1
|
Li H, Guan C, Fang D, Yang Y, Hsieh M, Xu Z, Yang Q, Wu Y, Hu R. Research hotspots and global trends in transcranial magnetic stimulation for stroke neurorestoration: A 30-year bibliometric analysis. JOURNAL OF NEURORESTORATOLOGY 2025; 13:100148. [DOI: 10.1016/j.jnrt.2024.100148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
2
|
Le HT, Honma K, Annaka H, Shunxiang S, Murakami T, Hiraoka T, Nomura T. Effectiveness of Transcranial Magnetic Stimulation on Executive Function, Attention, and Memory in Stroke Patients: A Systematic Review and Meta-Analysis. Cureus 2024; 16:e75194. [PMID: 39759598 PMCID: PMC11700524 DOI: 10.7759/cureus.75194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Transcranial magnetic stimulation (TMS) is an effective intervention for improving cognitive impairment in patients with stroke. However, its effectiveness in the subdomains of cognition is conflicting and not clearly established. This systematic review assessed the efficacy of TMS in improving executive function, attention, and memory in this population. Seven databases, including PubMed, Scopus, Cochrane Library, Cumulated Index in Nursing and Allied Health Literature, NeuroBITE, Physiotherapy Evidence Database, and OTseeker, were searched for indexed literature until July 2024 to identify all randomized controlled trials (RCTs) of this effect in stroke patients. This systematic review was performed by Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and the Handbook of the Cochrane Library and evaluated the quality of evidence using the Risk of Bias 2 tools and grading of recommendations assessment, development, and evaluation (GRADE) systems. Meta-analyses were performed using standardized mean difference (SMD) (Hedge's g) as the effect measure, and subgroups were performed to explore potential outcomes. The research included 13 RCTs involving 496 patients with stroke. The results indicated that TMS could affect executive function (six RCTs with SMD = 0.55; 95% confidence interval, CI = 0.04-1.05) and memory (nine RCTs with SMD = 0.57; 95% CI = 0.25-0.89) in patients with stroke. However, the effectiveness of TMS on attention (five RCTs with SMD = 0.32; 95% CI = -0.1 to 0.75) was not clear. The quality of the results varied between very low and low according to the GRADE approach. In conclusion, TMS may affect executive function and memory, but not attention. The quality of the evidence for the outcomes varied from very low to low owing to heterogeneity and bias; therefore, the results should be considered with caution, and more rigorous evidence is needed.
Collapse
Affiliation(s)
- Ha T Le
- Department of Rehabilitation, Hai Duong Medical Technical University, Hai Duong, VNM
- Graduate School, Niigata University of Health and Welfare, Niigata, JPN
| | - Kenta Honma
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| | - Hiroki Annaka
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| | - Sun Shunxiang
- Graduate School, Niigata University of Health and Welfare, Niigata, JPN
| | - Tsukasa Murakami
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| | - Tamon Hiraoka
- Graduate School, Niigata University of Health and Welfare, Niigata, JPN
| | - Tomonori Nomura
- Department of Occupational Therapy, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, JPN
| |
Collapse
|
3
|
Eliason M, Kalbande PP, Saleem GT. Is non-invasive neuromodulation a viable technique to improve neuroplasticity in individuals with acquired brain injury? A review. Front Hum Neurosci 2024; 18:1341707. [PMID: 39296918 PMCID: PMC11408216 DOI: 10.3389/fnhum.2024.1341707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/22/2024] [Indexed: 09/21/2024] Open
Abstract
Objective This study aimed to explore and evaluate the efficacy of non-invasive brain stimulation (NIBS) as a standalone or coupled intervention and understand its mechanisms to produce positive alterations in neuroplasticity and behavioral outcomes after acquired brain injury (ABI). Data sources Cochrane Library, Web of Science, PubMed, and Google Scholar databases were searched from January 2013 to January 2024. Study selection Using the PICO framework, transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) randomized controlled trials (RCTs), retrospective, pilot, open-label, and observational large group and single-participant case studies were included. Two authors reviewed articles according to pre-established inclusion criteria. Data extraction Data related to participant and intervention characteristics, mechanisms of change, methods, and outcomes were extracted by two authors. The two authors performed quality assessments using SORT. Results Twenty-two studies involving 657 participants diagnosed with ABIs were included. Two studies reported that NIBS was ineffective in producing positive alterations or behavioral outcomes. Twenty studies reported at least one, or a combination of, positively altered neuroplasticity and improved neuropsychological, neuropsychiatric, motor, or somatic symptoms. Twenty-eight current articles between 2020 and 2024 have been studied to elucidate potential mechanisms of change related to NIBS and other mediating or confounding variables. Discussion tDCS and TMS may be efficacious as standalone interventions or coupled with neurorehabilitation therapies to positively alter maladaptive brain physiology and improve behavioral symptomology resulting from ABI. Based on postintervention and follow-up results, evidence suggests NIBS may offer a direct or mediatory contribution to improving behavioral outcomes post-ABI. Conclusion More research is needed to better understand the extent of rTMS and tDCS application in affecting changes in symptoms after ABI.
