1
|
Han J, Li J, Yao S, Wei Z, Jiang H, Xu T, Zeng J, Xu L, Han Y. GPR75: Advances, Challenges in Deorphanization, and Potential as a Novel Drug Target for Disease Treatment. Int J Mol Sci 2025; 26:4084. [PMID: 40362321 PMCID: PMC12071931 DOI: 10.3390/ijms26094084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
G protein-coupled receptor 75 (GPR75), a novel member of the rhodopsin-like G protein-coupled receptor (GPCR) family, has been identified across various tissues and organs, where it contributes to biological regulation and disease progression. Recent studies suggest potential interactions between GPR75 and ligands such as 20-hydroxyeicosatetraenoic acid (20-HETE) and C-C motif chemokine ligand 5 (CCL5/RANTES); however, its definitive endogenous ligand remains unidentified, and GPR75 is currently classified as an orphan receptor by International Union of Basic and Clinical Pharmacology (IUPHAR). Research on GPR75 deorphanization has underscored its critical roles in disease models, particularly in metabolic health, glucose regulation, and stability of the nervous and cardiovascular systems. However, the signaling pathways of GPR75 across different pathological conditions require further investigation. Importantly, ongoing studies are targeting GPR75 for drug development, exploring small molecule inhibitors, antibodies, and gene silencing techniques, positioning GPR75 as a promising GPCR target for treating related diseases. This review summarizes the recent advancements in GPR75 deorphanization research, examines its functions across tissues and systems, and highlights its links to metabolic, cardiovascular, and neurological disorders, thereby providing a resource for researchers to better understand the biological functions of this receptor.
Collapse
Affiliation(s)
- Jingyi Han
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Jiaojiao Li
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Sirui Yao
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Zao Wei
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Hui Jiang
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Tao Xu
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Junwei Zeng
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| | - Lin Xu
- Department of Immunology, Zunyi Medical University, Zunyi 563006, China
| | - Yong Han
- Department of Physiology, Zunyi Medical University, Zunyi 563006, China; (J.H.); (J.L.); (S.Y.); (Z.W.); (H.J.); (T.X.); (J.Z.)
| |
Collapse
|
2
|
Thomas A, Guo J, Reyes-Dumeyer D, Sanchez D, Scarmeas N, Manly JJ, Brickman AM, Lantigua RA, Mayeux R, Gu Y. Inflammatory biomarkers profiles and cognition among older adults. Sci Rep 2025; 15:2265. [PMID: 39824904 PMCID: PMC11748720 DOI: 10.1038/s41598-025-86309-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
Inflammation plays a major role in cognitive aging. Most studies on peripheral inflammation and cognitive aging focused on selected major inflammatory biomarkers. However, inflammatory markers are regulated and influenced by each other, and it is therefore important to consider a more comprehensive panel of markers to better capture diverse immune pathways and characterize the overall inflammatory profile of individuals. We explored 23 circulating inflammatory biomarkers using data from 1,743 participants without dementia (≥ 65 years-old) from the community-based, multiethnic Washington Heights Inwood Columbia Aging Project. Using principal component analysis (PCA), we developed six inflammatory profiles (PC-1 to PC-6) based on these 23 biomarkers and tested the association of resulting inflammatory profile with cognitive decline, over up to 12 years of follow-up. PC-1 described a pro-inflammatory profile characterized by high positive loadings for pro-inflammatory biomarkers. A higher PC-1 score was associated with lower baseline cognitive performances. No association of this profile with cognitive decline was observed in longitudinal analysis. However, PC-5 characterized by high PDGF-AA and RANTES was associated with a faster cognitive decline. Among older adults, a circulating pro-inflammatory immune profile is associated with lower baseline cognitive performance, and some specific pro-inflammatory cytokines might be associated with faster cognitive decline.
Collapse
Affiliation(s)
- Aline Thomas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jing Guo
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Dolly Reyes-Dumeyer
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Danurys Sanchez
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - Nikolaos Scarmeas
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Jennifer J Manly
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Adam M Brickman
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Rafael A Lantigua
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
| | - Richard Mayeux
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Yian Gu
- Taub Institute for Research On Alzheimer's Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA.
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY, 10032, USA.
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA.
