1
|
Wan K, Xu Q, Shi Y, Cui C, Lei J, Zhang K, Yao Q, Rao Y, Zhou Z, Wu Y, Mei J, Pan HL, Jing X, Zhu H, Li M. Electroacupuncture produces analgesic effects via cannabinoid CB1 receptor-mediated GABAergic neuronal inhibition in the rostral ventromedial medulla. Chin Med 2025; 20:30. [PMID: 40038719 DOI: 10.1186/s13020-025-01083-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 02/21/2025] [Indexed: 03/06/2025] Open
Abstract
OBJECTIVE Electroacupuncture (EA) is commonly used for pain control in clinical practice, yet the precise mechanisms underlying its action are not fully understood. The rostral ventromedial medulla (RVM) plays a crucial role in the modulation of pain. GABAergic neurons in the RVM (GABARVM neurons) facilitate nociceptive transmission by inhibiting off-cells activity. This research examined the role of GABARVM neurons in the analgesic effects of EA. METHODS Nociceptive behavior was evaluated using inflammatory pain models induced by complete Freund's adjuvant (CFA) and neuropathic pain models induced by chronic constrictive injury (CCI). Also, in situ hybridization, chemogenetics, in vivo mouse calcium imaging, and in vivo electrophysiological recordings were used to determine neuronal activity and neural circuitry. RESULTS EA at the "Zusanli" (ST36) on the affected side produced a significant analgesic effect in both CFA and CCI models. CFA treatment and CCI elevated the calcium activity of GABARVM neurons. Also, EA reduced the calcium activity, neuronal firing rates, and c-Fos expression of GABARVM neurons in both pain models. Chemogenetic inhibition of GABARVM neurons increased nociceptive thresholds. Chemogenetic activation of GABARVM neurons caused increased pain sensitivity in control mice and negated the analgesic effects of EA in both pain models. Moreover, reducing cannabinoid CB1 receptors on GABARVM neurons counteracted the analgesic effects of EA in CFA and CCI-induced pain models. CONCLUSIONS The study indicates that the analgesic effect of EA in inflammatory and neuropathic pain is facilitated by CB1 receptor-mediated inhibition of GABARVM neurons.
Collapse
Affiliation(s)
- Kexing Wan
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Xu
- Clinical College of Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yulong Shi
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chi Cui
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jie Lei
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kailing Zhang
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qingxu Yao
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yiqing Rao
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ziyu Zhou
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yisong Wu
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiale Mei
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xianghong Jing
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - He Zhu
- Department of Clinical Research Institute, Central People's Hospital of Zhanjiang, Zhanjiang, 524000, China.
| | - Man Li
- School of Basic Medicine, Tongji Medical College, Hubei key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Shao J, Lang Y, Ding M, Yin X, Cui L. Transcription Factor EB: A Promising Therapeutic Target for Ischemic Stroke. Curr Neuropharmacol 2024; 22:170-190. [PMID: 37491856 PMCID: PMC10788889 DOI: 10.2174/1570159x21666230724095558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 07/27/2023] Open
Abstract
Transcription factor EB (TFEB) is an important endogenous defensive protein that responds to ischemic stimuli. Acute ischemic stroke is a growing concern due to its high morbidity and mortality. Most survivors suffer from disabilities such as numbness or weakness in an arm or leg, facial droop, difficulty speaking or understanding speech, confusion, impaired balance or coordination, or loss of vision. Although TFEB plays a neuroprotective role, its potential effect on ischemic stroke remains unclear. This article describes the basic structure, regulation of transcriptional activity, and biological roles of TFEB relevant to ischemic stroke. Additionally, we explore the effects of TFEB on the various pathological processes underlying ischemic stroke and current therapeutic approaches. The information compiled here may inform clinical and basic studies on TFEB, which may be an effective therapeutic drug target for ischemic stroke.
