract-loaded pH-responsive β-cyclodextrin/carboxymethyl tapioca starch hydrogel film for diabetic wound healing. Int J Biol Macromol 2024; 274:133366. [PMID: 38914385 DOI: 10.1016/j.ijbiomac.2024.133366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
Pomegranate peel extract (PPE) hydrogel films filled with citric acid (CA) and β-cyclodextrin-carboxymethyl tapioca starch (CMS) were designed mainly to prevent wound infections and speed up the healing process. FTIR and NMR studies corroborated the carboxymethylation of neat tapioca starch (NS). CMS exhibited superior swelling behavior than NS. The amount of CA and β-CD controlled the physicochemical parameters of developed PPE/CA/β-CD/CMS films. Optimized film (OF) exhibited acceptable swellability, wound fluid absorptivity, water vapor transmission rate, water contact angle, and mechanical properties. Biodegradable, biocompatible, and antibacterial films exhibited pH dependence in the release of ellagic acid for up to 24 h. In mice model, PPE/CA/β-CD/CMS hydrogel film treatment showed promising wound healing effects, including increased collagen deposition, reduced inflammation, activation of the Wingless-related integration site (wnt) pathway leading to cell division, proliferation, and migration to the wound site. The expression of the WNT3A gene did not show any significant differences among all the studied groups. Developed PPE-loaded CA/β-CD/CMS film promoted wound healing by epithelialization, granulation tissue thickness, collagen deposition, and angiogenesis, hence could be recommended as a biodegradable and antibacterial hydrogel platform to improve the cell proliferation during the healing of diabetic wounds.
Collapse
Affiliation(s)
- Pranav L Savekar
- Shivraj College of Pharmacy, Gadhinglaj 416502, Maharashtra, India
| | - Sameer J Nadaf
- Bharati Vidyapeeth College of Pharmacy, Palus 416310, Maharashtra, India.
| | - Suresh G Killedar
- Anandi Pharmacy College, Kalambe Tarf Kale 416205, Maharashtra, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education (KLE University), Nehru Nagar, Belagavi 590 010, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura, Karnataka, India
| | | | - Shailendra S Gurav
- Department of Pharmacognosy, Goa College of Pharmacy, Goa University, Goa 403001, India.
| |
Collapse
|
4
|
Activation of WNT7b autocrine eases metastasis of colorectal cancer via epithelial to mesenchymal transition and predicts poor prognosis. BMC Cancer 2021; 21:180. [PMID: 33607955 PMCID: PMC7893751 DOI: 10.1186/s12885-021-07898-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Aberrant activation of the Wnt/β-catenin signaling pathway is one of the most frequent abnormalities in human cancer, including colorectal cancer (CRC). Previous studies revealed pivotal functions of WNT family members in colorectal cancer, as well as their prognostic values. Nevertheless, the prognostic role and mechanisms underlying WNT7b in colorectal cancer development remains unclear. METHODS In this study, WNT7b expression was measured by immunohistochemical staining of 100 cases of surgically resected human colorectal cancerous tissues as well as matched adjacent normal tissues constructed as tissue microarrays. In vitro studies, we attempted to substantiate the WNT7b expressional pattern previously found in immunohistochemistry staining. We used the colorectal cancer cell-line HCT116 and normal colorectal cell-line FHC for immunofluorescence staining and nuclear/cytoplasmic separated western blotting. We measured epithelial-mesenchymal transition (EMT) markers and migration capacity of HCT116 in the context of WNT7b knocked-down using short interfering RNA. Finally, clinical and prognostic values of WNT7b activation levels were examined. RESULTS WNT7b was expressed in the nucleus in adjacent normal tissues. In CRC tissues, nuclear expression of WNT7b was similar; however, membrane and cytoplasmic expression was strikingly enhanced. Consistently, in vitro analysis confirmed the same expression pattern of WNT7b. Compared with FHC cells, HCT116 cells displayed higher levels of WNT7b membrane and cytoplasmic enrichment, as well as higher migration capacity with a sensitized EMT process. Either partial knockdown of WNT7b or blockade of the Wnt/β-catenin signaling pathway reversed EMT process and inhibited the migration of HCT116 cells. Finally, elevated secretion levels of WNT7b were significantly associated with lymphatic and remote metastasis and predicted worse prognosis in the CRC cohort. CONCLUSION In summary, we demonstrated that the activation of WNT7b autocrine probably contributes to CRC metastasis by triggering EMT process through the Wnt/β-catenin signaling pathway. High levels of WNT7b autocrine secretion predicts poor outcome in patients with CRC. This molecule is a promising candidate for clinical CRC treatments.