- Departments of Neurology and Epidemiology, Taub Institute, and Sergievsky Center, Columbia University Irving Medical Center, 622 W 168Th St., New York, NY, 10032, USA.
| |
Collapse
|
3
|
Righi D, Manco C, Pardini M, Stufano A, Schino V, Pelagotti V, Massa F, Stefano ND, Plantone D. Investigating interleukin-8 in Alzheimer's disease: A comprehensive review. J Alzheimers Dis 2025; 103:38-55. [PMID: 39558604 DOI: 10.1177/13872877241298973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Several studies indicate that the development of Alzheimer's disease (AD) has strong interactions with immune mechanisms within the brain, indicating a close association between inflammation in the central nervous system and the progression of neurodegeneration. Despite considerable progress in understanding the inflammatory aspects of AD, several of them remain unresolved. Pro-inflammatory cytokines and microglia are pivotal components in the inflammatory cascade. Among these, the role of interleukin-8 (IL-8) in neurodegeneration seems complex and multifaceted, involving inflammation, neurotoxicity, blood-brain barrier disruption, and oxidative stress, and is still poorly characterized. We conducted a review to describe the evidence of IL-8 involvement in AD. IL-8 is a cytokine known for its proinflammatory properties and typically produced by macrophages, predominantly functions as a chemotactic signal for attracting neutrophils to inflamed sites in the bloodstream. Interestingly, IL-8 is also present in the brain, where it is primarily released by microglia in response to inflammatory signals. This review aims to provide a comprehensive overview of the structure, function, and regulatory mechanisms of IL-8 relevant to AD pathology.
Collapse
Affiliation(s)
- Delia Righi
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Carlo Manco
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Angela Stufano
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Valentina Schino
- Department of Interdisciplinary Medicine, University of Bari Aldo Moro, Bari, Italy
| | - Virginia Pelagotti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genova, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Domenico Plantone
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
4
|
Di Molfetta G, Pola I, Tan K, Isaacson R, Blennow K, Ashton NJ, Benedet AL, Zetterberg H. Inflammation biomarkers and Alzheimer's disease: A pilot study using NULISAseq. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2025; 17:e70079. [PMID: 39886321 PMCID: PMC11780250 DOI: 10.1002/dad2.70079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/16/2024] [Accepted: 01/03/2025] [Indexed: 02/01/2025]
Abstract
INTRODUCTION Increasing evidence links amyloid beta (Aβ) aggregation with inflammation. This pilot study investigated the use of an immunoassay panel to map biomarker changes in patients with Alzheimer's disease (AD). Furthermore, we evaluated the stability of protein quantification after multiple freeze-thaw cycles (FTCs). METHODS The nucleic acid-linked immuno-sandwich assay (NULISA) inflammation panel measured 203 proteins in serum samples of individuals with (n = 31) and without (n = 31) AD pathology. Linear models, adjusted for age and sex, contrasted protein expression across groups. RESULTS After multiple-testing adjustments, glial fibrillary acidic protein (p < 0.001) and S100A12 (p < 0.001) were significantly changed in the presence of AD pathology. Furthermore, they correlated with cerebrospinal fluid biomarkers (phosphorylated tau-181 [p-tau181], tau, and Aβ42). Additional markers were nominally changed between groups. Five FTCs caused minimal changes in measurements with the NULISA inflammation panel. DISCUSSION Monitoring of inflammation in AD, using the 200-plex NULISA panel, demonstrates changes in peripherally circulating inflammation-related proteins. Contrary to previous reports, FTCs had minimal impact on the quantification of inflammatory markers. Highlights The novel nucleic acid-linked immuno-sandwich assay (NULISA) inflammation panel, which includes 200 protein biomarkers, was used.The panel was used for the first time in serum from patients with Alzheimer's disease (AD).The protein S100A12 was identified as a potential biomarker for AD.Inflammation markers were stable in up to five freeze-thaw cycles.
