1
|
Acellular nerve grafts supplemented with induced pluripotent stem cell-derived exosomes promote peripheral nerve reconstruction and motor function recovery. Bioact Mater 2022; 15:272-287. [PMID: 35356813 PMCID: PMC8935093 DOI: 10.1016/j.bioactmat.2021.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/05/2021] [Accepted: 12/10/2021] [Indexed: 12/14/2022] Open
Abstract
Peripheral nerve injury is a great challenge in clinical work due to the restricted repair gap and weak regrowth ability. Herein, we selected induced pluripotent stem cells (iPSCs) derived exosomes to supplement acellular nerve grafts (ANGs) with the aim of restoring long-distance peripheral nerve defects. Human fibroblasts were reprogrammed into iPSCs through non-integrating transduction of Oct3/4, Sox2, Klf4, and c-Myc. The obtained iPSCs had highly active alkaline phosphatase expression and expressed Oct4, SSEA4, Nanog, Sox2, which also differentiated into all three germ layers in vivo and differentiated into mature peripheral neurons and Schwann cells (SCs) in vitro. After isolation and biological characteristics of iPSCs-derived exosomes, we found that numerous PKH26-labeled exosomes were internalized inside SCs through endocytotic pathway and exhibited a proliferative effect on SCs that were involved in the process of axonal regeneration and remyelination. After that, we prepared ANGs via optimized chemical extracted process to bridge 15 mm long-distance peripheral nerve gaps in rats. Owing to the promotion of iPSCs-derived exosomes, satisfactory regenerative outcomes were achieved including gait behavior analysis, electrophysiological assessment, and morphological analysis of regenerated nerves. Especially, motor function was restored with comparable to those achieved with nerve autografts and there were no significant differences in the fiber diameter and area of reinnervated muscle fibers. Taken together, our combined use of iPSCs-derived exosomes with ANGs demonstrates good promise to restore long-distance peripheral nerve defects, and thus represents a cell-free strategy for future clinical applications. IPSCs-derived exosomes provide a novel cell-free strategy with the regenerative power of iPSCs. ANGs supplemented with iPSCs-derived exosomes show enhanced peripheral repair and accelerated motor functional recovery. IPSCs-derived exosomes provide equivalent histological morphology to autologous nerve transplantation.
Collapse
|
2
|
Li N, Cavagnaro MJ, Xiong K, Du X, Shi J. The Multi-Modal Risk Analysis and Medical Prevention of Lumbar Degeneration, Fatigue, and Injury Based on FEM/BMD for Elderly Chinese Women Who Act as Stay-Home Grandchildren Sitters. Front Public Health 2021; 9:700148. [PMID: 34888274 PMCID: PMC8648567 DOI: 10.3389/fpubh.2021.700148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/09/2021] [Indexed: 11/17/2022] Open
Abstract
Background: An increasing number of Chinese elderly women stay at home and act as grandchildren sitters. In consequence of the frequent load-bearing, chronic lumbar fatigue probably caused a higher risk of lumbar degeneration, fatigue, and injury which has become one of the most important aging and health problems in China. In this study, a multi-mode lumbar finite element model (FEM) with specific bone mineral density (BMD) were developed and validated for further spine injury prevention and control. Methods: The material properties of lumbar vertebra were modified according to degenerated bone mineral density, and geometry was adjusted based on intervertebral disc height. The motion of lifting children was simulated by a 76 year-old Chinese women's FEM, and the stress distribution was calculated and predicted. Results: The pressure of L5-S intervertebral disc in the bending 3-year-old dummy lifting posture was significantly higher than the same posture without lifting, the maximum effective stress of endplate cartilage in the upright child lifting posture was 1.6 times that of the bending without lifting posture. And the fatigue risk limitation frequency of the upright with dummy posture was predicted with the functional equation of fatigue and stress which was deduced by genetic algorithm, which combined with the effective stress of lumbar vertebrae spongy bone calculated from FEM. Conclusions: The child-lifting motion could increase the risk of lumbar degeneration, fatigue, and injury in elderly women, and they should keep below the frequency limit of the motion of lifting children in their daily life. This study could put forward scientific injury prevention guidance to Chinese elderly women who lift children in daily life frequently.
Collapse
Affiliation(s)
- Na Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - María José Cavagnaro
- College of Medicine-Phoenix, The University of Arizona, Phoenix, AZ, United States
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xianping Du
- Department of Mechanical and Aerospace Engineering, Rutgers University, New Brunswick, NJ, United States
| | - Jian Shi
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
3
|
Zhu L, Wang K, Ma T, Huang L, Xia B, Zhu S, Yang Y, Liu Z, Quan X, Luo K, Kong D, Huang J, Luo Z. Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(ε-Caprolactone) Conduit through Peptide Self-Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Adv Healthc Mater 2017; 6. [PMID: 28140528 DOI: 10.1002/adhm.201600860] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 11/19/2016] [Indexed: 12/18/2022]
Abstract
The nerve conduit with biofunctionalities can regulate neurite outgrowth, as well as the migration, proliferation, and myelination activity of Schwann cells. In the present study, polycaprolactone (PCL) conduits are coated with Naphthalene-phenylalanine-phenylalanine-glycine-arginine-glycine-aspartic (Nap-FFGRGD) and Naphthalene-phenylalanine-phenylalanine-glycine-cysteine-aspartic-proline-glycine-tyrosine-isoleucine-glycine-serine-arginine (Nap-FFGCDPGYIGSR) by self-assembly. In vitro studies demonstrate that arginine-glycine-aspartic (RGD) and tyrosine-isoleucine-glycine-serine-arginine (YIGSR) are capable of synergistically enhancing the ability of PCL to support the adhesion and proliferation of Schwann cells, as well as increasing neurite outgrowth from dorsal root ganglions explants. This synergistic effect may occur via the activation of both the phosphoinositide 3-kinase/protein kinase B and mitogen-activated protein kinase/extracellular signal-regulated protein kinase pathways. RGD/YIGSR modifications demonstrate beneficial effects across a 15 mm sciatic nerve gap in axonal regeneration and functional recovery. In addition, increased vascularization is observed in the RGD/YIGSR-PCL group, which might contribute to their beneficial effects on nerve regeneration. These findings indicate the potential of the RGD/YIGSR-PCL conduit to promote axonal regeneration and functional recovery, making the RGD/YIGSR-PCL conduit an attractive candidate for the treatment of a critical nerve defect.
