1
|
Lu PC, Tain YL, Lin YJ, Hsu CN. Oxidative Stress in Maternal and Offspring Kidney Disease and Hypertension: A Life-Course Perspective. Antioxidants (Basel) 2025; 14:387. [PMID: 40298619 PMCID: PMC12024290 DOI: 10.3390/antiox14040387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/18/2025] [Accepted: 03/21/2025] [Indexed: 04/30/2025] Open
Abstract
Kidney disease and hypertension are interconnected, prevalent conditions that affect both pregnant women and children. Oxidative stress occurs when reactive oxygen species or reactive nitrogen species exceed the capacity of antioxidant systems. It plays a critical role in kidney development, resulting in kidney programming and increased risks for kidney disease and hypertension across the life course. Animal models have significantly advanced our understanding of oxidative stress-related kidney programming, the molecular mechanisms involved, and early-life antioxidant interventions to prevent kidney disease. This review critically examines the influence of perinatal oxidative stress on kidney development, highlighting its long-term effects on kidney outcomes and susceptibility to hypertension. It also explores the potential of antioxidant-based interventions in preventing kidney disease and hypertension. Furthermore, the review addresses the existing gap between insights gained from animal models and their translation into clinical practices, emphasizing the challenges and opportunities for future research in this area.
Collapse
Affiliation(s)
- Pei-Chen Lu
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-C.L.); (Y.-L.T.)
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - You-Lin Tain
- Division of Pediatric Nephrology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan; (P.-C.L.); (Y.-L.T.)
- Department of Pediatrics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Ying-Jui Lin
- Division of Critical Care, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan;
- Division of Cardiology, Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Department of Early Childhood Care and Education, Cheng Shiu University, Kaohsiung 833, Taiwan
- Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chien-Ning Hsu
- Department of Pharmacy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
2
|
Zhang J, Zhao D, Zang Z, Ruan Z, Fu Q, Zhang K. miR-200a-3p-enriched MSC-derived extracellular vesicles reverse erectile function in diabetic rats by targeting Keap1. Biomed Pharmacother 2024; 177:116964. [PMID: 38959607 DOI: 10.1016/j.biopha.2024.116964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The administration of mesenchymal stem cells (MSCs) through intracavernous injection is a potential therapeutic approach for managing diabetes mellitus-induced erectile dysfunction (DMED). However, pulmonary embolism and tumorigenicity are fatal adverse events that limit the clinical application of MSCs. In this study, we examined the therapeutic efficacy and potential mechanism of MSC-derived extracellular vesicles (MSC-EVs). METHODS In this study, forty 8-week-old male SpragueDawley (SD) rats were utilised. In the control group, ten rats were administered an intraperitoneal injection of PBS. STZ (60 mg/kg) was intraperitoneally injected into the remaining rats to establish a diabetes mellitus (DM) model. Afterwards, the diabetic rats were divided into three groups at random: the DM group (intracavernosal injection of PBS), the EVs group (intracavernosal injection of MSC-EVs), and the EVs-200a group (intracavernosal injection of miR-200a-3p-enriched extracellular vesicles). Erectile function was determined by measuring intracavernous pressure in real time and utilising electrical stimulation of the cavernous nerves. The smooth muscle content was evaluated through the investigation of penile tissue using immunofluorescence staining, Masson's trichrome staining, and western blotting after euthanasia. Superoxide dismutase (SOD), malondialdehyde (MDA), and glutathione (GSH) levels in the corpus cavernosum were measured via ELISA. In vitro, hydrogen peroxide (H2O2) was used to induce oxidative stress. The viability of corpus cavernosum smooth muscle cells (ccSMCs) incubated with or without H2O2 was measured using a CCK8 assay. Flow cytometry was used to assess the levels of reactive oxygen species (ROS) and apoptosis in ccSMCs. Furthermore, a dual-luciferase reporter assay was performed to validate the relationship between miR-200a-3p and Keap1. RESULTS Reversal of erectile function was observed in the EVs groups, especially in the EVs-200a group. DM increased the MDA level and decreased the SOD and GSH levels. In the DM group, the expression of alpha-smooth muscle actin (α-SMA) and smooth muscle 22 alpha (SM22α) was decreased, and the expression of osteopontin (OPN) was increased. Western blotting revealed decreased Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase3 expression in the cavernous tissue. miR-200a-3p-enriched extracellular vesicles (EVs-200a) reversed these changes and inhibited the loss of smooth muscle content and cavernous fibrosis. In vitro, H2O2 induced high ROS levels in ccSMCs and increased apoptosis, and these effects reversed by EVs-200a. H2O2 reduced Nrf2, HO-1, and Bcl2 expression and increased Keap1, Bax and cleaved caspase-3 expression, and these effects were reversed by MSC-EVs, especially EVs-200a. The of dual-luciferase reporter assay results indicated that miR-200a-3p directly targeted Keap1 in a negative manner. CONCLUSION MSC-EVs, especially EVs-200a, alleviated erectile dysfunction in diabetic rats through the regulation of phenotypic switching, apoptosis and fibrosis. Mechanistically, miR-200a-3p targeted the Keap1/Nrf2 pathway to attenuate oxidative stress in diabetic rats.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Danfeng Zhao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250199, China
| | - Zhenjie Zang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Zheng Ruan
- Department of Urology, Shandong Provincial Hospital, Shandong University, Jinan 250021, China; Department of Urology, Tai'an City Central Hospital, Tai'an 271099, China
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250199, China; Key Laboratory of Urinary Diseases in Universities of Shandong, Shandong First Medical University, Jinan 250021, China.