Collapse
Affiliation(s)
- Guglielmo Di Molfetta
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Ilaria Pola
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Kubra Tan
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Richard Isaacson
- Department of NeurologyWeill Cornell Medicine and New York‐PresbyterianNew YorkNew YorkUSA
- Department of NeurologyCharles E. Schmidt College of MedicineFlorida Atlantic UniversityBoca RatonFloridaUSA
| | - Kaj Blennow
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Paris Brain Institute, ICMPitié‐Salpêtrière HospitalSorbonne UniversityParisFrance
- Neurodegenerative Disorder Research CenterDivision of Life Sciences and MedicineandDepartment of NeurologyInstitute on Aging and Brain DisordersUniversity of Science and Technology of China and First Affiliated Hospital of USTCHefeiPR China
| | - Nicholas J. Ashton
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Banner Alzheimer's InstituteUniversity of ArizonaPhoenixArizonaUSA
- Banner Sun Health Research InstituteSun CityArizonaUSA
| | - Andrea L. Benedet
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
| | - Henrik Zetterberg
- Department of Psychiatry and NeurochemistryInstitute of Neuroscience & PhysiologyThe Sahlgrenska Academy at the University of GothenburgMölndalSweden
- Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
- Dementia Research CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
- UK Dementia Research Institute at UCLLondonUK
| |
Collapse
|
5
|
Roy N, Haq I, Ngo JC, Bennett DA, Teich AF, De Jager PL, Olah M, Sher F. Elevated expression of the retrotransposon LINE-1 drives Alzheimer's disease-associated microglial dysfunction. Acta Neuropathol 2024; 148:75. [PMID: 39604588 PMCID: PMC11602836 DOI: 10.1007/s00401-024-02835-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/05/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Aberrant activity of the retrotransposable element long interspersed nuclear element-1 (LINE-1) has been hypothesized to contribute to cellular dysfunction in age-related disorders, including late-onset Alzheimer's disease (LOAD). However, whether LINE-1 is differentially expressed in cell types of the LOAD brain, and whether these changes contribute to disease pathology is largely unknown. Here, we examined patterns of LINE-1 expression across neurons, astrocytes, oligodendrocytes, and microglia in human postmortem prefrontal cortex tissue from LOAD patients and cognitively normal, age-matched controls. We report elevated immunoreactivity of the open reading frame 1 protein (ORF1p) encoded by LINE-1 in microglia from LOAD patients and find that this immunoreactivity correlates positively with disease-associated microglial morphology. In human iPSC-derived microglia (iMG), we found that CRISPR-mediated transcriptional activation of LINE-1 drives changes in microglial morphology and cytokine secretion and impairs the phagocytosis of amyloid beta (Aβ). We also find LINE-1 upregulation in iMG induces transcriptomic changes genes associated with antigen presentation and lipid metabolism as well as impacting the expression of many AD-relevant genes. Our data posit that heightened LINE-1 expression may trigger microglial dysregulation in LOAD and that these changes may contribute to disease pathogenesis, suggesting a central role for LINE-1 activity in human LOAD.
Collapse
Affiliation(s)
- Nainika Roy
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Imdadul Haq
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Jason C Ngo
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Andrew F Teich
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Marta Olah
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Falak Sher
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY, USA.
- Taub Institute for Research On Alzheimer's Disease and Aging Brain, Columbia University Medical Center, New York, NY, USA.
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Dhauria M, Mondal R, Deb S, Shome G, Chowdhury D, Sarkar S, Benito-León J. Blood-Based Biomarkers in Alzheimer's Disease: Advancing Non-Invasive Diagnostics and Prognostics. Int J Mol Sci 2024; 25:10911. [PMID: 39456697 PMCID: PMC11507237 DOI: 10.3390/ijms252010911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is expected to rise dramatically in incidence due to the global population aging. Traditional diagnostic approaches, such as cerebrospinal fluid analysis and positron emission tomography, are expensive and invasive, limiting their routine clinical use. Recent advances in blood-based biomarkers, including amyloid-beta, phosphorylated tau, and neurofilament light, offer promising non-invasive alternatives for early AD detection and disease monitoring. This review synthesizes current research on these blood-based biomarkers, highlighting their potential to track AD pathology and enhance diagnostic accuracy. Furthermore, this review uniquely integrates recent findings on protein-protein interaction networks and microRNA pathways, exploring novel combinations of proteomic, genomic, and epigenomic biomarkers that provide new insights into AD's molecular mechanisms. Additionally, we discuss the integration of these biomarkers with advanced neuroimaging techniques, emphasizing their potential to revolutionize AD diagnostics. Although large-scale validation is still needed, these biomarkers represent a critical advancement toward more accessible, cost-effective, and early diagnostic tools for AD.