Collapse
|
5
|
Xue R, Lin W, Sun J, Watanabe M, Xu A, Araki M, Nasu Y, Tang Z, Huang P. The role of Wnt signaling in male reproductive physiology and pathology. Mol Hum Reprod 2021; 27:gaaa085. [PMID: 33543289 DOI: 10.1093/molehr/gaaa085] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/26/2020] [Indexed: 12/14/2022] Open
Abstract
Accumulating evidence has shown that Wnt signaling is deeply involved in male reproductive physiology, and malfunction of the signal path can cause pathological changes in genital organs and sperm cells. These abnormalities are diverse in manifestation and have been constantly found in the knockout models of Wnt studies. Nevertheless, most of the research solely focused on a certain factor in the Wnt pathway, and there are few reports on the overall relation between Wnt signals and male reproductive physiology. In our review, Wnt findings relating to the reproductive system were sought and summarized in terms of Wnt ligands, Wnt receptors, Wnt intracellular signals and Wnt regulators. By sorting out and integrating relevant functions, as well as underlining the controversies among different reports, our review aims to offer an overview of Wnt signaling in male reproductive physiology and pathology for further mechanistic studies.
Collapse
Affiliation(s)
- Ruizhi Xue
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Wenfeng Lin
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Jingkai Sun
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Masami Watanabe
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Abai Xu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Motoo Araki
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Yasutomo Nasu
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Zhengyan Tang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, China
| | - Peng Huang
- Department of Urology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Okayama Medical Innovation Center, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
6
|
Zhang D, Wang Y, Lin H, Sun Y, Wang M, Jia Y, Yu X, Jiang H, Xu W, Sun JP, Xu Z. Function and therapeutic potential of G protein-coupled receptors in epididymis. Br J Pharmacol 2020; 177:5489-5508. [PMID: 32901914 DOI: 10.1111/bph.15252] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/08/2020] [Accepted: 09/03/2020] [Indexed: 12/14/2022] Open
Abstract
Infertility rates for both females and males have increased continuously in recent years. Currently, effective treatments for male infertility with defined mechanisms or targets are still lacking. G protein-coupled receptors (GPCRs) are the largest class of drug targets, but their functions and the implications for the therapeutic development for male infertility largely remain elusive. Nevertheless, recent studies have shown that several members of the GPCR superfamily play crucial roles in the maintenance of ion-water homeostasis of the epididymis, development of the efferent ductules, formation of the blood-epididymal barrier and maturation of sperm. Knowledge of the functions, genetic variations and working mechanisms of such GPCRs, along with the drugs and ligands relevant to their specific functions, provide future directions and a great arsenal for new developments in the treatment of male infertility.
Collapse
Affiliation(s)
- Daolai Zhang
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yanfei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Hui Lin
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yujing Sun
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Mingwei Wang
- Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| | - Yingli Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Xiao Yu
- Department of Physiology, School of Medicine, Shandong University, Jinan, China
| | - Hui Jiang
- Department of Urology, Peking University Third Hospital, Beijing, China.,Department of Reproductive Medicine Center, Peking University Third Hospital, Beijing, China
| | - Wenming Xu
- Joint Laboratory of Reproductive Medicine, SCU-CUHK, Key Laboratory of Obstetric, Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Sichuan University West China Second University Hospital, Chengdu, China
| | - Jin-Peng Sun
- Department of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China.,Key Laboratory Experimental Teratology of the Ministry of Education and Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China.,Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.,Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, China
| |
Collapse
|
7
|
Pinel L, Mandon M, Cyr DG. Tissue regeneration and the epididymal stem cell. Andrology 2019; 7:618-630. [PMID: 31033244 DOI: 10.1111/andr.12635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/24/2019] [Accepted: 03/30/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND In most pseudostratified epithelia, basal cells represent a multipotent adult stem cell population. These cells generally remain in a quiescent state, until they are stimulated to respond to tissue damage by initiating epithelial regeneration. In the epididymis, cell proliferation occurs at a relatively slow rate under normal physiological conditions. Epididymal basal cells have been shown to share common properties with multipotent adult stem cells. The development of organoids from stem cells represents a novel approach for understanding cellular differentiation and characterization of stem cells. OBJECTIVE To review the literature on tissue regeneration in the epididymis and demonstrate the presence of an epididymal stem cell population. METHODS PubMed database was searched for studies reporting on cell proliferation, regeneration, and stem cells in the epididymis. Three-dimensional cell culture of epididymal cells was used to determine whether these can develop into organoids in a similar fashion to stem cells from other tissues. RESULTS The epididymal epithelium can rapidly regenerate following orchidectomy or efferent duct ligation, in order to maintain epithelial integrity. Studies have isolated a highly purified fraction of rat epididymal basal cells and reported that these cells displayed properties similar to those of multipotent adult stem cells. In two-dimensional cell culture conditions, these cells differentiated into cells which expressed connexin 26, a marker of columnar cells, and cytokeratin 8. Furthermore, three-dimensional cell culture of epididymal cells resulted in the formation of organoids, a phenomenon associated with the proliferation and differentiation of stem cells in vitro. CONCLUSIONS The rapid proliferation and tissue regeneration of the epididymal epithelium to preserve its integrity following tissue damage as well as the ability of cells to differentiate into organoids in vitro support the notion of a resident progenitor/stem cell population in the adult epididymis.