Collapse
Affiliation(s)
- Michelle Eliason
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| | | | - Ghazala T Saleem
- Rehabilitation Science Department, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
4
|
Tsiakiri A, Christidi F, Tsiptsios D, Vlotinou P, Kitmeridou S, Bebeletsi P, Kokkotis C, Serdari A, Tsamakis K, Aggelousis N, Vadikolias K. Processing Speed and Attentional Shift/Mental Flexibility in Patients with Stroke: A Comprehensive Review on the Trail Making Test in Stroke Studies. Neurol Int 2024; 16:210-225. [PMID: 38392955 PMCID: PMC10893544 DOI: 10.3390/neurolint16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 02/25/2024] Open
Abstract
The Trail Making Test (TMT) is one of the most commonly administered tests in clinical and research neuropsychological settings. The two parts of the test (part A (TMT-A) and part B (TMT-B)) enable the evaluation of visuoperceptual tracking and processing speed (TMT-A), as well as divided attention, set-shifting and cognitive flexibility (TMT-B). The main cognitive processes that are assessed using TMT, i.e., processing speed, divided attention, and cognitive flexibility, are often affected in patients with stroke. Considering the wide use of TMT in research and clinical settings since its introduction in neuropsychological practice, the purpose of our review was to provide a comprehensive overview of the use of TMT in stroke patients. We present the most representative studies assessing processing speed and attentional shift/mental flexibility in stroke settings using TMT and applying scoring methods relying on conventional TMT scores (e.g., time-to-complete part A and part B), as well as derived measures (e.g., TMT-(B-A) difference score, TMT-(B/A) ratio score, errors in part A and part B). We summarize the cognitive processes commonly associated with TMT performance in stroke patients (e.g., executive functions), lesion characteristics and neuroanatomical underpinning of TMT performance post-stroke, the association between TMT performance and patients' instrumental activities of daily living, motor difficulties, speech difficulties, and mood statue, as well as their driving ability. We also highlight how TMT can serve as an objective marker of post-stroke cognitive recovery following the implementation of interventions. Our comprehensive review underscores that the TMT stands as an invaluable asset in the stroke assessment toolkit, contributing nuanced insights into diverse cognitive, functional, and emotional dimensions. As research progresses, continued exploration of the TMT potential across these domains is encouraged, fostering a deeper comprehension of post-stroke dynamics and enhancing patient-centered care across hospitals, rehabilitation centers, research institutions, and community health settings. Its integration into both research and clinical practice reaffirms TMT status as an indispensable instrument in stroke-related evaluations, enabling holistic insights that extend beyond traditional neurological assessments.
Collapse
Affiliation(s)
- Anna Tsiakiri
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| | - Foteini Christidi
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| | - Dimitrios Tsiptsios
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| | - Pinelopi Vlotinou
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| | - Sofia Kitmeridou
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| | - Paschalina Bebeletsi
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| | - Christos Kokkotis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 691 00 Komotini, Greece; (C.K.); (N.A.)
| | - Aspasia Serdari
- Department of Child and Adolescent Psychiatry, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece;
| | - Konstantinos Tsamakis
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK;
| | - Nikolaos Aggelousis
- Department of Physical Education and Sport Science, Democritus University of Thrace, 691 00 Komotini, Greece; (C.K.); (N.A.)
| | - Konstantinos Vadikolias
- Neurology Department, School of Medicine, Democritus University of Thrace, 681 00 Alexandroupolis, Greece; (A.T.); (F.C.); (P.V.); (S.K.); (P.B.); (K.V.)