Collapse
Affiliation(s)
| | - Ritwick Mondal
- Department of Clinical Pharmacology and Therapeutic Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India;
| | - Shramana Deb
- Department of Stroke Medicine, Institute of Neuroscience, Kolkata 700017, India;
| | - Gourav Shome
- Department of Biological Sciences, Bose Institute, Kolkata 700054, India;
| | - Dipanjan Chowdhury
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Shramana Sarkar
- Department of Internal Medicine, IPGMER and SSKM Hospital, Kolkata 700020, India; (D.C.); (S.S.)
| | - Julián Benito-León
- Department of Neurology, University Hospital “12 de Octubre”, ES-28041 Madrid, Spain
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), ES-28041 Madrid, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ES-28029 Madrid, Spain
- Department of Medicine, Complutense University, ES-28040 Madrid, Spain
| |
Collapse
|
7
|
Li QY, Fu Y, Cui XJ, Wang ZT, Tan L, for the Alzheimer’s Disease Neuroimaging Initiative. Association of modified dementia risk score with cerebrospinal fluid biomarkers and cognition in adults without dementia. Front Aging Neurosci 2024; 16:1339163. [PMID: 39081396 PMCID: PMC11286572 DOI: 10.3389/fnagi.2024.1339163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Introduction This study aimed to investigate the cognitive profile and prospective cognitive changes in non-demented adults with elevated Modified Dementia Risk Scores (MDRS), while also exploring the potential relationship between these associations and cerebrospinal fluid (CSF) biomarkers of Alzheimer's disease (AD) pathology and neuroinflammation. Methods Within the Chinese Alzheimer's Biomarker and LifestylE (CABLE) database, 994 participants without dementia were assessed on MDRS, CSF biomarkers and cognition. We examined the associations of the MDRS with CSF biomarkers and cognitive scores using linear regressions. Causal mediation analyses were conducted to analyze the associations among MDRS, brain pathologies, and cognition. The Alzheimer's Disease Neuroimaging Initiative (ADNI) study was used to validate the mediation effects and to investigate the longitudinal association between MDRS and cognitive decline. Results The results revealed that higher MDRS were linked to poorer cognitive performance (Model 1: PFDR < 0.001; Model 2: PFDR < 0.001) and increases in CSF levels of phosphorylated tau (P-tau, Model 1: PFDR < 0.001; Model 2: PFDR < 0.001), total tau (T-tau, Model 1: PFDR < 0.001; Model 2: PFDR < 0.001), P-tau/Aβ42 ratio (Model 1: PFDR = 0.023; Model 2: PFDR = 0.028), T-tau/Aβ42 ratio (Model 1: PFDR < 0.001; Model 2: PFDR < 0.001) and soluble triggering receptor expressed on myeloid cells 2 (sTrem2, Model 1: PFDR < 0.001; Model 2: PFDR < 0.001) in the CABLE study. The impact of MDRS on cognition was partially mediated by neuroinflammation and tau pathology. These mediation effects were replicated in the ADNI study. Baseline MDRS were significantly associated with future cognitive decline, as indicated by lower scores on the Mini-Mental State Examination (MMSE, Model 1: PFDR = 0.045; Model 2: PFDR < 0.001), ADNI composite memory score (ADNI-MEM, Model 1: PFDR = 0.005; Model 2: PFDR < 0.001), ADNI composite executive function score (ADNI-EF, Model 1: PFDR = 0.045; Model 2: PFDR < 0.001), and higher score on the Alzheimer's Disease Assessment Scale (ADAS13, Model 1: PFDR = 0.045; Model 2: PFDR < 0.001). Discussion The findings of this study revealed significant associations between MDRS and cognitive decline, suggesting a potential role of tau pathology and neuroinflammation in the link between MDRS and poorer cognitive performance in individuals without dementia. Consequently, the MDRS holds promise as a tool for targeted preventive interventions in individuals at high risk of cognitive impairment.
Collapse
Affiliation(s)
- Qiong-Yao Li
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xin-Jing Cui
- Department of Outpatient, Qingdao Municipal Hospital, Qingdao, China
| | - Zuo-Teng Wang
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
- Department of Neurology, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | | |
Collapse
|
8
|
Garmendia JV, De Sanctis CV, Das V, Annadurai N, Hajduch M, De Sanctis JB. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol 2024; 22:1080-1109. [PMID: 37898823 PMCID: PMC10964103 DOI: 10.2174/1570159x22666231017141636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/03/2023] [Indexed: 10/30/2023] Open
Abstract
Neurodegenerative disease (ND) incidence has recently increased due to improved life expectancy. Alzheimer's (AD) or Parkinson's disease (PD) are the most prevalent NDs. Both diseases are poly genetic, multifactorial and heterogenous. Preventive medicine, a healthy diet, exercise, and controlling comorbidities may delay the onset. After the diseases are diagnosed, therapy is needed to slow progression. Recent studies show that local, peripheral and age-related inflammation accelerates NDs' onset and progression. Patients with autoimmune disorders like inflammatory bowel disease (IBD) could be at higher risk of developing AD or PD. However, no increase in ND incidence has been reported if the patients are adequately diagnosed and treated. Autoantibodies against abnormal tau, β amyloid and α- synuclein have been encountered in AD and PD and may be protective. This discovery led to the proposal of immune-based therapies for AD and PD involving monoclonal antibodies, immunization/ vaccines, pro-inflammatory cytokine inhibition and anti-inflammatory cytokine addition. All the different approaches have been analysed here. Future perspectives on new therapeutic strategies for both disorders are concisely examined.