Collapse
Affiliation(s)
- L Pinel
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - M Mandon
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| | - D G Cyr
- Laboratory for Reproductive Toxicology, INRS-Institut Armand-Frappier, Université du Québec, Laval, QC, Canada
| |
Collapse
|
8
|
Li J. Downregulation of ROS1 enhances the therapeutic efficacy of arsenic trioxide in acute myeloid leukemia cell lines. Oncol Lett 2018; 15:9392-9396. [PMID: 29805662 DOI: 10.3892/ol.2018.8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 08/01/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the function of ROS proto-oncogene 1 receptor tyrosine kinase (ROS1) in regulating the migration and proliferation of acute myeloid leukemia (AML) cells through Wnt/β-catenin signaling, and in arsenic trioxide (ATO) treatment. The migration and proliferation of multiple ROS1-silenced leukemic cell lines was assessed, and the expression levels of proteins associated with Wnt/β-catenin signaling were determined using western blot analysis. Compared with the AML control cells, ROS1-knockdown cells exhibited increased migration and proliferation, and the significant downregulation of β-catenin expression. Additionally, ROS1 knockdown sensitized AML cells to the effects of chemotherapeutic ATO. The results of the present study demonstrated that, in leukemic cell lines, ROS1 counteracted the effects of ATO on migration and proliferation, suggesting that ROS1 may be a potential therapeutic target in patients with AML undergoing ATO treatment. The results of the present study provided novel insight into the function of ATO and ROS1 in regulating AML progression.
Collapse
Affiliation(s)
- Jun Li
- Department of Hematology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
9
|
Cheng JM, Tang JX, Li J, Wang YQ, Wang XX, Zhang Y, Chen SR, Liu YX. Role of WNT signaling in epididymal sperm maturation. J Assist Reprod Genet 2018; 35:229-236. [PMID: 29152689 PMCID: PMC5845038 DOI: 10.1007/s10815-017-1066-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 10/11/2017] [Indexed: 02/03/2023] Open
Abstract
PURPOSE Spermatozoa maturation, a process required for spermatozoa to acquire progressive motility and the ability to fertilize ova, primarily occurs in the caput and corpus of the epididymis. Despite considerable efforts, the factor(s) promoting epididymal sperm maturation remains unclear. Recently, WNT signaling has been implicated in epididymal sperm maturation. METHODS To further investigate WNT signaling function in epididymal sperm maturation, we generated Wntless conditional knockout mice (Wls cKO), Wls flox/flox ; Lcn5-Cre. RESULTS In these mice, WNTLESS (WLS), a conserved membrane protein required for all WNT protein secretion, was specifically disrupted in the principal cells of the caput epididymidis. Immunoblot analysis showed that WLS was significantly reduced in the caput epididymidis of Wls cKO mice. In the caput epididymidis of Wls cKO mice, WNT 10A and WNT 2b, which are typically secreted by the principal cells of the caput epididymis, were not secreted. Interestingly, sperm motility analysis showed that the WLS deficiency in the caput epididymidis had no effect on sperm motility. Moreover, fertility tests showed that Wls cKO male mice had normal fertility. CONCLUSION These results indicate that the disruption of WLS in principal cells of the caput epididymidis inhibits WNT protein secretion but has no effect on sperm motility and male fertility, suggesting that WNT signaling in the caput epididymidis may be dispensable for epididymal sperm maturation in mice.