Collapse
Affiliation(s)
- Jie Shao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Yue Lang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Manqiu Ding
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Xiang Yin
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Li Cui
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
3
|
Adiponectin regulates electroacupuncture-produced analgesic effects in association with a crosstalk between the peripheral circulation and the spinal cord. Brain Behav Immun 2022; 99:43-52. [PMID: 34562596 DOI: 10.1016/j.bbi.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Neurotransmitter-mediated acupuncture analgesia has been widely studied in nervous systems. It remains largely unclear if peripheral substances are involved the acupuncture analgesia. Adiponectin (APN), a circulating adipokine, shows analgesic effects. The study aimed to examine whether APN regulates analgesic effects of electroacupuncture (EA) in the complete Freund's adjuvant (CFA)-induced mouse model. APN wild type (WT) and knockout (KO) mouse were employed in the study. We found that EA attenuates the CFA-induced pain as demonstrated by the Hargreaves thermal test and the von Frey filament test. The deletion of APN significantly reduced the acupuncture analgesia in the CFA-treated APN KO mice while the intrathecal administration of APN mimicked the analgesic effects of EA. We further revealed that EA produced analgesic effects mainly via APN/AdipoR2-mediated AMPK pathway by the siRNA inhibitions of APN receptors (adipoR1/2) in the spinal cord. The immunofluorescence staining analysis showed that EA increased the APN accumulation in spinal cord through the blood circulation. In conclusion, the study indicates a novel mechanism that acupuncture produces analgesic effects at least partially via APN/AdipoR2-AMPK pathway in the spinal cord.
Collapse
|
4
|
The following was originally published in ACUPUNCTURE & ELECTRO-THERAPEUTICS RES., INT. J., Vol. 46, pp. 357-369, 2021. ACUPUNCTURE ELECTRO 2021. [DOI: 10.3727/036012921x16237619666067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Mei ZG, Huang YG, Feng ZT, Luo YN, Yang SB, Du LP, Jiang K, Liu XL, Fu XY, Deng YH, Zhou HJ. Electroacupuncture ameliorates cerebral ischemia/reperfusion injury by suppressing autophagy via the SIRT1-FOXO1 signaling pathway. Aging (Albany NY) 2020; 12:13187-13205. [PMID: 32620714 PMCID: PMC7377856 DOI: 10.18632/aging.103420] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022]
Abstract
Cerebral ischemia/reperfusion (CIR) injury occurs when blood flow is restored in the brain, causing secondary damage to the ischemic tissues. Previous studies have shown that electroacupuncture (EA) treatment contributes to brain protection against CIR injury through modulating autophagy. Studies indicated that SIRT1-FOXO1 plays a crucial role in regulating autophagy. Here we investigated the mechanisms underlying the neuroprotective effect of EA and its role in modulating autophagy via the SIRT1-FOXO1 signaling pathway in rats with CIR injury. EA pretreatment at "Baihui", "Quchi" and "Zusanli" acupoints (2/15Hz, 1mA, 30 min/day) was performed for 5 days before the rats were subjected to middle cerebral artery occlusion, and the results indicated that EA pretreatment substantially reduced the Longa score and infarct volume, increased the dendritic spine density and lessened autophagosomes in the peri-ischemic cortex of rats. Additionally, EA pretreatment also reduced the ratio of LC3-II/LC3-I, the levels of Ac-FOXO1 and Atg7, and the interaction of Ac-FOXO1 and Atg7, but increased the levels of p62, SIRT1, and FOXO1. The above effects were abrogated by the SIRT1 inhibitor EX527. Thus, we presume that EA pretreatment elicits a neuroprotective effect against CIR injury, potentially by suppressing autophagy via activating the SIRT1-FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Zhi-Gang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Guang Huang
- Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Zhi-Tao Feng
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Ya-Nan Luo
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Song-Bai Yang
- Yichang Hospital of Traditional Chinese Medicine, Clinical Medical College of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Li-Peng Du
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Kang Jiang
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xiao-Lu Liu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Xian-Yun Fu
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei, China
| | - Yi-Hui Deng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Hua-Jun Zhou
- The Institute of Neurology, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
6
|
Jiang X, Tian Y, Xu L, Zhang Q, Wan Y, Qi X, Li B, Guo J, Sun W, Luo A, Huang J, Gu X. Inhibition of Triple-Negative Breast Cancer Tumor Growth by Electroacupuncture with Encircled Needling and Its Mechanisms in a Mice Xenograft Model. Int J Med Sci 2019; 16:1642-1651. [PMID: 31839752 PMCID: PMC6909807 DOI: 10.7150/ijms.38521] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer without effective targeted drugs. While breast cancer patients often use acupuncture for the relief of cancer-induced pain or the side effects of chemo- or radiation therapy, little information is known regarding the direct effects of electroacupuncture on TNBC tumor and its potential mechanisms. Here, we created a mice model of TNBC and electroacupuncture with encircled needling around the tumors was given to the animals daily for 3 weeks at 15-20 Hz (3 min, each time). For sham electroacupuncture control, the skin was punctured to a depth of 5 mm and then the needle was quickly withdrawn without electrical stimulation or manual needle manipulation. We found that electroacupuncture significantly inhibited TNBC tumor growth and the inhibitory rate increased gradually overtime. Mechanistic analysis showed that electroacupuncture inhibited tumor angiogenesis by reducing the expression of vascular endothelial growth factor A (VEGF-A), its receptor VEGF-R and neuropilin 1 (NRP-1). Electroacupuncture also led to a significant decrease of matrix metalloproteinase-2 (MMP-2) expression and an increase of tissue inhibitor of MMP (TIMP-2) expression. Additionally, the expression of semaphorin 3A (Sema3A) and nerve growth factor receptor (NGFR) p75 in TNBC tissue was significantly upregulated in response to electroacupuncture. Furthermore, tumor necrosis factor (TNF)-alpha level in the serum was dramatically reduced after electroacupuncture. These results showed that electroacupuncture could directly inhibit TNBC tumor growth through the inhibition of proteins related to tumor angiogenesis and extracellular matrix, the suppression of TNBC-induced inflammation and the upregulation of nerve growth factor receptors.
