1
|
Modanwal S, Mishra A, Mishra N. An integrative analysis of GEO data to identify possible therapeutic biomarkers of prostate cancer and targeting potential protein through Zea mays phytochemicals by virtual screening approaches. J Biomol Struct Dyn 2025; 43:709-729. [PMID: 38217083 DOI: 10.1080/07391102.2023.2283163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/08/2023] [Indexed: 01/14/2024]
Abstract
Prostate cancer (PC) is a prevalent type of cancer among men. Delaying the treatment of patients with upgraded or upstaged cancer may lead to unmanageable circumstances. The aim of this study is to contribute to the finding of biomarkers that are specific to PC and identify drug candidates derived from plants. The information about cancer is critical for clinicians to make decisions about patient treatment in the era of precision medicine. Advances in genomics technology have opened up new possibilities for identifying genes that are associated with cancer, including PC. This study identifies novel differentially expressed genes for PC. The seven PC microarray datasets were selected from the National Center for Biotechnology Information (NCBI)/Gene Expression Omnibus (GEO). The differentially expressed genes (DEGs) were found based on a fold change of |logFC| ≥ 1 and an adjusted p-value of <0.05. The DEGs were further studied using several bioinformatics tools, including STRING, CytoHubba, SRplot, Coremine Medical database, FunRich and GeneMANIA, cBioPortal. The six new potential biomarkers, GAGE2A, GAGE12G, GAGE2E, GAGE13, GAGE12F and CSAG1 were identified. These biomarkers are associated with biological processes (BPs) such as cell division, and gene expression regulation, so these genes may have a crucial role in PC progression and may serve as potential biomarkers for PC. A total of 497 phytochemicals from corn plants have been screened against the target protein and found LTS0176591 as the best lead molecule with docking score of -6.31 kcal/mol. Further, molecular mechanics-generalized born surface area (MM-GBSA), molecular dynamics simulation, principal component analysis (PCA), free energy landscape (FEL) and molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) were carried out to validate the findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shristi Modanwal
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ashutosh Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Nidhi Mishra
- Department of Applied Science, Indian Institute of Information Technology Allahabad, Prayagraj, India
| |
Collapse
|
2
|
Naik A, Lattab B, Qasem H, Decock J. Cancer testis antigens: Emerging therapeutic targets leveraging genomic instability in cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200768. [PMID: 38596293 PMCID: PMC10876628 DOI: 10.1016/j.omton.2024.200768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Cancer care has witnessed remarkable progress in recent decades, with a wide array of targeted therapies and immune-based interventions being added to the traditional treatment options such as surgery, chemotherapy, and radiotherapy. However, despite these advancements, the challenge of achieving high tumor specificity while minimizing adverse side effects continues to dictate the benefit-risk balance of cancer therapy, guiding clinical decision making. As such, the targeting of cancer testis antigens (CTAs) offers exciting new opportunities for therapeutic intervention of cancer since they display highly tumor specific expression patterns, natural immunogenicity and play pivotal roles in various biological processes that are critical for tumor cellular fitness. In this review, we delve deeper into how CTAs contribute to the regulation and maintenance of genomic integrity in cancer, and how these mechanisms can be exploited to specifically target and eradicate tumor cells. We review the current clinical trials targeting aforementioned CTAs, highlight promising pre-clinical data and discuss current challenges and future perspectives for future development of CTA-based strategies that exploit tumor genomic instability.
Collapse
Affiliation(s)
- Adviti Naik
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Boucif Lattab
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
| | - Hanan Qasem
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Julie Decock
- Cancer Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences (CHLS), Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
3
|
Yang J, Cheng WX, Wu G, Sheng S, Zhang P. Prediction of folding patterns for intrinsic disordered protein. Sci Rep 2023; 13:20343. [PMID: 37990040 PMCID: PMC10663623 DOI: 10.1038/s41598-023-45969-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
The conformation flexibility of natural protein causes both complexity and difficulty to understand the relationship between structure and function. The prediction of intrinsically disordered protein primarily is focusing on to disclose the regions with structural flexibility involving relevant biological functions and various diseases. The order of amino acids in protein sequence determines possible conformations, folding flexibility and biological function. Although many methods provided the information of intrinsically disordered protein (IDP), but the results are mainly limited to determine the locations of regions without knowledge of possible folding conformations. Here, the developed protein folding fingerprint adopted the protein folding variation matrix (PFVM) to reveal all possible folding patterns for the intrinsically disordered protein along its sequence. The PFVM integrally exhibited the intrinsically disordered protein with disordering regions, degree of disorder as well as folding pattern. The advantage of PFVM will not only provide rich information for IDP, but also may promote the study of protein folding problem.