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China.
| |
Collapse
|
3
|
Huang AC, Yeh TC, Wu NC, Yeh CY, Lin PH, Yeh KY. Protective Effects of Epigallocatechin Gallate for Male Sexual Dysfunction in Streptozotocin-Induced Diabetic Rats. Int J Mol Sci 2022; 23:ijms23179759. [PMID: 36077157 PMCID: PMC9456206 DOI: 10.3390/ijms23179759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Sexual dysfunction is a common problem for men with diabetes. Epigallocatechin gallate (EGCG) is known to ameliorate erectile function in aging rats. However, there has not yet been a report to evaluate its effects on diabetic male rat sexual behavior in the literature. In this study, we investigated the effects of EGCG on male sexual behavior in diabetic rats. Diabetic rats were induced by a single intraperitoneal injection of 65 mg/kg of streptozotocin. After streptozotocin injection for one week, animals were then orally treated with 40 mg/kg of EGCG or vehicle. Copulatory behavior and fasting blood glucose levels were recorded before treatment, as well as 7 and 14 days after treatment. Serum LH, testosterone, and PDE5a levels were measured by EIA assay after the last behavioral test. Data showed that diabetic rats who had diminished sexual functions demonstrated significantly increased latencies in mount, intromission, and ejaculation, as well as significant decreases in frequencies of intromission and ejaculation, compared to non-diabetic controls, indicating sexual function recovery. Lower blood glucose levels were also found in diabetic rats after EGCG treatment. Additionally, the lower LH and higher PDE5a levels in diabetic rats than controls were also noted. The findings declared that EGCG had a protective effect on male sexual behavior in diabetic rats.
Collapse
Affiliation(s)
- Andy C. Huang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Urology, Taipei City Hospital Ren-Ai Branch, Taipei 103212, Taiwan
| | - Ta-Chuan Yeh
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei 114201, Taiwan
| | - Nien-Chin Wu
- Department of Physical Therapy, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan
| | - Chien-Yu Yeh
- School of Nursing, National Defense Medical Center, Taipei 114201, Taiwan
| | - Pei-Hua Lin
- Department of Physical Therapy, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan
| | - Kuei-Ying Yeh
- Department of Physical Therapy, HungKuang University, No. 1018, Sec. 6, Taiwan Boulevard, Shalu District, Taichung 43302, Taiwan
- Correspondence: ; Tel.: +886-4-2631-8652 (ext. 3314); Fax: +886-4-2632-4105
| |
Collapse
|
4
|
Cysteine-Rich Whey Protein Isolate (CR-WPI) Ameliorates Erectile Dysfunction by Diminishing Oxidative Stress via DDAH/ADMA/NOS Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8151917. [PMID: 35355865 PMCID: PMC8960025 DOI: 10.1155/2022/8151917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 12/02/2022]
Abstract
Nitric oxide synthase- (NOS-) dependent endothelial dysfunction induced by oxidative stress (OS) is assumed to play a pivotal role in the pathogenesis and progression of diabetes mellitus-related erectile dysfunction (DMED). Cysteine-rich whey protein isolate (CR-WPI) is a widely used protein supplement and has been confirmed to reduce reactive oxygen species (ROS) by increasing cellular antioxidant glutathione (GSH). However, it is currently unknown whether CR-WPI elicits therapeutic effects in DMED. Here, we provide diabetic rats with CR-WPI to determine its effect on DMED and the underlying mechanisms. The results suggest that CR-WPI supplementation increased GSH biosynthesis and reduced ROS content and simultaneously upregulated the dimethylarginine dimethylaminohydrolase (DDAH)/asymmetrical dimethylarginine (ADMA)/nitric oxide synthase (NOS) metabolic pathway. Evaluation of intracavernous pressure (ICP) also showed an improvement of penile erectile function in CR-WPI-treated rats. The results of the vitro cell culture showed that glutathione pretreatment protected corpus cavernosum smooth muscle cells (CCSMC) from H2O2-induced apoptosis by decreasing Caspase 9 and Caspase 3 expressions. These results augur well for the potential therapeutic application of dietary CR-WPI supplementation for treating diabetic erectile dysfunction.
