1
|
Belem-Filho IJA, Godoy ACV, Busnardo C, Frias AT, Zangrossi H, Del Bianco Borges B, Herval ACF, Correa FMA, Crestani CC, Alves FHF. Role of endocannabinoid neurotransmission in the insular cortex on cardiovascular, autonomic and behavioral responses evoked by acute restraint stress in rats. Neuropharmacology 2025; 271:110404. [PMID: 40049238 DOI: 10.1016/j.neuropharm.2025.110404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/21/2025] [Accepted: 03/02/2025] [Indexed: 03/10/2025]
Abstract
This study aimed to investigate the role of endocannabinoid mechanisms present within the insular cortex (IC) on cardiovascular, autonomic and anxiogenic-like responses evoked by an acute session of restraint in rats. For this, bilateral guide cannulas directed to the IC were implanted in male Wistar rats for intrabrain microinjection of the selective CB1 receptor antagonist AM251, the selective TRPV1 receptor antagonist capsazepine, the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the monoacylglycerol lipase (MAGL) inhibitor JZL184. The effects of pharmacological treatments were evaluated on restraint-evoked increases in blood pressure and heart rate, sympathetically-mediated cutaneous vasoconstriction and in delayed anxiogenic-like effect assessed 24h after stress exposure in the elevated plus maze (EPM) and open field (OF). We observed that acute restraint stress decreased the exploration of both EPM open arms and OF center region in animals treated with vehicle into the IC, thus indicating an anxiogenic-like effect. Inhibition of MAGL within the IC evoked by local treatment with JZL184 avoided the restraint-evoked anxiogenic effect. IC treatment with JZL184 also attenuated the tachycardia during restraint. The other pharmacological treatments did not modify the cardiovascular, autonomic and behavioral responses evoked by restraint. Taken together, these findings suggest that endocannabinoid neurotransmission in the IC, potentially acting through the endocannabinoid 2-arachidonoylglycerol, plays an inhibitory role in both tachycardia and anxiogenic-like effect evoked by stressful events.
Collapse
MESH Headings
- Animals
- Male
- Endocannabinoids/metabolism
- Rats, Wistar
- Restraint, Physical
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Rats
- Heart Rate/drug effects
- Heart Rate/physiology
- Piperidines/pharmacology
- Synaptic Transmission/drug effects
- Synaptic Transmission/physiology
- Carbamates/pharmacology
- Anxiety/drug therapy
- Anxiety/physiopathology
- Anxiety/metabolism
- Insular Cortex/drug effects
- Blood Pressure/drug effects
- Blood Pressure/physiology
- Benzodioxoles/pharmacology
- Pyrazoles/pharmacology
- Benzamides/pharmacology
- Capsaicin/analogs & derivatives
- Capsaicin/pharmacology
- Amidohydrolases/antagonists & inhibitors
- Autonomic Nervous System/drug effects
- Monoacylglycerol Lipases/antagonists & inhibitors
- Monoacylglycerol Lipases/metabolism
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/agonists
Collapse
Affiliation(s)
- Ivaldo J A Belem-Filho
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ana C V Godoy
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cristiane Busnardo
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Alana T Frias
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Bruno Del Bianco Borges
- Department of Health Sciences, Faculty of Medicine, Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Ana C F Herval
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil
| | - Fernando M A Correa
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Fernando H F Alves
- Institute of Science, Technology and Innovation- Federal University of Lavras, Antônio Carlos Pinheiro de Alcântara, 855 - Jardim Califórnia Garden, São Sebastião Do Paraíso, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Goulart MT, Busnardo C, Belém-Filho IJA, Benini R, Fassini A, Crestani CC, Godoy AC, Correa FMA, Alves FHF. NMDA receptors in the insular cortex modulate cardiovascular and autonomic but not neuroendocrine responses to restraint stress in rats. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110598. [PMID: 35798175 DOI: 10.1016/j.pnpbp.2022.110598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/26/2022]
Abstract