Collapse
Affiliation(s)
- Jiaan Yang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
- Micro Biotech, Ltd., Shanghai, 200123, China.
| | - Wen-Xiang Cheng
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Gang Wu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sitong Sheng
- HYK High-throughput Biotechnology Institute, Shenzhen, 518057, Guangdong, China
| | - Peng Zhang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
4
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
5
|
Jindal R, Nanda A, Pillai M, Ware KE, Singh D, Sehgal M, Armstrong AJ, Somarelli JA, Jolly MK. Emergent dynamics of underlying regulatory network links EMT and androgen receptor-dependent resistance in prostate cancer. Comput Struct Biotechnol J 2023; 21:1498-1509. [PMID: 36851919 PMCID: PMC9957767 DOI: 10.1016/j.csbj.2023.01.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Advanced prostate cancer patients initially respond to hormone therapy, be it in the form of androgen deprivation therapy or second-generation hormone therapies, such as abiraterone acetate or enzalutamide. However, most men with prostate cancer eventually develop hormone therapy resistance. This resistance can arise through multiple mechanisms, such as through genetic mutations, epigenetic mechanisms, or through non-genetic pathways, such as lineage plasticity along epithelial-mesenchymal or neuroendocrine-like axes. These mechanisms of hormone therapy resistance often co-exist within a single patient's tumor and can overlap within a single cell. There exists a growing need to better understand how phenotypic heterogeneity and plasticity results from emergent dynamics of the regulatory networks governing androgen independence. Here, we investigated the dynamics of a regulatory network connecting the drivers of androgen receptor (AR) splice variant-mediated androgen independence and those of epithelial-mesenchymal transition. Model simulations for this network revealed four possible phenotypes: epithelial-sensitive (ES), epithelial-resistant (ER), mesenchymal-resistant (MR) and mesenchymal-sensitive (MS), with the latter phenotype occurring rarely. We observed that well-coordinated "teams" of regulators working antagonistically within the network enable these phenotypes. These model predictions are supported by multiple transcriptomic datasets both at single-cell and bulk levels, including in vitro EMT induction models and clinical samples. Further, our simulations reveal spontaneous stochastic switching between the ES and MR states. Addition of the immune checkpoint molecule, PD-L1, to the network was able to capture the interactions between AR, PD-L1, and the mesenchymal marker SNAIL, which was also confirmed through quantitative experiments. This systems-level understanding of the driver of androgen independence and EMT could aid in understanding non-genetic transitions and progression of such cancers and help in identifying novel therapeutic strategies or targets.
Collapse
Affiliation(s)
- Rashi Jindal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Abheepsa Nanda
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Maalavika Pillai
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Kathryn E. Ware
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
| | - Divyoj Singh
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
- Undergraduate Programme, Indian Institute of Science, Bangalore 560012, India
| | - Manas Sehgal
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Andrew J. Armstrong
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
- Department of Surgery, Duke University, Durham, NC 27710, USA
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA
| | - Jason A. Somarelli
- Department of Medicine, Duke Cancer Institute Center for Prostate and Urologic Cancers, Duke University, Durham, NC 27710, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
6
|
Evans R, Ramisetty S, Kulkarni P, Weninger K. Illuminating Intrinsically Disordered Proteins with Integrative Structural Biology. Biomolecules 2023; 13:124. [PMID: 36671509 PMCID: PMC9856150 DOI: 10.3390/biom13010124] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.