Collapse
|
5
|
Liu S, Zhao Z, Wang Z, Diao T, Zhang K, Zhang H, Sun D, Kong F, Fu Q. Establishing a Thermal Imaging Technology (IRT) Based System for Evaluating Rat Erectile Function. Sex Med 2022; 10:100475. [PMID: 34999483 PMCID: PMC8847846 DOI: 10.1016/j.esxm.2021.100475] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/27/2022] Open
Abstract
Introduction Measurement of intra-cavernous pressure (ICP) is an internationally recognized method to evaluate erectile function of animals, however, this process is invasive, destructive, and cannot be repeated, leading to a daunting challenge for monitoring the changes in erectile function throughout the whole treatment duration. Aim To verify whether infrared ray thermography technology based system could be a good substitution of ICP for evaluating rat erectile function. Methods A novel thermal image-based method, infrared ray thermography technology (IRT) was employed to monitor erectile function in erectile dysfunction (ED) rats. To detect the sensitivity and specificity of this new technology, 4 ED rat models (Diabetic, nerve-injury, vascular-injury and aged ED models) were established and subjected to both ICP and IRT test. Outcomes Statistical comparisons were done to test the effectiveness of this new way for detecting and dynamically monitoring erectile function. Results Based on the data curves obtained from ICP and IRT, the IRT showed a similar trend (including peak value, climbing speed) as that of ICP. IRT is considered as a precise way to monitor the real-time changes of erectile function in all ED rat models. The AUC of peak temperature detected by IRT in DMED, aged ED, vascular-injury ED, the nerve-injury ED and total ED rat models were 0.9811,0.9836,0.9893,0.9989 and 0.9882, respectively. Meanwhile, the AUC of temperature climbing rate were 0.6486,0.8357,0.9184,0.8675and 0.8168.Also,it is a non-invasive process of dynamically monitoring erectile function of a same rat at different time points (before and after drug intervention). The data showed that the real-time recovery by tadalafil was obtained by IRT methods even after treatment for only 2 weeks in the diabetic ED (DMED) rat model. Conclusion A novel noninvasive method for monitoring erectile function in rat ED models was established, and can replace or supplement ICP test. Liu S, Zhao Z, Wang Z et al. Establishing a Thermal Imaging Technology (IRT) Based System for Evaluating Rat Erectile Function. Sex Med 2022;10:100475.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China
| | - Zhendong Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China
| | - Ziwen Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Tongxiang Diao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Keqin Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Hui Zhang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Dingqi Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China
| | - Feng Kong
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China.
| | - Qiang Fu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, SD, China; Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, SD, China.
| |
Collapse
|
6
|
Asymmetric Dimethylarginine (ADMA) in Pediatric Renal Diseases: From Pathophysiological Phenomenon to Clinical Biomarker and Beyond. CHILDREN-BASEL 2021; 8:children8100837. [PMID: 34682102 PMCID: PMC8535118 DOI: 10.3390/children8100837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Asymmetric dimethylarginine (ADMA), an endogenous nitric oxide (NO) synthase inhibitor, inhibits NO synthesis and contributes to the pathogenesis of many human diseases. In adults, ADMA has been identified as a biomarker for chronic kidney disease (CKD) progression and cardiovascular risk. However, little attention is given to translating the adult experience into the pediatric clinical setting. In the current review, we summarize circulating and urinary ADMA reported thus far in clinical studies relating to kidney disease in children and adolescents, as well as systematize the knowledge on pathophysiological role of ADMA in the kidneys. The aim of this review is also to show the various analytical methods for measuring ADMA and the issues tht need to be addressed before transforming to clinical practice in pediatric medicine. The last task is to suggest that ADMA may not only be suitable as a diagnostic or prognostic biomarker, but also a promising therapeutic strategy to treat pediatric kidney disease in the future.