The insular cortex (IC) is a brain structure involved in physiological and behavioural responses during stressful events. However, the local neurochemical mechanisms involved in control of stress responses by the IC are poorly understood. Thus, this study aimed to investigate the involvement of glutamatergic neurotransmission within the IC in cardiovascular, autonomic and neuroendocrine responses to an acute session of restraint stress. For this, the selective NMDA glutamate receptor antagonist LY235959 (1 nmol/100 nL) or the selective non-NMDA glutamate receptor antagonist NBQX (1 nmol/100 nL) were microinjected into the IC 10 min before the onset of the 60 min session of restraint stress. We observed that the antagonism of NMDA receptors within the IC enhanced the restraint-evoked increase in arterial pressure and heart rate, while blockade of non-NMDA receptors did not affect these cardiovascular responses. Spontaneous baroreflex analysis demonstrated that microinjection of LY235959 into the IC decreased baroreflex activity during restraint stress. The decrease in tail skin temperature during restraint stress was shifted to an increase in animals treated with the NMDA receptor antagonist. Nevertheless, the blockade of either NMDA or non-NMDA glutamate receptors within the IC did not affect the increase in circulating corticosterone levels during restraint stress. Overall, our findings provide evidence that IC glutamatergic neurotransmission, acting via local NMDA receptors, plays a prominent role in the control of autonomic and cardiovascular responses to restraint stress, but without affecting neuroendocrine adjustments.
Collapse
Affiliation(s)
- Melissa T Goulart
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Cristiane Busnardo
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ivaldo J A Belém-Filho
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ricardo Benini
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Aline Fassini
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos C Crestani
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Ana C Godoy
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, Minas Gerais, Brazil
| | - Fernando M A Correa
- Departments of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fernando H F Alves
- Department of Health Sciences, Faculty of Medicine - Federal University of Lavras, Lavras, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Zhang Q, Zheng Y, Ning M, Li T. KLRD1, FOSL2 and LILRB3 as potential biomarkers for plaques progression in acute myocardial infarction and stable coronary artery disease. BMC Cardiovasc Disord 2021; 21:344. [PMID: 34271875 PMCID: PMC8285847 DOI: 10.1186/s12872-021-01997-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Myocardial infarction (MI) contributes to high mortality and morbidity and can also accelerate atherosclerosis, thus inducing recurrent event due to status changing of coronary artery walls or plaques. The research aimed to investigate the differentially expressed genes (DEGs), which may be potential therapeutic targets for plaques progression in stable coronary artery disease (CAD) and ST-elevated MI (STEMI). METHODS Two human datasets (GSE56885 and GSE59867) were analyzed by GEO2R and enrichment analysis was applied through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. To explore the seed genes, the protein-protein interaction (PPI) network was constructed and seed genes, as well as top30 ranking neighbours were screened out. To validate these findings, one human dataset GSE120521 was analyzed. Linear regression analysis and ROC curve were also performed to determine which seed genes above mentioned could be independent factors for plaques progression. Mice MI model and ELISA of seed genes were applied and ROC curve was also performed for in vivo validation. RESULTS 169 DEGs and 573 DEGs were screened out in GSE56885 and GSE59867, respectively. Utilizing GO and KEGG analysis, these DEGs mainly enriched in immune system response and cytokines interaction. PPI network analysis was carried out and 19 seed genes were screened out. To validate these findings, GSE120521 was analyzed and three genes were demonstrated to be targets for plaques progression and stable CAD progression, including KLRD1, FOSL2 and LILRB3. KLRD1 and LILRB3 were demonstrated to be high-expressed at 1d after MI compared to SHAM group and FOSL2 expression was low-expressed at 1d and 1w. To investigate the diagnostic abilities of seed genes, ROC analysis was applied and the AUCs of KLRD1, FOSL2 and LILRB3, were 0.771, 0.938 and 0.972, respectively. CONCLUSION This study provided the screened seed genes, KLRD1, FOSL2 and LILRB3, as credible molecular biomarkers for plaques status changing in CAD progression and MI recurrence. Other seed genes, such as FOS, SOCS3 and MCL1, may also be potential targets for treatment due to their special clinical value in cardiovascular diseases.