Collapse
Affiliation(s)
- Rachel Evans
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Sravani Ramisetty
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA
- Department of Systems Biology, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
7
|
The Prostate-Associated Gene 4 (PAGE4) Could Play a Role in the Development of Benign Prostatic Hyperplasia under Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7041739. [PMID: 35633887 PMCID: PMC9135540 DOI: 10.1155/2022/7041739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with uncertain molecular mechanism, and oxidative stress (OS) has also been found associated with BPH development. Recently, we found that prostate-associated gene 4 (PAGE4) was one of the most significantly changed differentially expressed genes (DEGs) in BPH, which can protect cells against stress stimulation. However, the exact role of PAGE4 in BPH remains unclear. This study is aimed at exploring the effect of PAGE4 in BPH under OS. Human prostate tissues and cultured WPMY-1 and PrPF cells were utilized. The expression and localization of PAGE4 were determined with qRT-PCR, Western blotting, and immunofluorescence staining. OS cell models induced with H2O2 were treated with PAGE4 silencing or PAGE4 overexpression or inhibitor (N-acetyl-L-cysteine (NAC)) of OS. The proliferation activity, apoptosis, OS markers, and MAPK signaling pathways were detected by CCK-8 assay, flow cytometry analysis, and Western blotting. PAGE4 was shown to be upregulated in human hyperplastic prostate and mainly located in the stroma. Acute OS induced with H2O2 increased PAGE4 expression (which was prevented by OS inhibitor), apoptosis, cell cycle arrest, and reactive oxygen species (ROS) accumulation in WPMY-1 and PrPF cells. siPAGE4 plus H2O2 potentiated H2O2 effect via reducing the p-ERK1/2 level and increasing p-JNK1/2 level. Consistently, overexpression of PAGE4 offset the effect of H2O2 and partially reversed the PAGE4 silencing effect. However, knocking down and overexpression of PAGE4 alone determined no significant effects. Our novel data demonstrated that augmented PAGE4 promotes cell survival by activating p-ERK1/2 and decreases cell apoptosis by inhibiting p-JNK1/2 under the OS, which could contribute to the development of BPH.
Collapse
|
8
|
Li XF, Ren P, Shen WZ, Jin X, Zhang J. The expression, modulation and use of cancer-testis antigens as potential biomarkers for cancer immunotherapy. Am J Transl Res 2020; 12:7002-7019. [PMID: 33312347 PMCID: PMC7724325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Cancer-testis antigens (CTA) are tumor antigens, present in the germ cells of testes, ovaries and trophoblasts, which undergo deregulated expression in the tumor and malignant cells. CTA genes are either X-linked or autosomal, favourably expressed in spermatogonia and spermatocytes, respectively. CTAs trigger unprompted humoral immunity and immune responses in malignancies, altering tumor cell physiology and neoplastic behaviors. CTAs demonstrate varied expression profile, with increased abundance in malignant melanoma and prostate, lung, breast and epithelial cell cancers, and a relatively reduced prevalence in intestinal cancer, renal cell adenocarcinoma and malignancies of immune cells. A combination of epigenetic and non-epigenetic agents regulates CTA mRNA expression, with the key participation of CpG islands and CpG-rich promoters, histone methyltransferases, cytokines, tyrosine kinases and transcriptional activators and repressors. CTA triggers gametogenesis, in association with mutated tumorigenic genes and tumor repressors. The CTAs function as potential biomarkers, particularly for prostate, cervical, breast, colorectal, gastric, urinary bladder, liver and lung carcinomas, characterized by alternate splicing and phenotypic heterogeneity in the cells. Additionally, CTAs are prospective targets for vaccine therapy, with the MAGE-A3 and NYESO-1 undergoing clinical trials for tumor regression in malignant melanoma. They have been deemed important for adaptive immunotherapy, marked by limited expression in normal somatic tissues and recurrent up-regulation in epithelial carcinoma. Overall, the current review delineates an up-dated understanding of the intricate processes of CTA expression and regulation in cancer. It further portrays the role of CTAs as biomarkers and probable candidates for tumor immunotherapy, with a future prospect in cancer treatment.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Respiratory Medicine, The Second Hospital of Jilin UniversityChangchun, P. R. China
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin UniversityChangchun, P. R. China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin UniversityChangchun, P. R. China
| |
Collapse
|
9
|
Choi UB, Sanabria H, Smirnova T, Bowen ME, Weninger KR. Spontaneous Switching among Conformational Ensembles in Intrinsically Disordered Proteins. Biomolecules 2019; 9:biom9030114. [PMID: 30909517 PMCID: PMC6468417 DOI: 10.3390/biom9030114] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/15/2019] [Indexed: 01/08/2023] Open
Abstract
The common conception of intrinsically disordered proteins (IDPs) is that they stochastically sample all possible configurations driven by thermal fluctuations. This is certainly true for many IDPs, which behave as swollen random coils that can be described using polymer models developed for homopolymers. However, the variability in interaction energy between different amino acid sequences provides the possibility that some configurations may be strongly preferred while others are forbidden. In compact globular IDPs, core hydration and packing density can vary between segments of the polypeptide chain leading to complex conformational dynamics. Here, we describe a growing number of proteins that appear intrinsically disordered by biochemical and bioinformatic characterization but switch between restricted regions of conformational space. In some cases, spontaneous switching between conformational ensembles was directly observed, but few methods can identify when an IDP is acting as a restricted chain. Such switching between disparate corners of conformational space could bias ligand binding and regulate the volume of IDPs acting as structural or entropic elements. Thus, mapping the accessible energy landscape and capturing dynamics across a wide range of timescales are essential to recognize when an IDP is acting as such a switch.