Collapse
|
7
|
Onmaz DE, Isık SMT, Abusoglu S, Ekmekci AH, Sivrikaya A, Abusoglu G, Ozturk S, Aydemir HY, Unlu A. Serum ADMA levels were positively correlated with EDSS scores in patients with multiple sclerosis. J Neuroimmunol 2021; 353:577497. [PMID: 33549941 DOI: 10.1016/j.jneuroim.2021.577497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 11/16/2022]
Abstract
Multiple sclerosis (MS) is an autoinflammatory, chronic central nervous system disease. In the pathogenesis of the disease increased nitric oxide (NO) levels play an important role. Nitric oxide (NO) has neuroprotective effects in physiological conditions, however, it is thought that excessive NO formation in MS may lead to demyelination and axonal damage. Derivatives of methylarginine including asymmetric dimethyl arginine (ADMA), L-N monomethyl arginine (L-NMMA), symmetric dimethyl arginine (SDMA) directly or indirectly reduce NO production. Our aim was to measure the levels of methylarginine derivatives and citrulline, ornithine, arginine, homoarginine levels, which are metabolites associated with NO metabolism, in MS subgroups.
Collapse
Affiliation(s)
- Duygu Eryavuz Onmaz
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey.
| | | | - Sedat Abusoglu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Ahmet Hakan Ekmekci
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Abdullah Sivrikaya
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Gulsum Abusoglu
- Department of Medical Laboratory Techniques, Selcuk University Vocational School of Health, Konya, Turkey
| | - Serefnur Ozturk
- Department of Neurology, Selcuk University Faculty of Medicine, Konya, Turkey
| | | | - Ali Unlu
- Department of Biochemistry, Selcuk University Faculty of Medicine, Konya, Turkey
| |
Collapse
|
8
|
Galactose-Induced Skin Aging: The Role of Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7145656. [PMID: 32655772 PMCID: PMC7317321 DOI: 10.1155/2020/7145656] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
Skin aging has been associated with a higher dietary intake of carbohydrates, particularly glucose and galactose. In fact, the carbohydrates are capable of damaging the skin's vital components through nonenzymatic glycation, the covalent attachment of sugar to a protein, and subsequent production of advanced glycation end products (AGEs). This review is focused on the role of D-galactose in the development of skin aging and its relation to oxidative stress. The interest in this problem was dictated by recent findings that used in vitro and in vivo models. The review highlights the recent advances in the underlying molecular mechanisms of D-galactose-mediated cell senescence and cytotoxicity. We have also proposed the possible impact of galactosemia on skin aging and its clinical relevance. The understanding of molecular mechanisms of skin aging mediated by D-galactose can help dermatologists optimize methods for prevention and treatment of skin senescence and aging-related skin diseases.
Collapse
|
9
|
Ritchie C, Ko EY. Oxidative stress in the pathophysiology of male infertility. Andrologia 2020; 53:e13581. [PMID: 32323352 DOI: 10.1111/and.13581] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The effects of reactive oxygen species on male fertility are governed by the oxidative paradox, defined by a delicate balance between oxidative stress and antioxidant capacity. When regulated appropriately, reactive oxygen species ensure effective function; however, when uninhibited, they represent key players in male factor infertility. Mechanisms responsible for this include oxidative destruction of sperm lipid membranes, damage to gamete DNA both by gene mutation and by direct breakdown of the DNA backbone, mitochondrial dysfunction and apoptotic cell death. Utilizing various male pathologies as case studies, we see ways in which oxidative stress has the potential to impact fertility in a negative way. Varicocele, erectile dysfunction, testicular cancer and even idiopathic male infertility highlight common mechanistic pathways, as well as subtle variations in the ways reactive oxygen species can operate. Oxidative biomarkers have emerged to better study male infertility, predict reproductive success and modify assisted reproductive technologies to minimize oxidative stress.