Collapse
Affiliation(s)
- Qiang Zhang
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Yue Zheng
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- School of Medicine, Nankai University, Tianjin, 300071, China
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
| | - Meng Ning
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China
| | - Tong Li
- Cardiology, The Third Central Clinical College of Tianjin Medical University, No. 83, Jintang Road, Hedong District, Tianjin, 300170, China.
- Cardiology, Nankai University Affiliated Third Center Hospital, Tianjin, 300170, China.
- Cardiology, The Third Central Hospital of Tianjin, 83 Jintang Road, Hedong District, Tianjin, 300170, China.
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.
- Institute of Hepatobiliary Disease, Tianjin, China.
| |
Collapse
|
4
|
Jinawong K, Apaijai N, Chattipakorn N, Chattipakorn SC. Cognitive impairment in myocardial infarction and heart failure. Acta Physiol (Oxf) 2021; 232:e13642. [PMID: 33656800 DOI: 10.1111/apha.13642] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Myocardial infarction (MI) occurs when coronary blood flow is decreased due to an obstruction/occlusion of the vessels, leading to myocardial death and progression to heart failure (HF). Cognitive impairment, anxiety, depression and memory loss are the most frequent mental health problems among patients with HF. The most common cause of cognitive decline is cardiac systolic dysfunction, which leads to reduced cerebral perfusion. Several in vivo and clinical studies provide information regarding the underlying mechanisms of HF in brain pathology. Neurohormonal activation, oxidative stress, inflammation, glial activation, dendritic spine loss and brain programmed cell death are all proposed as contributors of cognitive impairment in HF. Furthermore, several investigations into the effects of various medications on brain pathology utilizing MI models have been reported. In this review, potential mechanisms involving HF-associated cognitive impairment, as well as neuroprotective interventions in HF models, are discussed and summarized. In addition, gaps in the surrounding knowledge, including the types of brain cell death and the effects of cell death inhibitors in HF, are presented and discussed. This review provides valuable information that will suggest the potential therapeutic strategies for cognitive impairment in patients with HF.
Collapse
Affiliation(s)
- Kewarin Jinawong
- Neurophysiology Unit Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nattayaporn Apaijai
- Neurophysiology Unit Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Cardiac Electrophysiology Unit Department of Physiology Faculty of Medicine Chiang Mai University Chiang Mai Thailand
| | - Siriporn C. Chattipakorn
- Neurophysiology Unit Cardiac Electrophysiology Research and Training Center Faculty of Medicine Chiang Mai University Chiang Mai Thailand
- Center of Excellence in Cardiac Electrophysiology Research Chiang Mai University Chiang Mai Thailand
- Department of Oral Biology and Diagnostic Sciences Faculty of Dentistry Chiang Mai University Chiang Mai Thailand
| |
Collapse
|
5
|
Ionov ID, Pushinskaya II, Gorev NP, Frenkel DD. Cyclosomatostatin-induced catalepsy in aged rats: Specific change of brain c-Fos protein expression in the lateral entorhinal cortex. Brain Res Bull 2020; 159:79-86. [PMID: 32224159 DOI: 10.1016/j.brainresbull.2020.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/19/2020] [Accepted: 03/21/2020] [Indexed: 11/16/2022]
Abstract
Aging represents the largest risk factor for developing Parkinson's disease (PD); another salient feature of this disorder is a decreased brain levels of somatostatin. Recently, in aged Wistar rats, we simulated the central somatostatinergic deficiency by intracerebroventricular injections of a somatostatin antagonist, cyclosomatostatin (cSST). The treated animals displayed catalepsy, a state that resembles the extrapyramidal signs of Parkinson's disease; young animals were insensitive to cSST. The neuroanatomical substrates responsible for the increased cataleptogenic activity of cSST in aged animals, are currently unknown. To study this issue, we assessed the cSST effect on brain c-Fos-protein expression in aged and young rats; thirty three brain regions were examined. cSST was employed at the dose cataleptogenic for aged animals and non-cataleptogenic for young ones. c-Fos expression patterns in the 'cataleptic' and 'non-cataleptic' animals were very similar, with the only distinction being a decrease in the c-Fos expression in the aged lateral entorhinal cortex (LEntCx). This decrease was not observed when the cSST-induced cataleptic response was inhibited by administration of diphenhydramine and nicotine. Thus, the development of catalepsy in the aged Wistar rats appeared to be associated with a hypoactivation of the LEntCx; possibly, there exists a mechanistic link between the LEntCx hypoactivation and increased susceptibility of aged rats to catalepsy. Apparently, these findings may provide novel insight into the link between mechanisms of parkinsonian motor disorders and aging.
