1
|
Doelman AW, Streijger F, Majerus SJA, Damaser MS, Kwon BK. Assessing Neurogenic Lower Urinary Tract Dysfunction after Spinal Cord Injury: Animal Models in Preclinical Neuro-Urology Research. Biomedicines 2023; 11:1539. [PMID: 37371634 PMCID: PMC10294962 DOI: 10.3390/biomedicines11061539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Neurogenic bladder dysfunction is a condition that affects both bladder storage and voiding function and remains one of the leading causes of morbidity after spinal cord injury (SCI). The vast majority of individuals with severe SCI develop neurogenic lower urinary tract dysfunction (NLUTD), with symptoms ranging from neurogenic detrusor overactivity, detrusor sphincter dyssynergia, or sphincter underactivity depending on the location and extent of the spinal lesion. Animal models are critical to our fundamental understanding of lower urinary tract function and its dysfunction after SCI, in addition to providing a platform for the assessment of potential therapies. Given the need to develop and evaluate novel assessment tools, as well as therapeutic approaches in animal models of SCI prior to human translation, urodynamics assessment techniques have been implemented to measure NLUTD function in a variety of animals, including rats, mice, cats, dogs and pigs. In this narrative review, we summarize the literature on the use of animal models for cystometry testing in the assessment of SCI-related NLUTD. We also discuss the advantages and disadvantages of various animal models, and opportunities for future research.
Collapse
Affiliation(s)
- Adam W. Doelman
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Femke Streijger
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
| | - Steve J. A. Majerus
- Department of Electrical, Computer and Systems Engineering, Case Western Reserve University, Cleveland, OH 44106, USA;
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
| | - Margot S. Damaser
- Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA;
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian K. Kwon
- International Collaboration on Repair Discoveries, University of British Columbia, Vancouver, BC V5Z 1M9, Canada; (A.W.D.); (F.S.)
- Department of Orthopaedics, Vancouver Spine Surgery Institute, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| |
Collapse
|
2
|
Granger N, Olby NJ, Nout-Lomas YS. Bladder and Bowel Management in Dogs With Spinal Cord Injury. Front Vet Sci 2020; 7:583342. [PMID: 33263015 PMCID: PMC7686579 DOI: 10.3389/fvets.2020.583342] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/22/2020] [Indexed: 11/13/2022] Open
Abstract
Spinal cord injury in companion dogs can lead to urinary and fecal incontinence or retention, depending on the severity, and localization of the lesion along the canine nervous system. The bladder and gastrointestinal dysfunction caused by lesions of the autonomic system can be difficult to recognize, interpret and are easily overlooked. Nevertheless, it is crucial to maintain a high degree of awareness of the impact of micturition and defecation disturbances on the animal's condition, welfare and on the owner. The management of these disabilities is all the more challenging that the autonomic nervous system physiology is a complex topic. In this review, we propose to briefly remind the reader the physiology of micturition and defecation in dogs. We then present the bladder and gastrointestinal clinical signs associated with sacral lesions (i.e., the L7-S3 spinal cord segments and nerves) and supra-sacral lesions (i.e., cranial to the L7 spinal cord segment), largely in the context of intervertebral disc herniation. We summarize what is known about the natural recovery of urinary and fecal continence in dogs after spinal cord injury. In particular we review the incidence of urinary tract infection after injury. We finally explore the past and recent literature describing management of urinary and fecal dysfunction in the acute and chronic phase of spinal cord injury. This comprises medical therapies but importantly a number of surgical options, some known for decades such as sacral nerve stimulation, that might spark some interest in the field of spinal cord injury in companion dogs.
Collapse
Affiliation(s)
- Nicolas Granger
- The Royal Veterinary College, University of London, Hertfordshire, United Kingdom.,CVS Referrals, Bristol Veterinary Specialists at Highcroft, Bristol, United Kingdom
| | - Natasha J Olby
- Department of Clinical Sciences, North Carolina State University College of Veterinary Medicine, Raleigh, NC, United States
| | - Yvette S Nout-Lomas
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, United States
| | | |
Collapse
|
3
|
Farrell SM, Green A, Aziz T. The Use of Neuromodulation for Symptom Management. Brain Sci 2019; 9:brainsci9090232. [PMID: 31547392 PMCID: PMC6769574 DOI: 10.3390/brainsci9090232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
Pain and other symptoms of autonomic dysregulation such as hypertension, dyspnoea and bladder instability can lead to intractable suffering. Incorporation of neuromodulation into symptom management, including palliative care treatment protocols, is becoming a viable option scientifically, ethically, and economically in order to relieve suffering. It provides further opportunity for symptom control that cannot otherwise be provided by pharmacology and other conventional methods.