Collapse
Affiliation(s)
- Ucheor B Choi
- Department of Molecular and Cellular Physiology, Department of Neurology and Neurological Sciences, Department of Structural Biology, Department of Photon Science, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.
| | - Tatyana Smirnova
- Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Mark E Bowen
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
Structural and Dynamical Order of a Disordered Protein: Molecular Insights into Conformational Switching of PAGE4 at the Systems Level. Biomolecules 2019; 9:biom9020077. [PMID: 30813315 PMCID: PMC6406393 DOI: 10.3390/biom9020077] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/10/2019] [Accepted: 02/10/2019] [Indexed: 01/10/2023] Open
Abstract
Folded proteins show a high degree of structural order and undergo (fairly constrained) collective motions related to their functions. On the other hand, intrinsically disordered proteins (IDPs), while lacking a well-defined three-dimensional structure, do exhibit some structural and dynamical ordering, but are less constrained in their motions than folded proteins. The larger structural plasticity of IDPs emphasizes the importance of entropically driven motions. Many IDPs undergo function-related disorder-to-order transitions driven by their interaction with specific binding partners. As experimental techniques become more sensitive and become better integrated with computational simulations, we are beginning to see how the modest structural ordering and large amplitude collective motions of IDPs endow them with an ability to mediate multiple interactions with different partners in the cell. To illustrate these points, here, we use Prostate-associated gene 4 (PAGE4), an IDP implicated in prostate cancer (PCa) as an example. We first review our previous efforts using molecular dynamics simulations based on atomistic AWSEM to study the conformational dynamics of PAGE4 and how its motions change in its different physiologically relevant phosphorylated forms. Our simulations quantitatively reproduced experimental observations and revealed how structural and dynamical ordering are encoded in the sequence of PAGE4 and can be modulated by different extents of phosphorylation by the kinases HIPK1 and CLK2. This ordering is reflected in changing populations of certain secondary structural elements as well as in the regularity of its collective motions. These ordered features are directly correlated with the functional interactions of WT-PAGE4, HIPK1-PAGE4 and CLK2-PAGE4 with the AP-1 signaling axis. These interactions give rise to repeated transitions between (high HIPK1-PAGE4, low CLK2-PAGE4) and (low HIPK1-PAGE4, high CLK2-PAGE4) cell phenotypes, which possess differing sensitivities to the standard PCa therapies, such as androgen deprivation therapy (ADT). We argue that, although the structural plasticity of an IDP is important in promoting promiscuous interactions, the modulation of the structural ordering is important for sculpting its interactions so as to rewire with agility biomolecular interaction networks with significant functional consequences.