Collapse
Affiliation(s)
- Jenny Valentina Garmendia
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Claudia Valentina De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Viswanath Das
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Narendran Annadurai
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
| | - Marián Hajduch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| | - Juan Bautista De Sanctis
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, The Czech Republic
- The Czech Advanced Technology and Research Institute (Catrin), Palacky University, Olomouc, The Czech Republic
| |
Collapse
|
9
|
Ma W, Liu A, Wu X, Gao L, Chen J, Wu H, Liu M, Fan Y, Peng L, Yang J, Kong J, Li B, Ji Z, Dong Y, Luo S, Song J, Bao F. The intricate role of CCL5/CCR5 axis in Alzheimer disease. J Neuropathol Exp Neurol 2023; 82:894-900. [PMID: 37769321 PMCID: PMC10587995 DOI: 10.1093/jnen/nlad071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023] Open
Abstract
The morbidity and mortality associated with Alzheimer disease (AD), one of the most common neurodegenerative diseases, are increasing each year. Although both amyloid β and tau proteins are known to be involved in AD pathology, their detailed functions in the pathogenesis of the disease are not fully understood. There is increasing evidence that neuroinflammation contributes to the development and progression of AD, with astrocytes, microglia, and the cytokines and chemokines they secrete acting coordinately in these processes. Signaling involving chemokine (C-C motif) ligand 5 (CCL5) and its main receptor C-C chemokine receptor 5 (CCR5) plays an important role in normal physiologic processes as well as pathologic conditions such as neurodegeneration. In recent years, many studies have shown that the CCL5/CCR5 axis plays a major effect in the pathogenesis of AD, but there are also a few studies that contradict this. In short, the role of CCL5/CCR5 axis in the pathogenesis of AD is still intricate. This review summarizes the structure, distribution, physiologic functions of the CCL5/CCR5 axis, and the progress in understanding its involvement in the pathogenesis of AD.
Collapse
Affiliation(s)
- Weijiang Ma
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Aihua Liu
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, Yunnan, China
| | - Xinya Wu
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Li Gao
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Jingjing Chen
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Hanxin Wu
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Meixiao Liu
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Yuxin Fan
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Li Peng
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Jiaru Yang
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Jing Kong
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Bingxue Li
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Zhenhua Ji
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Yan Dong
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Suyi Luo
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Jieqin Song
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
| | - Fukai Bao
- Evidence-Based Medicine Team, Faculty of Basic Medical Sciences, The Institute for Tropical Medicine, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Province Key Laboratory of Children’s Major Diseases Research, The Affiliated Children Hospital, Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
10
|
de la Monte SM, Tong M, Hapel AJ. Concordant and Discordant Cerebrospinal Fluid and Plasma Cytokine and Chemokine Responses in Mild Cognitive Impairment and Early-Stage Alzheimer's Disease. Biomedicines 2023; 11:2394. [PMID: 37760836 PMCID: PMC10525668 DOI: 10.3390/biomedicines11092394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Neuroinflammation may be a pathogenic mediator and biomarker of neurodegeneration at the boundary between mild cognitive impairment (MCI) and early-stage Alzheimer's disease (AD). Whether neuroinflammatory processes are endogenous to the central nervous system (CNS) or originate from systemic (peripheral blood) sources could impact strategies for therapeutic intervention. To address this issue, we measured cytokine and chemokine immunoreactivities in simultaneously obtained lumbar puncture cerebrospinal fluid (CSF) and serum samples from 39 patients including 18 with MCI or early AD and 21 normal controls using a 27-plex XMAP bead-based enzyme-linked immunosorbent assay (ELISA). The MCI/AD combined group had significant (p < 0.05 or better) or statistically trend-wise (0.05 ≤ p ≤ 0.10) concordant increases in CSF and serum IL-4, IL-5, IL-9, IL-13, and TNF-α and reductions in GM-CSF, b-FGF, IL-6, IP-10, and MCP-1; CSF-only increases in IFN-y and IL-7 and reductions in VEGF and IL-12p70; serum-only increases in IL-1β, MIP-1α, and eotaxin and reductions in G-CSF, IL-2, IL-8 and IL-15; and discordant CSF-serum responses with reduced CSF and increased serum PDGF-bb, IL-17a, and RANTES. The results demonstrate simultaneously parallel mixed but modestly greater pro-inflammatory compared to anti-inflammatory or neuroprotective responses in CSF and serum. In addition, the findings show evidence that several cytokines and chemokines are selectively altered in MCI/AD CSF, likely corresponding to distinct neuroinflammatory responses unrelated to systemic pathologies. The aggregate results suggest that early management of MCI/AD neuroinflammation should include both anti-inflammatory and pro-neuroprotective strategies to help prevent disease progression.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology (Neuropathology), Neurology, and Neurosurgery, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Andrew J. Hapel