| |
Collapse
|
5
|
Safdar A, Smith MC, Byblow WD, Stinear CM. Applications of Repetitive Transcranial Magnetic Stimulation to Improve Upper Limb Motor Performance After Stroke: A Systematic Review. Neurorehabil Neural Repair 2023; 37:837-849. [PMID: 37947106 PMCID: PMC10685705 DOI: 10.1177/15459683231209722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
BACKGROUND Noninvasive brain stimulation (NIBS) is a promising technique for improving upper limb motor performance post-stroke. Its application has been guided by the interhemispheric competition model and typically involves suppression of contralesional motor cortex. However, the bimodal balance recovery model prompts a more tailored application of NIBS based on ipsilesional corticomotor function. OBJECTIVE To review and assess the application of repetitive transcranial magnetic stimulation (rTMS) protocols that aimed to improve upper limb motor performance after stroke. METHODS A PubMed search was conducted for studies published between 1st January 2005 and 1st November 2022 using rTMS to improve upper limb motor performance of human adults after stroke. Studies were grouped according to whether facilitatory or suppressive rTMS was applied to the contralesional hemisphere. RESULTS Of the 492 studies identified, 70 were included in this review. Only 2 studies did not conform to the interhemispheric competition model, and facilitated the contralesional hemisphere. Only 21 out of 70 (30%) studies reported motor evoked potential (MEP) status as a biomarker of ipsilesional corticomotor function. Around half of the studies (37/70, 53%) checked whether rTMS had the expected effect by measuring corticomotor excitability (CME) after application. CONCLUSION The interhemispheric competition model dominates the application of rTMS post-stroke. The majority of recent and current studies do not consider bimodal balance recovery model for the application of rTMS. Evaluating CME after the application rTMS could confirm that the intervention had the intended neurophysiological effect. Future studies could select patients and apply rTMS protocols based on ipsilesional MEP status.
Collapse
Affiliation(s)
- Afifa Safdar
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Marie-Claire Smith
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Winston D. Byblow
- Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
| | - Cathy M. Stinear
- Department of Medicine, University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Sheng R, Chen C, Chen H, Yu P. Repetitive transcranial magnetic stimulation for stroke rehabilitation: insights into the molecular and cellular mechanisms of neuroinflammation. Front Immunol 2023; 14:1197422. [PMID: 37283739 PMCID: PMC10239808 DOI: 10.3389/fimmu.2023.1197422] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Stroke is a leading cause of mortality and disability worldwide, with most survivors reporting dysfunctions of motor, sensation, deglutition, cognition, emotion, and speech, etc. Repetitive transcranial magnetic stimulation (rTMS), one of noninvasive brain stimulation (NIBS) techniques, is able to modulate neural excitability of brain regions and has been utilized in neurological and psychiatric diseases. Moreover, a large number of studies have shown that the rTMS presents positive effects on function recovery of stroke patients. In this review, we would like to summarized the clinical benefits of rTMS for stroke rehabilitation, including improvements of motor impairment, dysphagia, depression, cognitive function, and central post-stroke pain. In addition, this review will also discuss the molecular and cellular mechanisms underlying rTMS-mediated stroke rehabilitation, especially immune regulatory mechanisms, such as regulation of immune cells and inflammatory cytokines. Moreover, the neuroimaging technique as an important tool in rTMS-mediated stroke rehabilitation has been discussed, to better understanding the mechanisms underlying the effects of rTMS. Finally, the current challenges and future prospects of rTMS-mediated stroke rehabilitation are also elucidated with the intention to accelerate its widespread clinical application.