Collapse
|
11
|
Lv C, Fu S, Dong Q, Yu Z, Zhang G, Kong C, Fu C, Zeng Y. PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:24. [PMID: 30658679 PMCID: PMC6339303 DOI: 10.1186/s13046-019-1032-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 02/08/2023]
Abstract
Background Prostate cancer (PCa) is one of the most common cancers in male worldwide. Oxidative stress has been recognized as one of the driving signals pathologically linked to PCa progression. Nevertheless, the association of oxidative stress with PCa progression remains unclear. Methods Western blot, q-RT-PCR and bioinformatics analyses were used to examine PAGE4 expression. Comet assay and Annexin V/ PI dual staining assay were performed to investigate DNA damage and cell death under oxidative stress. Mouse xenograft model of PCa cells was established to verify the role of PAGE4 in vivo. Transcriptomic analysis was performed to investigate the underlying mechanism for the function of PAGE4 under oxidative stress. Western blot assay was conducted to determine the status of MAPK pathway. Immunohistochemistry was used to identify protein expression of PAGE4 in tumor tissues. Results In this study, we found that PAGE4 expression was increased in PCa cells under oxidative stress condition. PAGE4 overexpression protected PCa cells from oxidative stress-inducing cell death by reducing DNA damage. PAGE4 overexpression promoted PCa cells growth in vivo. Mechanistically, PAGE4 promoted the survival of prostate cancer cells through regulating MAPK pathway which reflected in decreasing the phosphorylation of MAP2K4, JNK and c-JUN but increasing phosphorylation of ERK1/2. Conclusion Our findings indicate that PAGE4 protects PCa cells from DNA damage and apoptosis under oxidative stress by modulating MAPK signalling pathway. PAGE4 expression may serve as a prognostic biomarker for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13046-019-1032-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Shui Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Qingzhuo Dong
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Zi Yu
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Gejun Zhang
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Cheng Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
12
|
LeBlanc SJ, Kulkarni P, Weninger KR. Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins. Biomolecules 2018; 8:biom8040140. [PMID: 30413085 PMCID: PMC6315554 DOI: 10.3390/biom8040140] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/02/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are often modeled using ideas from polymer physics that suggest they smoothly explore all corners of configuration space. Experimental verification of this random, dynamic behavior is difficult as random fluctuations of IDPs cannot be synchronized across an ensemble. Single molecule fluorescence (or Förster) resonance energy transfer (smFRET) is one of the few approaches that are sensitive to transient populations of sub-states within molecular ensembles. In some implementations, smFRET has sufficient time resolution to resolve transitions in IDP behaviors. Here we present experimental issues to consider when applying smFRET to study IDP configuration. We illustrate the power of applying smFRET to IDPs by discussing two cases in the literature of protein systems for which smFRET has successfully reported phosphorylation-induced modification (but not elimination) of the disordered properties that have been connected to impacts on the related biological function. The examples we discuss, PAGE4 and a disordered segment of the GluN2B subunit of the NMDA receptor, illustrate the great potential of smFRET to inform how IDP function can be regulated by controlling the detailed ensemble of disordered states within biological networks.
Collapse
Affiliation(s)
- Sharonda J LeBlanc
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
13
|
Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target. J Clin Med 2018; 7:jcm7060156. [PMID: 29914187 PMCID: PMC6025510 DOI: 10.3390/jcm7060156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of mortality and morbidity globally. While genomic alterations have been identified in PCa, in contrast to some other cancers, use of such information to personalize treatment is still in its infancy. Here, we discuss how PAGE4, a protein which appears to act both as an oncogenic factor as well as a metastasis suppressor, is a novel therapeutic target for PCa. Inhibiting PAGE4 may be a viable strategy for low-risk PCa where it is highly upregulated. Conversely, PAGE4 expression is downregulated in metastatic PCa and, therefore, reinstituting its sustained expression may be a promising option to subvert or attenuate androgen-resistant PCa. Thus, fine-tuning the levels of PAGE4 may represent a novel approach for personalized medicine in PCa.