- Department of Genome Biology, John Curtin School of Medical Research, Australian National University, Canberra 2601, Australia;
| |
Collapse
|
11
|
Wu YG, Song LJ, Yin LJ, Yin JJ, Wang Q, Yu JZ, Xiao BG, Ma CG. The effects and potential of microglial polarization and crosstalk with other cells of the central nervous system in the treatment of Alzheimer's disease. Neural Regen Res 2022; 18:947-954. [PMID: 36254973 PMCID: PMC9827789 DOI: 10.4103/1673-5374.355747] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system. During the pathogenesis of Alzheimer's disease, stimulatory factors continuously act on the microglia causing abnormal activation and unbalanced phenotypic changes; these events have become a significant and promising area of research. In this review, we summarize the effects of microglial polarization and crosstalk with other cells in the central nervous system in the treatment of Alzheimer's disease. Our literature search found that phenotypic changes occur continuously in Alzheimer's disease and that microglia exhibit extensive crosstalk with astrocytes, oligodendrocytes, neurons, and penetrated peripheral innate immune cells via specific signaling pathways and cytokines. Collectively, unlike previous efforts to modulate microglial phenotypes at a single level, targeting the phenotypes of microglia and the crosstalk with other cells in the central nervous system may be more effective in reducing inflammation in the central nervous system in Alzheimer's disease. This would establish a theoretical basis for reducing neuronal death from central nervous system inflammation and provide an appropriate environment to promote neuronal regeneration in the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Yi-Ge Wu
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Li-Juan Song
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Li-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jun-Jun Yin
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qing Wang
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China
| | - Jie-Zhong Yu
- Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China
| | - Bao-Guo Xiao
- Institute of Neurology, Huashan Hospital, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Cun-Gen Ma
- The Key Research Laboratory of Benefiting Qi for Acting Blood Circulation Method to Treat Multiple Sclerosis of State Administration of Traditional Chinese Medicine/Research Center of Neurobiology, Shanxi University of Chinese Medicine, Jinzhong, Shanxi Province, China,Institute of Brain Science/Shanxi Key Laboratory of Inflammatory Neurodegenerative Diseases/Medical School, Shanxi Datong University, Datong, Shanxi Province, China,Correspondence to: Cun-Gen Ma, .
| |
Collapse
|
12
|
Koca S, Kiris I, Sahin S, Cinar N, Karsidag S, Hanagasi HA, Yildiz GB, Tarik Baykal A. Decreased levels of cytokines implicate altered immune response in plasma of moderate-stage Alzheimer's disease patients. Neurosci Lett 2022; 786:136799. [PMID: 35842208 DOI: 10.1016/j.neulet.2022.136799] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022]
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disease characterized by the accumulation of amyloid plaques and neurofibrillary tangles in the brain. However, increasing evidence suggests that the pathogenesis of the disease is associated with peripheral inflammation. Here, we aimed to determine plasma concentrations of multiple cytokines and chemokines from moderate-stage AD and age-matched controls. Changes in a total of 20 cytokines and chemokines in plasma of moderate-stage AD were evaluated by using quantitative microarray. Six of them, namely MCP-1, MIP-1a, MIP-1b, MMP-9, RANTES, and VEGF, were found to be significantly reduced in moderate-stage AD patients (n = 25) in comparison to age-matched and non-demented controls (n = 25). However, GM-CSF, GRO-α/β/γ, IFN- γ, IL-1α, IL-1β, IL-10, IL-12 p70, IL-13, IL-2, IL- 4, IL-5, IL-6, IL-8, and TNF-α showed no significant differences between the patient and control groups. On the contrary to previous early-stage AD studies that show increased plasma cytokine/chemokine levels, our results indicate that inflammatory plasma molecules are reduced in moderate-stage AD. This finding points out the reduced immune responsiveness, which is known to be directly correlated to the degree of AD.