Collapse
Affiliation(s)
- Xin Jiang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yehong Tian
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lin Xu
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qiaoli Zhang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yuxiang Wan
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xuewei Qi
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bo Li
- Department of Traditional Chinese Medicine, Beijing Chest Hospital, Capital Medical University, Beijing 101149, China
| | - Jing Guo
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Weiliang Sun
- Institute of Clinical Medical Science, China-Japan Friendship Hospital, Beijing 100029, China
| | - Aiping Luo
- State Key Lab of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jinchang Huang
- Third Affiliated Hospital, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaohong Gu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
7
|
Wu H, Guo P, Li X, Jin Z, Yang X, Wang Y. Hydroxybutyrate promotes the recovery from cerebral infarction by activating Amp-activated protein kinase signaling. Exp Ther Med 2018; 16:1195-1202. [PMID: 30116369 PMCID: PMC6090228 DOI: 10.3892/etm.2018.6304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/06/2018] [Indexed: 11/06/2022] Open
Abstract
Recent studies have shown that hydroxybutyrate (GHB) is effective for protection against ischemia/brain damage in rat models. However, the specific underlying mechanism is poorly understood. In line with the previous studies, the present data showed that GHB improves cerebral blood flow (CBF) and physiological variables, including pH, pCO2 and pO2. Using CD31-immunofluorescence staining, a reduction of blood vessel density was indicated in the middle cerebral artery occlusion (MCAO) group; however, GHB treatment enhanced the cerebral vascular density in the ischemic area. In addition, GHB treatment increased the number of BrdU/lectin double-positive cells. Furthermore, the reduction of nestin-positive cells was identified in the brain of MCAO rats, while the number of nestin-positive cells was significantly increased after GHB administration. Compared with the sham group, the activation of Amp-activated protein kinase (AMPK) was identified in MCAO rats, suggesting stress-mediated AMPK activation after ischemia. Furthermore, the western blot assay showed that GHB treatment resulted in further activation of AMPK and endothelial nitric oxide synthase (eNOS), suggesting an enhanced energy supply. In summary, the present novel data indicates that GHB promotes the recovery from cerebral infarction mainly by activating AMPK and eNOS signaling, thereby enhancing angiogenesis and neuron regeneration.
Collapse
Affiliation(s)
- Huisheng Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peipei Guo
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xinyi Li
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zhao Jin
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xin Yang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yanlin Wang
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
8
|
Jiang S, Li T, Ji T, Yi W, Yang Z, Wang S, Yang Y, Gu C. AMPK: Potential Therapeutic Target for Ischemic Stroke. Theranostics 2018; 8:4535-4551. [PMID: 30214637 PMCID: PMC6134933 DOI: 10.7150/thno.25674] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
5'-AMP-activated protein kinase (AMPK), a member of the serine/threonine (Ser/Thr) kinase group, is universally distributed in various cells and organs. It is a significant endogenous defensive molecule that responds to harmful stimuli, such as cerebral ischemia, cerebral hemorrhage, and, neurodegenerative diseases (NDD). Cerebral ischemia, which results from insufficient blood flow or the blockage of blood vessels, is a major cause of ischemic stroke. Ischemic stroke has received increased attention due to its '3H' effects, namely high mortality, high morbidity, and high disability. Numerous studies have revealed that activation of AMPK plays a protective role in the brain, whereas its action in ischemic stroke remains elusive and poorly understood. Based on existing evidence, we introduce the basic structure, upstream regulators, and biological roles of AMPK. Second, we analyze the relationship between AMPK and the neurovascular unit (NVU). Third, the actions of AMPK in different phases of ischemia and current therapeutic methods are discussed. Finally, we evaluate existing controversy and provide a detailed analysis, followed by ethical issues, potential directions, and further prospects of AMPK. The information complied here may aid in clinical and basic research of AMPK, which may be a potent drug candidate for ischemic stroke treatment in the future.