Collapse
Affiliation(s)
- Cayde Ritchie
- Department of Urology, Loma Linda University, Loma Linda, CA, USA
| | - Edmund Y Ko
- Department of Urology, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
10
|
Interleukin enhancement binding factor 3 inhibits cardiac hypertrophy by targeting asymmetric dimethylarginine-nitric oxide. Nitric Oxide 2019; 93:44-52. [DOI: 10.1016/j.niox.2019.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/25/2022]
|
11
|
Zhao WC, Li G, Huang CY, Jiang JL. Asymmetric dimethylarginine: An crucial regulator in tissue fibrosis. Eur J Pharmacol 2019; 854:54-61. [PMID: 30951718 DOI: 10.1016/j.ejphar.2019.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Fibrosis is a reparative process with very few therapeutic options to prevent its progression to organ dysfunction. Chronic fibrotic diseases contribute to an estimated 45% of all death in the industrialized world. Asymmetric dimethylarginine (ADMA), an endothelial nitric oxide synthase inhibitor, plays a crucial role in the pathogenesis of various cardiovascular diseases associated with endothelial dysfunction. Recent reports have focused on ADMA in the pathogenesis of tissue fibrosis. This review discusses the current knowledge about ADMA biology, its association with risk factors of established fibrotic diseases and the potential pathophysiological mechanisms implicating ADMA in the process of tissue fibrosis.
Collapse
Affiliation(s)
- Wei-Chen Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Faculty of Medical Public Courses, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong, 510520, China
| | - Chu-Yi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Jun-Lin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
12
|
Zhu ZD, Ye JM, Fu XM, Wang XC, Ye JY, Wu XR, Hua P, Liao YQ, Xuan W, Duan JL, Li WY, Fu H, Xia ZH, Zhang X. DDAH2 alleviates myocardial fibrosis in diabetic cardiomyopathy through activation of the DDAH/ADMA/NOS/NO pathway in rats. Int J Mol Med 2018; 43:749-760. [PMID: 30569164 PMCID: PMC6317674 DOI: 10.3892/ijmm.2018.4034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/27/2018] [Indexed: 01/02/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is a form of idiopathic heart disease, with signs including hypertrophy of myocardial cells, hypertension‑independent fibrosis and coronary artery disease. Considering the involvement of dimethylarginine dimethylaminohydrolase 2 (DDAH2) in diabetes, it was hypothesized that DDAH2 may be beneficial to cardiac function and myocardial fibrosis during the progression of DCM with involvement of the DDAH/asymmetric NG, NGdimethyl‑L‑arginine (ADMA)/nitric oxide synthase (NOS)/nitric oxide (NO) signaling pathway. Following establishment of diabetic rat models, diabetes‑related blood biochemical indices and cardiac function were measured in diabetic rats treated with lentivirus expressing DDAH2, short hairpin RNA against DDAH2, or L‑NNA (inhibitor of NOS) to identify the roles of DDAH2 in DCM. The functional roles of DDAH2 in DCM were further determined through detection of the levels of collagen I, matrix metalloproteinase 2 (MMP2) and tissue inhibitor of metalloproteinase 2 (TIMP2). The H9C2 myocardial cell line was selected for in vitro experiments. The effects of DDAH2 on the migration of myocardial cells under high glucose conditions were also examined. To further investigate the underlying regulatory mechanism of DDAH2 in DCM, the contents of ADMA and NO, and the activities of DDAH and NOS were observed. The DCM model rats treated with DDAH2 exhibited reduced left ventricular end‑diastolic pressure, and decreased blood glucose, total cholesterol, triglyceride, fasting blood glucose, and fasting insulin levels, but exhibited increased left ventricular systolic pressure and maximum rate of left ventricular pressure rise/fall levels in myocardial tissues. Myocardial cells under high glucose conditions treated with DDAH2 showed reductions in collagen I, MMP2 and TIMP2, indicating that DDAH2 reduced cell migration. Decreased levels of ADMA and NO but increased levels of DDAH and NOS were observed following treatment with DDAH2, indicating that the DDAH/ADMA/NOS/NO pathway was activated. These results reveal that the overexpression of DDAH2 attenuates myocardial fibrosis and protects against DCM through activation of the DDAH/ADMA/NOS/NO pathway in DCM rats. These results indicate that DDAH2 is a potential therapeutic candidate for the treatment of DCM.