Collapse
Affiliation(s)
- Sebile Koca
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Irem Kiris
- Department of Biochemistry and Molecular Biology, Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Sevki Sahin
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Nilgun Cinar
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Sibel Karsidag
- Department of Neurology, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Hasmet A Hanagasi
- Department of Neurology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Gulsen B Yildiz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Ahmet Tarik Baykal
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.
| |
Collapse
|
13
|
Role of Chemokines in the Development and Progression of Alzheimer's Disease. J Mol Neurosci 2022; 72:1929-1951. [PMID: 35821178 PMCID: PMC9392685 DOI: 10.1007/s12031-022-02047-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022]
Abstract
Alzheimer’s disease (AD) is a progressive neurogenerative disorder manifested by gradual memory loss and cognitive decline due to profound damage of cholinergic neurons. The neuropathological hallmarks of AD are intracellular deposits of neurofibrillary tangles (NFTs) and extracellular aggregates of amyloid β (Aβ). Mounting evidence indicates that intensified neuroinflammatory processes play a pivotal role in the pathogenesis of AD. Chemokines serve as signaling molecules in immune cells but also in nerve cells. Under normal conditions, neuroinflammation plays a neuroprotective role against various harmful factors. However, overexpression of chemokines initiates disruption of the integrity of the blood–brain barrier, facilitating immune cells infiltration into the brain. Then activated adjacent glial cells–astrocytes and microglia, release massive amounts of chemokines. Prolonged inflammation loses its protective role and drives an increase in Aβ production and aggregation, impairment of its clearance, or enhancement of tau hyperphosphorylation, contributing to neuronal loss and exacerbation of AD. Moreover, chemokines can be further released in response to growing deposits of toxic forms of Aβ. On the other hand, chemokines seem to exert multidimensional effects on brain functioning, including regulation of neurogenesis and synaptic plasticity in regions responsible for memory and cognitive abilities. Therefore, underexpression or complete genetic ablation of some chemokines can worsen the course of AD. This review covers the current state of knowledge on the role of particular chemokines and their receptors in the development and progression of AD. Special emphasis is given to their impact on forming Aβ and NFTs in humans and in transgenic murine models of AD.
Collapse
|
14
|
Varesi A, Carrara A, Pires VG, Floris V, Pierella E, Savioli G, Prasad S, Esposito C, Ricevuti G, Chirumbolo S, Pascale A. Blood-Based Biomarkers for Alzheimer's Disease Diagnosis and Progression: An Overview. Cells 2022; 11:1367. [PMID: 35456047 PMCID: PMC9044750 DOI: 10.3390/cells11081367] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disease characterized by amyloid-β (Aβ) plaque deposition and neurofibrillary tangle accumulation in the brain. Although several studies have been conducted to unravel the complex and interconnected pathophysiology of AD, clinical trial failure rates have been high, and no disease-modifying therapies are presently available. Fluid biomarker discovery for AD is a rapidly expanding field of research aimed at anticipating disease diagnosis and following disease progression over time. Currently, Aβ1-42, phosphorylated tau, and total tau levels in the cerebrospinal fluid are the best-studied fluid biomarkers for AD, but the need for novel, cheap, less-invasive, easily detectable, and more-accessible markers has recently led to the search for new blood-based molecules. However, despite considerable research activity, a comprehensive and up-to-date overview of the main blood-based biomarker candidates is still lacking. In this narrative review, we discuss the role of proteins, lipids, metabolites, oxidative-stress-related molecules, and cytokines as possible disease biomarkers. Furthermore, we highlight the potential of the emerging miRNAs and long non-coding RNAs (lncRNAs) as diagnostic tools, and we briefly present the role of vitamins and gut-microbiome-related molecules as novel candidates for AD detection and monitoring, thus offering new insights into the diagnosis and progression of this devastating disease.