Collapse
Affiliation(s)
- Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
- Department of Aerospace Medicine, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Tian Li
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Ting Ji
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Yi
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Zhi Yang
- Department of Biomedical Engineering, The Fourth Military Medical University, 169 Changle West Road, Xi'an 710032, China
| | - Simeng Wang
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education. Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chunhu Gu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| |
Collapse
|
9
|
Cai W, Shen WD. Anti-Apoptotic Mechanisms of Acupuncture in Neurological Diseases: A Review. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2018; 46:515-535. [PMID: 29595076 DOI: 10.1142/s0192415x1850026x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Apoptosis, known as programmed cell death, plays a significant role in the pathogenesis of neurological diseases. Most of these diseases can be obviously alleviated by means of acupuncture treatment. Current research studies have shown that the efficacy of acupuncture to these medical conditions is closely associated with the anti-apoptotic potentials. Mainly based on the acupuncture's anti-apoptotic efficacy in prevalent neurological disorders, including cerebral ischemia-reperfusion injury, Alzheimer's disease, depression or stress related-modes, spinal cord injuries, etc., this review comes to a conclusion that the anti-apoptotic effect of acupuncture treatment for neurological diseases, evidently reflected through Bcl-2, Bax or caspase expression change, results from regulating mitochondrial or autophagic dysfunction as well as reducing oxidative stress and inflammation. The possible mechanisms of acupuncture's anti-apoptotic effect are associated with a series of downstream signaling pathways and the up-regulated expression of neurotrophic factors. It is of great importance to illuminate the exact mechanisms of acupuncture treatment for neurological dysfunctions.
Collapse
Affiliation(s)
- Wa Cai
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| | - Wei-Dong Shen
- 1 Department of Acupuncture, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P. R. China
| |
Collapse
|
10
|
Zhang GF, Yang P, Yin Z, Chen HL, Ma FG, Wang B, Sun LX, Bi YL, Shi F, Wang MS. Electroacupuncture preconditioning protects against focal cerebral ischemia/reperfusion injury via suppression of dynamin-related protein 1. Neural Regen Res 2018; 13:86-93. [PMID: 29451211 PMCID: PMC5840997 DOI: 10.4103/1673-5374.224373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1.
Collapse
Affiliation(s)
- Gao-Feng Zhang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Pei Yang
- Department of Public Health, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Zeng Yin
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Huai-Long Chen
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fu-Guo Ma
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Bin Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Li-Xin Sun
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Fei Shi
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Ming-Shan Wang
- Department of Anesthesiology, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, Shandong Province, China
| |
Collapse
|
11
|
Wu J, Lin B, Liu W, Huang J, Shang G, Lin Y, Wang L, Chen L, Tao J. Roles of electro-acupuncture in glucose metabolism as assessed by 18F-FDG/PET imaging and AMPKα phosphorylation in rats with ischemic stroke. Int J Mol Med 2017; 40:875-882. [PMID: 28713979 DOI: 10.3892/ijmm.2017.3057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 06/27/2017] [Indexed: 11/06/2022] Open
Abstract
Targeted energy metabolism balance contributes to neural survival during ischemic stroke. Herein, we tested the hypothesis that electro‑acupuncture (EA) can enhance cerebral glucose metabolism assessed by 18F‑fluorodeoxyglucose/positron emission tomography (18F‑FDG/PET) imaging to prevent propagation of tissue damage and improve neurological outcome in rats subjected to ischemia and reperfusion injury. Rats underwent middle cerebral artery occlusion (MCAO) and received EA treatment at the LI11 and ST36 acupoints or non‑acupoint treatment once a day for 7 days. After EA treatment, a significant reduction in the infarct volume was determined by T2‑weighted imaging, accompanied by the functional recovery in CatWalk and Rota-rod performance. Moreover, EA promoted higher glucose metabolism in the caudate putamen (CPu), motor cortex (MCTX), somatosensory cortex (SCTX) regions as assessed by animal 18F‑FDG/PET imaging, suggesting that three‑brain regional neural activity was enhanced by EA. In addition, the AMP‑activated protein kinase α (AMPKα) in the CPu, MCTX and SCTX regions was phosphorylated at threonine 172 (Thr172) after ischemic injury; however, phosphorylation of AMPK was further increased by EA. These results indicate that EA could promote AMPKα phosphorylation of the CPu, MCTX and SCTX regions to enhance neural activity and motor functional recovery after ischemic stroke.