Collapse
Affiliation(s)
- Rongjun Sheng
- Department of Radiology, The First People’s Hospital of Linping District, Hangzhou, China
| | - Changchun Chen
- Department of Radiology, The People’s Hospital of Qiandongnan Miao and Dong Autonomous Prefecture, Guizhou, China
| | - Huan Chen
- Department of Radiology, The People’s Hospital of Longyou, Quzhou, China
| | - Peipei Yu
- Department of Radiology, Sanmen People’s Hospital, Taizhou, China
| |
Collapse
|
7
|
Gao Y, Qiu Y, Yang Q, Tang S, Gong J, Fan H, Wu Y, Lu X. Repetitive Transcranial Magnetic Stimulation Combined with Cognitive Training for Cognitive Function and Activities of Daily Living in Patients with Post-Stroke Cognitive Impairment: A Systematic Review and Meta-Analysis. Ageing Res Rev 2023; 87:101919. [PMID: 37004840 DOI: 10.1016/j.arr.2023.101919] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/11/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Despite the potential effect of repetitive transcranial magnetic stimulation (rTMS) combined with cognitive training for post-stroke cognitive impairment (PSCI), there is uncertainty regarding rTMS combined with cognitive training for PSCI. OBJECTIVE To determine the effectiveness of rTMS combined with cognitive training for improving global cognitive function, specific domains of cognitive function and activities of daily living (ADL) in patients with PSCI. METHODS Databases including Cochrane Central, EMBASE (Ovid SP), CHINAL, APA PsycINFO, EBSCO, Medline, Web of science and other sources were systematically searched on March 23, 2022, and updated on December 5, 2022. All randomized controlled trials (RCTs) applied rTMS + cognitive training for patients with PSCI were screened for inclusion. RESULTS A total of 8 trials was finally included and 336 participants provided data for meta-analyses. Large effects were found for rTMS + cognitive training on global cognition (g = 0.780, 95% CI = 0.477 to 1.083), executive function (g = 0.769, 95% CI = 0.291 to 1.247), working memory (g = 0.609, 95% CI = 0.158-1.061) and medium improvement on ADL (g = 0.418, 95% CI = 0.058 to 0.778) were seen. While, no effects were found on memory or attention. Subgroup analyses showed that combinations of phase of stroke onset, rTMS frequency, stimulation site and stimulation sessions were potent factors that modulate the effects of rTMS + cognitive training for cognitive function. CONCLUSIONS The pooled data showed more positive effects of rTMS + cognitive training for global cognition, executive function, working memory and ADL in patients with PSCI. While, robust evidence of rTMS + cognitive training for global cognition, executive function, working memory and ADL from the Grade recommendations is lacking. Further, rTMS + cognitive training did not show no better effects on memory. Future definitive trials are needed to determine the benefits of rTMS + cognitive training for cognitive function and ADL in the field of PSCI.
Collapse
|
8
|
Adu MK, Eboreime E, Sapara AO, Agyapong VIO. The Use of Repetitive Transcranial Magnetic Stimulations for the Treatment of Bipolar Disorder: A Scoping Review. Behav Sci (Basel) 2022; 12:263. [PMID: 36004834 PMCID: PMC9404915 DOI: 10.3390/bs12080263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuromodulation technique that involves the application of magnetic pulses on hyperactive or hypoactive cortical brain areas. rTMS is considered a high therapeutic tool in many neuropsychiatric conditions. Despite its wide and continuous usage for the treatment of psychiatric disorders, information about the use of rTMS in bipolar disorders is limited and not well-established in the literature. Objectives: This scoping review aims to explore the literature available regarding the application of rTMS for the management of bipolar disorders, to garner evidence in support of it uses in the management of bipolar disorders, and for recommendations on future clinical and research work. Method: We electronically conducted a data search in five research databases (MEDLINE, CINAHL, Psych INFO, SCOPUS, and EMBASE) using all identified keywords across all the databases to identify evidence-based studies. Articles were included if they were published randomized control designs aimed at the use of rTMS in the management of bipolar disorders. Overall, nine studies were eligible for this review. The search results are up to date as of the final date of data search-20 December 2020. Only full-text published articles written in English were reviewed. Review articles on treatment with rTMS for conditions either than bipolar disorders were excluded. Conclusion: The application of rTMS intervention for bipolar disorders looks promising despite the diversity of its outcomes and its clinical significance. However, to be able to draw a definite conclusion on the clinical effectiveness of the technique, more randomized controlled studies with well-defined stimulation parameters need to be conducted with large sample sizes in the future.
Collapse
Affiliation(s)
- Medard Kofi Adu
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (E.E.); (A.O.S.); (V.I.O.A.)
| | - Ejemai Eboreime
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (E.E.); (A.O.S.); (V.I.O.A.)
| | - Adegboyega Oyekunbi Sapara
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (E.E.); (A.O.S.); (V.I.O.A.)
| | - Vincent Israel Opoku Agyapong
- Department of Psychiatry, University of Alberta, Edmonton, AB T6G 2B7, Canada; (E.E.); (A.O.S.); (V.I.O.A.)