Collapse
Affiliation(s)
- Lei Zhu
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Kai Wang
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Life Science; Nankai University; Tianjin 300071 China
| | - Teng Ma
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Liangliang Huang
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Bing Xia
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Shu Zhu
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Yafeng Yang
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Zhongyang Liu
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Xin Quan
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Kai Luo
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Life Science; Nankai University; Tianjin 300071 China
| | - Jinghui Huang
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| | - Zhuojing Luo
- Institute of Orthopaedics; Xijing Hospital; The Fourth Military Medical University; Xi'an Shaanxi 710032 China
| |
Collapse
|
4
|
Mohammadi J, Delaviz H, Mohammadi B, Delaviz H, Rad P. Comparison of repair of peripheral nerve transection in predegenerated muscle with and without a vein graft. BMC Neurol 2016; 16:237. [PMID: 27876000 PMCID: PMC5120544 DOI: 10.1186/s12883-016-0768-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/17/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Despite substantial research into the topic and valiant surgical efforts, reconstruction of peripheral nerve injury remains a challenging surgery. This study was conducted to evaluate the effectiveness of axonal regeneration of a transected sciatic nerve through a vein conduit containing degenerated skeletal muscle compared with axonal regeneration in a transected sciatic nerve through degenerated skeletal muscle alone. METHODS In two of the three experimental rat groups, 10 mm of the left sciatic nerve was transected and removed. The proximal and distal ends of the transected sciatic nerve were then approximated and surrounded with either (a) a degenerated skeletal muscle graft; or (b) a graft containing both degenerated skeletal muscle and vein. In the group receiving the combined vein and skeletal muscle graft, the vein walls were subsequently sutured to the proximal and distal nerve stump epineurium. Sciatic functional index (SFI) was used for assessment of functional recovery. Tracing study and histological procedures were used to assess axonal regeneration. RESULTS At 60 days, the gait functional recovery as well as the mean number of myelinated axons in the middle and distal parts of the sciatic nerve significantly increased in the group with the vein graft compared to rats with only the muscular graft (P < 0.05). Mean diameter of myelinated nerve fiber of the distal sciatic nerve was also improved with the vein graft compared to the muscle graft alone (P < 0.05). The mean number of DiI-labeled motor neurons in the L4-L5 spinal segment increased in the vein with muscle group but was not significantly different between the two groups. CONCLUSIONS These findings demonstrated that a graft consisting of not only predegenerated muscle, but also predegenerated muscle with vein more effectively supported nerve regeneration, thus promoting functional recovery after sciatic nerve injury in rats.
Collapse
Affiliation(s)
- Jamshid Mohammadi
- Medicinal Plants Research Centre, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamdollah Delaviz
- Cellular and Molecular Research Center, Faculty of Medicine, Yasuj University of Medical Sciences, P.o.Box: 7591994799, Yasuj, Iran.
| | - Bahram Mohammadi
- Department of Pediatrics, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Hamoun Delaviz
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Parastou Rad
- Department of Midwifery, Yasuj University of Medical, Yasuj, Iran
| |
Collapse
|
5
|
Li G, Zhao Y, Zhang L, Gao M, Kong Y, Yang Y. Preparation of graphene oxide/polyacrylamide composite hydrogel and its effect on Schwann cells attachment and proliferation. Colloids Surf B Biointerfaces 2016; 143:547-556. [DOI: 10.1016/j.colsurfb.2016.03.079] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 10/22/2022]
|
6
|
Koppes RA, Park S, Hood T, Jia X, Abdolrahim Poorheravi N, Achyuta AH, Fink Y, Anikeeva P. Thermally drawn fibers as nerve guidance scaffolds. Biomaterials 2015; 81:27-35. [PMID: 26717246 DOI: 10.1016/j.biomaterials.2015.11.063] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/25/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
Synthetic neural scaffolds hold promise to eventually replace nerve autografts for tissue repair following peripheral nerve injury. Despite substantial evidence for the influence of scaffold geometry and dimensions on the rate of axonal growth, systematic evaluation of these parameters remains a challenge due to limitations in materials processing. We have employed fiber drawing to engineer a wide spectrum of polymer-based neural scaffolds with varied geometries and core sizes. Using isolated whole dorsal root ganglia as an in vitro model system we have identified key features enhancing nerve growth within these fiber scaffolds. Our approach enabled straightforward integration of microscopic topography at the scale of nerve fascicles within the scaffold cores, which led to accelerated Schwann cell migration, as well as neurite growth and alignment. Our findings indicate that fiber drawing provides a scalable and versatile strategy for producing nerve guidance channels capable of controlling direction and accelerating the rate of axonal growth.
Collapse
Affiliation(s)
- Ryan A Koppes
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Seongjun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tiffany Hood
- Department of Bioengineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Xiaoting Jia
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Negin Abdolrahim Poorheravi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | | - Yoel Fink
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Polina Anikeeva
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|