Collapse
Affiliation(s)
- Jin-Mei Cheng
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ji-Xin Tang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian Li
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Qian Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiu-Xia Wang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yan Zhang
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Su-Ren Chen
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi-Xun Liu
- The State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Yang MC, Chien ST, Yang TF, Lin SY, Lee TM, Hong YR. Downregulation of nuclear and cytoplasmic Chibby is associated with advanced cervical cancer. Oncol Lett 2017; 14:6632-6644. [PMID: 29181101 PMCID: PMC5696723 DOI: 10.3892/ol.2017.7050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
Chibby has been identified as a putative tumor suppressor and antagonist to β-catenin, thereby controlling the Wnt signaling pathway. Chibby is typically downregulated in numerous types of cancer and may be associated with tumorigenesis. The present study aimed at clarifying the following: i) Whether Chibby antagonizes β-catenin in cervical cancer; ii) whether Chibby and β-catenin mRNA expression is associated with cancer progression; and iii) whether Chibby and β-catenin expression may be used as a biomarker. A total of 87 paraffin-embedded cervical sections with distinct cervical intraepithelial neoplasia (CIN) stages (chronic cervicitis, CIN 1, CIN 2, CIN 3 and invasive squamous cell carcinoma) were collected between June 2004 and October 2012 The mRNA expression level of Chibby and β-catenin was determined using the polymerase chain reaction. Protein expression and cellular localization of Chibby and β-catenin were determined using immunohistochemistry. Chibby and β-catenin were analyzed for possible association with the progression of cervical cancer. Chibby mRNA expression and the Chibby/β-catenin ratio were identified to be downregulated in invasive tumors. Positive cytoplasmic and nuclear staining for Chibby was associated with CIN staging and decreased as the CIN stage increased. In addition, the cytoplasmic and membrane intensity of β-catenin was associated with invasive tumors, in which a significantly increased level of protein expression was detected. Chibby may be a tumor suppressor in cervical cancer, since the dysregulation of Chibby expression is associated with tumorigenesis in cervical cancer. Chibby and β-catenin expression together may potentially to a biomarker for disease progression in cervical cancer.
Collapse
Affiliation(s)
- Ming-Chang Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Laboratory of Medical Research, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Shang-Tao Chien
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C.,Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung 83102, Taiwan, R.O.C
| | - Tzu-Feng Yang
- Laboratory of Medical Research, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C.,Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Shih-Yi Lin
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Tai-Min Lee
- Department of Pathology, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan, R.O.C
| | - Yi-Ren Hong
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan, R.O.C.,Department of Biochemistry, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C.,Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan, R.O.C
| |
Collapse
|
11
|
Domeniconi RF, Souza ACF, Xu B, Washington AM, Hinton BT. Is the Epididymis a Series of Organs Placed Side By Side? Biol Reprod 2016; 95:10. [PMID: 27122633 PMCID: PMC5029429 DOI: 10.1095/biolreprod.116.138768] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/15/2016] [Indexed: 12/13/2022] Open
Abstract
The mammalian epididymis is more than a highly convoluted tube divided into four regions: initial segment, caput, corpus and cauda. It is a highly segmented structure with each segment expressing its own and overlapping genes, proteins, and signal transduction pathways. Therefore, the epididymis may be viewed as a series of organs placed side by side. In this review we discuss the contributions of septa that divide the epididymis into segments and present hypotheses as to the mechanism by which septa form. The mechanisms of Wolffian duct segmentation are likened to the mechanisms of segmentation of the renal nephron and somites. The renal nephron may provide valuable clues as to how the Wolffian duct is patterned during development, whereas somitogenesis may provide clues as to the timing of the development of each segment. Emphasis is also placed upon how segments are differentially regulated, in support of the idea that the epididymis can be considered a series of multiple organs placed side by side. One region in particular, the initial segment, which consists of 2 or 4 segments in mice and rats, respectively, is unique with respect to its regulation and vascularity compared to other segments; loss of development of these segments leads to male infertility. Different ways of thinking about how the epididymis functions may provide new directions and ideas as to how sperm maturation takes place.
Collapse
Affiliation(s)
- Raquel F Domeniconi
- Department of Cell Biology, University of Virginia Health System, Charlottesville, Virginia
| | | | | | | | | |
Collapse
|
12
|
Kumar M, Syed SM, Taketo MM, Tanwar PS. Epithelial Wnt/βcatenin signalling is essential for epididymal coiling. Dev Biol 2016; 412:234-49. [DOI: 10.1016/j.ydbio.2016.02.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
|