Collapse
Affiliation(s)
- Jingsong Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Bingbing Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jia Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Guanhao Shang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Yunjiao Lin
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lulu Wang
- Fujian Key Laboratory of Rehabilitation Technology, Fuzhou, Fujian 350001, P.R. China
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
12
|
Pineda-Ramírez N, Gutiérrez Aguilar GF, Espinoza-Rojo M, Aguilera P. Current evidence for AMPK activation involvement on resveratrol-induced neuroprotection in cerebral ischemia. Nutr Neurosci 2017; 21:229-247. [DOI: 10.1080/1028415x.2017.1284361] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Narayana Pineda-Ramírez
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía ‘Manuel Velasco Suárez’, Ciudad de México, 14269, México
| | - Germán Fernando Gutiérrez Aguilar
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía ‘Manuel Velasco Suárez’, Ciudad de México, 14269, México
| | - Mónica Espinoza-Rojo
- Laboratorio de Biología Molecular y Genómica, Universidad Autónoma de Guerrero, Chilpancingo, Guerrero, 39087, México
| | - Penélope Aguilera
- Laboratorio de Patología Vascular Cerebral, Instituto Nacional de Neurología y Neurocirugía ‘Manuel Velasco Suárez’, Ciudad de México, 14269, México
| |
Collapse
|
13
|
Yang Y, Yang X, Dong Y, Chen N, Xiao X, Liu H, Li Z, Chen Y. Transcutaneous electrical acupoint stimulation alleviates adverse cardiac remodeling induced by overload training in rats. J Appl Physiol (1985) 2016; 120:1269-76. [PMID: 27032900 DOI: 10.1152/japplphysiol.00077.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/28/2016] [Indexed: 02/06/2023] Open
Abstract
Electroacupuncture has been shown previously to alleviate cardiac ischemia-reperfusion injury. Overload training (OT) exercise can result in profound cardiac damage and remodeling. In this study, we aimed to examine whether transcutaneous electrical acupoint stimulation (TEAS), a novel noninvasive and low-risk alternative to electroacupuncture, could counteract short-term OT-induced cardiac remodeling, fibrosis, autophagy, and apoptosis. Sixty rats were randomly divided into eight groups (n = 7 or 8/group): control, regular exercise, OT, OT plus low-, moderate- or high-frequency TEAS preconditioning, OT plus moderate-frequency TEAS postconditioning, or transcutaneous electrical nonacupoint stimulation (TENAS) preconditioning. The cardiac weight index (heart weight/body weight) was determined. Left ventricular morphology was examined by hematoxylin and eosin staining. Cardiac fibrosis and apoptosis were determined by Masson's trichrome and TUNEL staining, respectively. The presence of autophagosomes was observed by transmission electron microcopy. The expressions of autophagic markers (LC3 II/I and Beclin-1) were determined by Western blot. The results showed that 1) OT induced adverse cardiac structure changes but did not affect the cardiac weight index; 2) OT increased cardiac fibrosis and apoptosis and induced autophagosome formation with upregulated LC3 II/I and Beclin-1 expression; 3) TEAS preconditioning effectively alleviated OT-induced cardiac structure changes, fibrosis, apoptosis, and autophagy; 4) TEAS preconditioning produced better protective effects than TEAS postconditioning or TENAS preconditioning. Our results demonstrate that TEAS preconditioning protects the heart from OT-induced cardiac injury/remodeling, probably by inhibition of fibrosis, autophagy, and apoptosis.
Collapse
Affiliation(s)
- Yi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xi Yang
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Yuchen Dong
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Xiang Xiao
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| | - Hua Liu
- College of Health Science, Wuhan Sports University, Wuhan, China
| | - Zhanghua Li
- Tongren Hospital of Wuhan University, Wuhan, China; and
| | - Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University, Dayton, Ohio
| |
Collapse
|