Collapse
Affiliation(s)
- Angelica Varesi
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy
- Almo Collegio Borromeo, 27100 Pavia, Italy
| | - Adelaide Carrara
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Vitor Gomes Pires
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA;
| | - Valentina Floris
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100 Pavia, Italy; (A.C.); (V.F.)
| | - Elisa Pierella
- School of Medicine, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Gabriele Savioli
- Emergency Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Sakshi Prasad
- Faculty of Medicine, National Pirogov Memorial Medical University, 21018 Vinnytsya, Ukraine;
| | - Ciro Esposito
- Unit of Nephrology and Dialysis, ICS Maugeri, University of Pavia, 27100 Pavia, Italy;
| | - Giovanni Ricevuti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37129 Verona, Italy;
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
15
|
microRNA, a Subtle Indicator of Human Cytomegalovirus against Host Immune Cells. Vaccines (Basel) 2022; 10:vaccines10020144. [PMID: 35214602 PMCID: PMC8874957 DOI: 10.3390/vaccines10020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a double-stranded DNA virus that belongs to the β-herpesvirus family and infects 40–90% of the adult population worldwide. HCMV infection is usually asymptomatic in healthy individuals but causes serious problems in immunocompromised people. We restricted this narrative review (PubMed, January 2022) to demonstrate the interaction and molecular mechanisms between the virus and host immune cells with a focus on HCMV-encoded miRNAs. We found a series of HCMV-encoded miRNAs (e.g., miR-UL112 and miR-UL148D) are explicitly involved in the regulation of viral DNA replication, immune evasion, as well as host cell fate. MiRNA-targeted therapies have been explored for the treatment of atherosclerosis, cardiovascular disease, cancer, diabetes, and hepatitis C virus infection. It is feasible to develop an alternative vaccine to restart peripheral immunity or to inhibit HCMV activity, which may contribute to the antiviral intervention for serious HCMV-related diseases.
Collapse
|
16
|
Ghosh P, Singh R, Ganeshpurkar A, Pokle AV, Singh RB, Singh SK, Kumar A. Cellular and molecular influencers of neuroinflammation in Alzheimer's disease: Recent concepts & roles. Neurochem Int 2021; 151:105212. [PMID: 34656693 DOI: 10.1016/j.neuint.2021.105212] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/22/2021] [Accepted: 10/10/2021] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD), an extremely common neurodegenerative disorder of the older generation, is one of the leading causes of death globally. Besides the conventional hallmarks i.e. Amyloid-β (Aβ) plaques and neurofibrillary tangles (NFTs), neuroinflammation also serves as a major contributing factor in the pathogenesis of AD. There are mounting evidences to support the fundamental role of cellular (microglia, astrocytes, mast cells, and T-cells) and molecular (cytokines, chemokines, caspases, and complement proteins) influencers of neuroinflammation in producing/promoting neurodegeneration and dementia in AD. Genome-wide association studies (GWAS) have revealed the involvement of various single nucleotide polymorphisms (SNPs) of genes related to neuroinflammation with the risk of developing AD. Modulating the release of the neuroinflammatory molecules and targeting their relevant mechanisms may have beneficial effects on the onset, progress and severity of the disease. Here, we review the distinct role of various mediators and modulators of neuroinflammation that impact the pathogenesis and progression of AD as well as incite further research efforts for the treatment of AD through a neuroinflammatory approach.
Collapse
Affiliation(s)
- Powsali Ghosh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Ganeshpurkar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ankit Vyankatrao Pokle
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ravi Bhushan Singh
- Institute of Pharmacy Harischandra PG College, Bawanbigha, Varanasi, India
| | - Sushil Kumar Singh
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Ashok Kumar
- Pharmaceutical Chemistry Research Laboratory 1, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
17
|
van der Linden RJ, De Witte W, Poelmans G. Shared Genetic Etiology between Alzheimer's Disease and Blood Levels of Specific Cytokines and Growth Factors. Genes (Basel) 2021; 12:genes12060865. [PMID: 34198788 PMCID: PMC8226721 DOI: 10.3390/genes12060865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 01/24/2023] Open
Abstract
Late-onset Alzheimer’s disease (AD) has a significant genetic and immunological component, but the molecular mechanisms through which genetic and immunity-related risk factors and their interplay contribute to AD pathogenesis are unclear. Therefore, we screened for genetic sharing between AD and the blood levels of a set of cytokines and growth factors to elucidate how the polygenic architecture of AD affects immune marker profiles. For this, we retrieved summary statistics from Finnish genome-wide association studies of AD and 41 immune marker blood levels and assessed for shared genetic etiology, using a polygenic risk score-based approach. For the blood levels of 15 cytokines and growth factors, we identified genetic sharing with AD. We also found positive and negative genetic concordances—implying that genetic risk factors for AD are associated with higher and lower blood levels—for several immune markers and were able to relate some of these results to the literature. Our results imply that genetic risk factors for AD also affect specific immune marker levels, which may be leveraged to develop novel treatment strategies for AD.
Collapse
|