- Department of Psychiatry, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
9
|
Li W, Xu D. Application of intelligent rehabilitation equipment in occupational therapy for enhancing upper limb function of patients in the whole phase of stroke. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021. [DOI: 10.1016/j.medntd.2021.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
10
|
Adu MK, Eboreime E, Sapara AO, Greenshaw AJ, Chue P, Agyapong VIO. The use of repetitive transcranial magnetic stimulation for treatment of obsessive-compulsive disorder: a scoping review. Ment Illn 2021; 13:1-13. [PMID: 35432816 PMCID: PMC8936147 DOI: 10.1108/mij-05-2021-0002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose This paper aims to explore the relevant literature available regarding the use of repetitive transcranial magnetic stimulation (rTMS) as a mode of treatment for obsessive-compulsive disorder (OCD); to evaluate the evidence to support the use of rTMS as a treatment option for OCD. Design/methodology/approach The authors electronically conducted data search in five research databases (MEDLINE, CINAHL, Psych INFO, SCOPUS and EMBASE) using all identified keywords and index terms across all the databases to identify empirical studies and randomized controlled trials. The authors included articles published with randomized control designs, which aimed at the treatment of OCD with rTMS. Only full-text published articles written in English were reviewed. Review articles on treatment for conditions other than OCD were excluded. The Covidence software was used to manage and streamline the review. Findings Despite the inconsistencies in the published literature, the application of rTMS over the supplementary motor area and the orbitofrontal cortex has proven to be promising in efficacy and tolerability compared with other target regions such as the prefrontal cortex for the treatment of OCD. Despite the diversity in terms of the outcomes and clinical variability of the studies under review, rTMS appears to be a promising treatment intervention for OCD. Research limitations/implications The authors of this scoping review acknowledge several limitations. First, the search strategy considered only studies published in English and the results are up to date as the last day of the electronic data search of December 10, 2020. Though every effort was made to identify all relevant studies for the purposes of this review per the eligibility criteria, the authors still may have missed some relevant studies, especially those published in other languages. Originality/value This review brought to bare the varying literature on the application of rTMS and what is considered gaps in the knowledge in this area in an attempt to evaluate and provide information on the potential therapeutic effects of rTMS for OCD.
Collapse
Affiliation(s)
- Medard Kofi Adu
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | - Ejemai Eboreime
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | | | - Andrew James Greenshaw
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | - Pierre Chue
- Department of Psychiatry, Faculty of Medicine and Dentistry, University of Alberta Edmonton Canada
| | | |
Collapse
|
11
|
Pink AE, Williams C, Alderman N, Stoffels M. The use of repetitive transcranial magnetic stimulation (rTMS) following traumatic brain injury (TBI): A scoping review. Neuropsychol Rehabil 2021; 31:479-505. [PMID: 31880207 DOI: 10.1080/09602011.2019.1706585] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 12/12/2019] [Indexed: 12/24/2022]
Abstract
There is continued interest in developing effective and innovative treatment approaches to manage and improve outcomes after traumatic brain injury (TBI). Included in this, is the potential use of repetitive transcranial magnetic stimulation (rTMS), a neuromodulatory tool currently recommended by the National Institute for Health and Care Excellence as a treatment for depression. This review considers the application of rTMS after TBI, focussing on its therapeutic efficacy for a broad range of sequalae, whether an optimal and safe rTMS protocol can be determined, and recommendations for future clinical and research work. Five research databases (MEDLINE, CINAHL, PsychINFO, SCOPUS, and Web of Science) were electronically searched, identifying 30 empirical studies (single and multiple subject case reports; randomized controlled trials) for the full review. Evidence suggests that rTMS has the potential to be an efficacious therapeutic intervention for multiple symptoms after TBI, including depression, dizziness, central pain, and visual neglect. However, the picture is less encouraging for prolonged disorders of consciousness and mixed for cognitive outcomes. Overall, rTMS was well-tolerated by patients, although some incidents of side effects and seizures have been reported. Recommendations are made for more comprehensive guidelines and sufficient reporting of rTMS parameters and procedures.