Collapse
Affiliation(s)
- Ilya D Ionov
- Centre on Theoretical Problems in Physical and Chemical Pharmacology, Russian Academy of Sciences, Moscow, Russia.
| | | | | | | |
Collapse
|
6
|
Song H, Zheng Y, Cai F, Ma Y, Yang J, Wu Y. c-Fos downregulation positively regulates EphA5 expression in a congenital hypothyroidism rat model. J Mol Histol 2018; 49:147-155. [PMID: 29330744 DOI: 10.1007/s10735-018-9754-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 01/05/2018] [Indexed: 12/16/2022]
Abstract
The EphA5 receptor is well established as an axon guidance molecule during neural system development and plays an important role in dendritic spine formation and synaptogenesis. Our previous study has showed that EphA5 is decreased in the developing brain of congenital hypothyroidism (CH) and the EphA5 promoter methylation modification participates in its decrease. c-Fos, a well-kown transcription factor, has been considered in association with brain development. Bioinformatics analysis showed that the EphA5 promoter region contained five putative c-fos binding sites. The chromatin immunoprecipitation (ChIP) assays were used to assess the direct binding of c-fos to the EphA5 promoter. Furthermore, dual-luciferase assays showed that these three c-fos protein binding sites were positive regulatory elements for EphA5 expression in PC12 cells. Moreover, We verified c-fos positively regulation for EphA5 expression in CH model. Q-PCR and Western blot showed that c-fos overexpression could upregulate EphA5 expression in hippocampal neurons of rats with CH. Our results suggest that c-fos positively regulates EphA5 expression in CH rat model.
Collapse
Affiliation(s)
- Honghua Song
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Yuqin Zheng
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Fuying Cai
- Department of Pediatrics, Yin Shan Lake Hospital of Wuzhong District, Suzhou, 215100, Jiangsu Province, China
| | - Yanyan Ma
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Jingyue Yang
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China
| | - Youjia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, 20 Xi Si Road, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
7
|
Ding YP, Zhang JY, Feng DX, Kong Y, Xu Z, Chen G. Advances in molecular mechanism of cardioprotection induced by helium. Med Gas Res 2017; 7:124-132. [PMID: 28744366 PMCID: PMC5510294 DOI: 10.4103/2045-9912.208519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Helium has been classified as a kind of inert gas that is not effortless to spark chemical reactions with other substances in the past decades. Nevertheless, the cognition of scientists has gradually changed accompanied with a variety of studies revealing the potential molecular mechanism underlying organ-protection induced by helium. Especially, as a non-anesthetic gas which is deficient of relevant cardiopulmonary side effects, helium conditioning is recognized as an emerging and promising approach to exert favorable effects by mimicking the cardioprotection of anesthetic gases or xenon. In this review we will summarize advances in the underlying biological mechanisms and clinical applicability with regards to the cardioprotective effects of helium.
Collapse
Affiliation(s)
- Yi-Ping Ding
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Ju-Yi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Dong-Xia Feng
- Department of Scott &White Clinic-Temple, Temple, TX, USA
| | - Yan Kong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zhuan Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
8
|
Tao ZY, Gao P, Yan YH, Li HY, Song J, Yang JX. Osthole Enhances the Therapeutic Efficiency of Stem Cell Transplantation in Neuroendoscopy Caused Traumatic Brain Injury. Biol Pharm Bull 2017; 40:1043-1054. [DOI: 10.1248/bpb.b17-00072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhen-yu Tao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Peng Gao
- The First Affiliated Hospital of Dalian Medical University
| | - Yu-hui Yan
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Hong-yan Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Jie Song
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| | - Jing-xian Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine
| |
Collapse
|