Collapse
Affiliation(s)
- Zhen-Dong Zhu
- Yunnan Research Center for Geriatric Diseases, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Ji-Ming Ye
- Department of Pharmacy, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Xue-Mei Fu
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Xue-Chang Wang
- Department of Pharmacy, the Third People's Hospital of Yunnan Province, The Second Affiliated Hospital of Dali University, Kunming, Yunnan 650011, P.R. China
| | - Ji-Yun Ye
- Pathogenic Organisms Department of Experimental Center, School of Basic Medical Sciences, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Xin-Ran Wu
- Center Laboratory, The Third People's Hospital of Yunnan Province, The Second Affiliated Hospital of Dali University, Kunming, Yunnan 650011, P.R. China
| | - Peng Hua
- Department of Pharmacy, the Third People's Hospital of Yunnan Province, The Second Affiliated Hospital of Dali University, Kunming, Yunnan 650011, P.R. China
| | - Yu-Qiong Liao
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Wei Xuan
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Jin-Lan Duan
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Wei-Yuan Li
- Department of Geriatrics, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Hui Fu
- Clinic Laboratory, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming Science and Technology University, Kunming, Yunnan 650032, P.R. China
| | - Zhong-Hua Xia
- Clinical Medical College of Dali University, Dali, Yunnan 671003, P.R. China
| | - Xuan Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
13
|
Abstract
Erectile dysfunction (ED) is one of the most common disorders in male and is often associated with other age-related comorbidities. The aging process affects the structural organization and function of penile erectile components such as smooth muscle cell and vascular architecture. These modifications affect penile hemodynamics by impairing cavernosal smooth muscle cell relaxation, reducing penile elasticity, compliance and promoting fibrosis. This review aims to identify the mechanisms of ED in the penile aging process in experimental and clinical data. It also highlights areas that are in need of more research. The search strategies yielded total records screened from PubMed. Clarification of the molecular mechanisms that accompanies corpus cavernosum aging and aging-associated ED will aid new perspectives in the development of novel mechanism-based therapeutic approaches. Age is not a limiting factor for ED medical management, and it is never too late to treat. Hypogonadism should be managed regardless of age, and synergistic effects have been found during testosterone (T) replacement therapy when used along with oral phosphodiesterase-5 (PDE-5) inhibitors. Therefore, the clinical management of ED related to aging can be done by therapeutic interventions that include PDE-5 inhibitors, and other pharmacological treatments.
Collapse
Affiliation(s)
- Ecem Kaya
- a Department of Biochemistry and Pharmacology , Faculty of Pharmacy, Ankara University , Ankara , Turkey and
| | - Suresh C Sikka
- b Department of Urology and Pharmacology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Philip J Kadowitz
- b Department of Urology and Pharmacology , Tulane University Health Sciences Center , New Orleans , LA , USA
| | - Serap Gur
- a Department of Biochemistry and Pharmacology , Faculty of Pharmacy, Ankara University , Ankara , Turkey and
- b Department of Urology and Pharmacology , Tulane University Health Sciences Center , New Orleans , LA , USA
| |
Collapse
|
14
|
Toxic Dimethylarginines: Asymmetric Dimethylarginine (ADMA) and Symmetric Dimethylarginine (SDMA). Toxins (Basel) 2017; 9:toxins9030092. [PMID: 28272322 PMCID: PMC5371847 DOI: 10.3390/toxins9030092] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 03/04/2017] [Indexed: 02/07/2023] Open
Abstract
Asymmetric and symmetric dimethylarginine (ADMA and SDMA, respectively) are toxic, non-proteinogenic amino acids formed by post-translational modification and are uremic toxins that inhibit nitric oxide (NO) production and play multifunctional roles in many human diseases. Both ADMA and SDMA have emerged as strong predictors of cardiovascular events and death in a range of illnesses. Major progress has been made in research on ADMA-lowering therapies in animal studies; however, further studies are required to fill the translational gap between animal models and clinical trials in order to treat human diseases related to elevated ADMA/SDMA levels. Here, we review the reported impacts of ADMA and SDMA on human health and disease, focusing on the synthesis and metabolism of ADMA and SDMA; the pathophysiological roles of these dimethylarginines; clinical conditions and animal models associated with elevated ADMA and SDMA levels; and potential therapies against ADMA and SDMA. There is currently no specific pharmacological therapy for lowering the levels and counteracting the deleterious effects of ADMA and SDMA. A better understanding of the mechanisms underlying the impact of ADMA and SDMA on a wide range of human diseases is essential to the development of specific therapies against diseases related to ADMA and SDMA.
Collapse
|