Collapse
|
14
|
Jolly MK, Kulkarni P, Weninger K, Orban J, Levine H. Phenotypic Plasticity, Bet-Hedging, and Androgen Independence in Prostate Cancer: Role of Non-Genetic Heterogeneity. Front Oncol 2018; 8:50. [PMID: 29560343 PMCID: PMC5845637 DOI: 10.3389/fonc.2018.00050] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 02/19/2018] [Indexed: 12/21/2022] Open
Abstract
It is well known that genetic mutations can drive drug resistance and lead to tumor relapse. Here, we focus on alternate mechanisms-those without mutations, such as phenotypic plasticity and stochastic cell-to-cell variability that can also evade drug attacks by giving rise to drug-tolerant persisters. The phenomenon of persistence has been well-studied in bacteria and has also recently garnered attention in cancer. We draw a parallel between bacterial persistence and resistance against androgen deprivation therapy in prostate cancer (PCa), the primary standard care for metastatic disease. We illustrate how phenotypic plasticity and consequent mutation-independent or non-genetic heterogeneity possibly driven by protein conformational dynamics can stochastically give rise to androgen independence in PCa, and suggest that dynamic phenotypic plasticity should be considered in devising therapeutic dosing strategies designed to treat and manage PCa.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
| | - Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
| | - Keith Weninger
- Department of Physics, North Carolina State University, Raleigh, NC, United States
| | - John Orban
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States
- Department of Chemistry and Biochemistry, University of Maryland, College Park, College Park, United States
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX, United States
- Department of Bioengineering, Rice University, Houston, TX, United States
- Department of Physics and Astronomy, Rice University, Houston, TX, United States
| |
Collapse
|
15
|
Kulkarni P. Intrinsically disordered proteins and prostate cancer: pouring new wine in an old bottle. Asian J Androl 2017; 18:659-61. [PMID: 27427556 PMCID: PMC5000785 DOI: 10.4103/1008-682x.184272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Prakash Kulkarni
- Protein Biophysics & Structural Biology Laboratory, Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
16
|
Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc Natl Acad Sci U S A 2017; 114:E2644-E2653. [PMID: 28289210 DOI: 10.1073/pnas.1700082114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) that lack a unique 3D structure and comprise a large fraction of the human proteome play important roles in numerous cellular functions. Prostate-Associated Gene 4 (PAGE4) is an IDP that acts as a potentiator of the Activator Protein-1 (AP-1) transcription factor. Homeodomain-Interacting Protein Kinase 1 (HIPK1) phosphorylates PAGE4 at S9 and T51, but only T51 is critical for its activity. Here, we identify a second kinase, CDC-Like Kinase 2 (CLK2), which acts on PAGE4 and hyperphosphorylates it at multiple S/T residues, including S9 and T51. We demonstrate that HIPK1 is expressed in both androgen-dependent and androgen-independent prostate cancer (PCa) cells, whereas CLK2 and PAGE4 are expressed only in androgen-dependent cells. Cell-based studies indicate that PAGE4 interaction with the two kinases leads to opposing functions. HIPK1-phosphorylated PAGE4 (HIPK1-PAGE4) potentiates c-Jun, whereas CLK2-phosphorylated PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. Consistent with the cellular data, biophysical measurements (small-angle X-ray scattering, single-molecule fluorescence resonance energy transfer, and NMR) indicate that HIPK1-PAGE4 exhibits a relatively compact conformational ensemble that binds AP-1, whereas CLK2-PAGE4 is more expanded and resembles a random coil with diminished affinity for AP-1. Taken together, the results suggest that the phosphorylation-induced conformational dynamics of PAGE4 may play a role in modulating changes between PCa cell phenotypes. A mathematical model based on our experimental data demonstrates how differential phosphorylation of PAGE4 can lead to transitions between androgen-dependent and androgen-independent phenotypes by altering the AP-1/androgen receptor regulatory circuit in PCa cells.
Collapse
|
17
|
Zambelli B, Uversky VN, Ciurli S. Nickel impact on human health: An intrinsic disorder perspective. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1714-1731. [DOI: 10.1016/j.bbapap.2016.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/31/2016] [Accepted: 09/14/2016] [Indexed: 01/26/2023]
|
18
|
Kulkarni P, Getzenberg RH. Disorder, Promiscuous Interactions, and Stochasticity Regulate State Switching in the Unstable Prostate. J Cell Biochem 2016; 117:2235-40. [PMID: 27152744 DOI: 10.1002/jcb.25578] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
A causal link between benign prostatic hyperplasia (BPH) and prostate cancer has long been suspected but not widely accepted. A new model is proposed that supports such a connection. In contrast to the prevailing wisdom, our model, that draws on dynamical systems theory, suggests that in response to stress, epithelial cells in the unstable gland can give rise to both types of diseases via a phenotypic switching mechanism. The central idea is that phenotypic switching is a stochastic process which exploits the plasticity of the epithelial cell. It is driven by 'noise' contributed by the conformational dynamics of proteins that are intrinsically disordered. In a system that is noisy when stressed, disorder promotes promiscuity, unmasks latent information, and rewires the network to cause phenotypic switching. Cells with newly acquired phenotypes can transcend the traditional zonal boundaries to give rise to BPH or prostate cancer depending on the microenvironment. Establishing causality between the two diseases may provide us with an opportunity to better understand their etiology and guide prevention and treatment strategies. J. Cell. Biochem. 117: 2235-2240, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Prakash Kulkarni
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, Maryland
| | | |
Collapse
|