Collapse
Affiliation(s)
- Aimee E Pink
- Department of Psychology, Swansea University, Swansea, UK
- Independent Neurorehabilitation Providers Alliance, Newcastle upon Tyne, UK
| | | | - Nick Alderman
- Department of Psychology, Swansea University, Swansea, UK
- Elysium Neurological Services, Elysium Healthcare, Daventry, UK
| | - Martine Stoffels
- Priory Neurobehavioural Brain Injury Services, Burton Park Brain Injury Hospital, Priory Group, Melton Mowbray, UK
| |
Collapse
|
12
|
Liu M, Bao G, Bai L, Yu E. The role of repetitive transcranial magnetic stimulation in the treatment of cognitive impairment in stroke patients: A systematic review and meta-analysis. Sci Prog 2021; 104:368504211004266. [PMID: 33827345 PMCID: PMC10455033 DOI: 10.1177/00368504211004266] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Stroke is a global health problem, and survivors of a stroke often suffer from cognitive impairment, which has an essential impact on the rehabilitation of various functions. Repetitive Transcranial Magnetic Stimulation (rTMS) has been widely used in the rehabilitation treatment of stroke patients. There are many investigations into how rTMS impacts motor dysfunction, speech dysfunction and swallowing dysfunction after stroke, but the analysis of rehabilitation effect on stroke patients with cognitive dysfunction is lacking. The purpose of this study was to analyze the effect of different rTMS related therapies on cognitive impairment and to evaluate its clinical effect on cognitive rehabilitation after stroke. Four databases including PubMed, EMBASE, MEDLINE and the Cochrane Library, were searched and a total of 2754 papers were collected. Two reviewers independently completed a review of all papers' titles and abstracts, screened out the documents that met the criteria, and carried out data extraction, quality assessment, and data analysis. A total of six studies with 197 patients were included. Three studies used the Mini-Mental Status Examination (MMSE) scale to evaluate the cognitive function with a mean effect size of 1.89 (95% CI = -3.08-6.86). Two studies used the Loewenstein Occupational Therapy of Cognitive Assessment (LOTCA) scale with the mean effect size of 1.64 (95% CI = -7.65-10.93). These studies were evaluated separately. Our article provides that rTMS has a positive effect on improving the cognitive ability of stroke patients, but the evidence is still limited, and further large-scale studies are needed to explore the optimal stimulus parameters.
Collapse
Affiliation(s)
- Mengting Liu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Guanai Bao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lu Bai
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Enyan Yu
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital); Institute of Cancer and Basic Medicine(IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Gonzalez-Santos J, Soto-Camara R, Rodriguez-Fernández P, Jimenez-Barrios M, Gonzalez-Bernal J, Collazo-Riobo C, Jahouh M, Bravo-Anguiano Y, Trejo-Gabriel-Galan JM. Effects of home-based mirror therapy and cognitive therapeutic exercise on the improvement of the upper extremity functions in patients with severe hemiparesis after a stroke: a protocol for a pilot randomised clinical trial. BMJ Open 2020; 10:e035768. [PMID: 32978182 PMCID: PMC7520843 DOI: 10.1136/bmjopen-2019-035768] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION Neuroplasticity is defined as the capacity of the brain to reorganise new neuronal pathways. Mirror therapy (MT) and cognitive therapeutic exercise (CTE) are two neurorehabilitation techniques based on neuroplasticity and designed to improve the motor functions of the affected upper extremity in patients with severe hemiparesis after a stroke. Home-based interventions are an appropriate alternative to promote independence and autonomy. The objective of this study is to evaluate which of these techniques, MT and CTE, combined with task-oriented training, is more effective in functional recovery and movement patterns of the upper extremities in patients with severe hemiparesis after a stroke. METHODS AND ANALYSIS This is a home-based, single-blind, controlled, randomised clinical trial with three parallel arms, including 154 patients who had a stroke aged above 18 years. The primary outcome will be the functionality of the affected upper extremity measured using the Fugl-Meyer Assessment. Secondary variables will include cognitive performance, emotional state, quality of life and activities of daily living. During 6 weeks, one of the intervention groups will receive a treatment based on MT and the other one on CTE, both combined with task-oriented training. No additional interventions will be provided to the control group. To assess the progress of patients who had a stroke in the subacute phase, all variables will be evaluated at different visits: initial (just before starting treatment and 4 weeks post-stroke), post-intervention (6 weeks after initial) and follow-up (6 months). ETHICS AND DISSEMINATION This protocol has been approved by the Institutional Review Board (CEIm-2.134/2.019) and registered at ClinicalTrials.gov (NCT04163666). The results will be disseminated through open-access peer-reviewed journals, conference presentation, broadcast media and a presentation to stakeholders. These study results will provide relevant and novel information on effective neurorehabilitation strategies and improve the quality of intervention programmes aimed at patients after a stroke. TRIAL REGISTRATION NUMBER ClinicalTrials.gov (NCT04163666).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Maha Jahouh