Collapse
Affiliation(s)
- Sarah Marie Farrell
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Alexander Green
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
- Nuffield department of clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| |
Collapse
|
4
|
Li T, Feng X, Lv J, Cai T, Wang S. Short-term Clinical Efficacy of Electric Pudendal Nerve Stimulation on Neurogenic Lower Urinary Tract Disease: A Pilot Research. Urology 2018; 112:69-73. [DOI: 10.1016/j.urology.2017.10.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/25/2017] [Accepted: 10/30/2017] [Indexed: 10/18/2022]
|
5
|
Contemporary Review of Male and Female Climacturia and Urinary Leakage During Sexual Activities. Sex Med Rev 2018; 6:16-28. [DOI: 10.1016/j.sxmr.2017.07.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/12/2017] [Accepted: 07/15/2017] [Indexed: 11/21/2022]
|
6
|
Chen SC, Chu PY, Hsieh TH, Li YT, Peng CW. Feasibility of deep brain stimulation for controlling the lower urinary tract functions: An animal study. Clin Neurophysiol 2017; 128:2438-2449. [PMID: 29096218 DOI: 10.1016/j.clinph.2017.09.102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 08/17/2017] [Accepted: 09/16/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To evaluate the feasibility of deep brain stimulation (DBS) and compare the potential of four DBS targets in rats for regulating bladder activity: the periaqueductal gray (PAG), locus coeruleus (LC), rostral pontine reticular nucleus (PnO), and pedunculopontine tegmental nucleus (PPTg). METHODS A bipolar stimulating electrode was implanted. The effects of DBS on the inhibition and activation of micturition reflexes were investigated by using isovolumetric intravesical pressure recordings. RESULTS PAG DBS at 2-2.5 V, PnO DBS at 2-2.5 V, and PPTg DBS at 1.75-2.5 V nearly completely inhibited reflexive isovolumetric bladder contractions. By contrast, LC DBS at 1.75 and 2 V slightly augmented reflexive isovolumetric bladder contractions in rats. DBSs on PnO and PPTg at higher intensities (2.5-5 V) demonstrated a higher success rate and larger contraction area evocation in activating bladder contractions in a partially filled bladder. DBS targeting the PPTg was most efficient in suppressing reflexive isovolumetric bladder contractions. CONCLUSION PPTg DBS demonstrated stable results and high potency for controlling bladder contractions. PPTg might be a promising DBS target for developing new neuromodulatory approaches for the treatment of bladder dysfunctions. SIGNIFICANCE DBS could be a potential approach to manage bladder function under various conditions.
Collapse
Affiliation(s)
- Shih-Ching Chen
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan
| | - Pei-Yi Chu
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Hsun Hsieh
- Department of Physical Therapy and Graduate Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan, Taiwan; Graduate Institute of Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Ting Li
- Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, Taiwan
| | - Chih-Wei Peng
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan; School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
7
|
Effects of Acute Sacral Neuromodulation at Different Frequencies on Bladder Overactivity in Pigs. Int Neurourol J 2017; 21:102-108. [PMID: 28673064 PMCID: PMC5497198 DOI: 10.5213/inj.1732754.377] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 11/28/2016] [Indexed: 01/23/2023] Open
Abstract
Purpose We investigated the effects of different stimulation frequencies on the inhibition of bladder overactivity by sacral neuromodulation (SNM) in pigs. Methods Implant-driven stimulators were used to stimulate the S3 spinal nerve in 13 pigs. Cystometry was performed by infusing normal saline (NS) or acetic acid (AA). SNM (pulse width, 210 µsec) at frequencies ranging from 5 to 50 Hz was conducted at the intensity threshold at which observable perianal and/or tail movement was induced. Multiple cystometrograms were performed to determine the effects of different frequencies on the micturition reflex. Results AA-induced bladder overactivity significantly reduced the bladder capacity (BC) to 34.4%±4.7% of the NS control level (354.4±35.9 mL) (P<0.05). During AA infusion, SNM at 5 Hz did not significantly change the BC (48.1%±6.9% of the NS control level) (P>0.05), but SNM at 15, 30, and 50 Hz significantly increased the BC to 54.5%±7.1%, 55.2%±6.5%, and 57.2%±6.1% of the NS control level (P<0.05), respectively. No significant differences were found among the results obtained using frequencies of 15, 30, and 50 Hz (P>0.05). Conclusions This study demonstrated that 15 Hz was an appropriate frequency for SNM and that frequencies higher than 15 Hz did not lead to better surgical outcomes.
Collapse
|