- Health Sciences, University of Burgos, Burgos, Spain
| | | | | |
Collapse
|
14
|
Shin SS, Krishnan V, Stokes W, Robertson C, Celnik P, Chen Y, Song X, Lu H, Liu P, Pelled G. Transcranial magnetic stimulation and environmental enrichment enhances cortical excitability and functional outcomes after traumatic brain injury. Brain Stimul 2018; 11:1306-1313. [PMID: 30082198 DOI: 10.1016/j.brs.2018.07.050] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Therapeutic strategies for traumatic brain injury (TBI) in the last three decades have failed to show significant benefit in large scale studies. Given the multitude of pathological mechanisms involved in TBI, strategies focusing on multimodality regimen have gained interest as promising future interventions. HYPOTHESIS We hypothesized that combining noninvasive transcranial magnetic stimulation (TMS) with rehabilitative training in an environmental enrichment (EE) can facilitate post-TBI recovery in rats via cortical excitability and reorganization. METHODS We subjected rats to controlled cortical impact, and then assigned them to one of four groups: 1. No treatments (TBI), 2. EE after injury (TBI + EE), 3. TMS for one week (TBI + TMS), and 4. TMS for one week combined with EE (TBI + TMS/EE). For TMS, a 10 Hz repetitive TMS protocol was used. RESULTS At 7 days, TBI + TMS and TBI + TMS/EE groups had significantly increased primary somatosensory cortex local field potential (LFP) compared to TBI and TBI + EE groups (P < 0.05). Also, TBI + TMS/EE group had significantly improved performance on beam walk test compared to TBI group (P < 0.005). At 6 weeks, there was significantly higher response in TBI + TMS/EE group compared to TBI + TMS for somatosensory cortex LFP (P < 0.05), bicep motor evoked potentials (MEP) (P < 0.05), challenge ladder test performance (P < 0.01), and fMRI responses to tactile forepaw stimulation. CONCLUSIONS We demonstrate here for the first time the mechanism by which combined therapy using TMS and EE after TBI leads to functional improvement, possibly via cortical excitability and reorganization.
Collapse
Affiliation(s)
- Samuel S Shin
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vijai Krishnan
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - William Stokes
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Courtney Robertson
- Department of Anesthesiology/Critical Care Medicine and Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pablo Celnik
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Physical Medicine and Rehabilitation, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanrong Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaolei Song
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peiying Liu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Galit Pelled
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; The Institute of Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA; Department of Radiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
15
|
Improvement of higher brain dysfunction after brain injury by repetitive transcranial magnetic stimulation and intensive rehabilitation therapy. Neuroreport 2017; 28:800-807. [DOI: 10.1097/wnr.0000000000000830] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
16
|
Meng ZY, Song WQ. Low frequency repetitive transcranial magnetic stimulation improves motor dysfunction after cerebral infarction. Neural Regen Res 2017; 12:610-613. [PMID: 28553342 PMCID: PMC5436360 DOI: 10.4103/1673-5374.205100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Low frequency (≤ 1 Hz) repetitive transcranial magnetic stimulation (rTMS) can affect the excitability of the cerebral cortex and synaptic plasticity. Although this is a common method for clinical treatment of cerebral infarction, whether it promotes the recovery of motor function remains controversial. Twenty patients with cerebral infarction combined with hemiparalysis were equally and randomly divided into a low frequency rTMS group and a control group. The patients in the low frequency rTMS group were given 1-Hz rTMS to the contralateral primary motor cortex with a stimulus intensity of 90% motor threshold, 30 minutes/day. The patients in the control group were given sham stimulation. After 14 days of treatment, clinical function scores (National Institute of Health Stroke Scale, Barthel Index, and Fugl-Meyer Assessment) improved significantly in the low frequency rTMS group, and the effects were better than that in the control group. We conclude that low frequency (1 Hz) rTMS for 14 days can help improve motor function after cerebral infarction.
Collapse
Affiliation(s)
- Zhi-Yong Meng
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei-Qun Song
- Department of Rehabilitation, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|