1
|
Pereira AP, Antunes P, Peixe L, Freitas AR, Novais C. Current insights into the effects of cationic biocides exposure on Enterococcus spp. Front Microbiol 2024; 15:1392018. [PMID: 39006755 PMCID: PMC11242571 DOI: 10.3389/fmicb.2024.1392018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/04/2024] [Indexed: 07/16/2024] Open
Abstract
Cationic biocides (CBs), such as quaternary ammonium compounds and biguanides, are critical for controlling the spread of bacterial pathogens like Enterococcus spp., a leading cause of multidrug-resistant healthcare-associated infections. The widespread use of CBs in recent decades has prompted concerns about the potential emergence of Enterococcus spp. populations exhibiting resistance to both biocides and antibiotics. Such concerns arise from their frequent exposure to subinhibitory concentrations of CBs in clinical, food chain and diverse environmental settings. This comprehensive narrative review aimed to explore the complexity of the Enterococcus' response to CBs and of their possible evolution toward resistance. To that end, CBs' activity against diverse Enterococcus spp. collections, the prevalence and roles of genes associated with decreased susceptibility to CBs, and the potential for co- and cross-resistance between CBs and antibiotics are reviewed. Significant methodological and knowledge gaps are identified, highlighting areas that future studies should address to enhance our comprehension of the impact of exposure to CBs on Enterococcus spp. populations' epidemiology. This knowledge is essential for developing effective One Health strategies that ensure the continued efficacy of these critical agents in safeguarding Public Health.
Collapse
Affiliation(s)
- Ana P Pereira
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana R Freitas
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- 1H-TOXRUN, One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Gandra, Portugal
| | - Carla Novais
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
2
|
Miranda TC, Andrade JFM, Gelfuso GM, Cunha-Filho M, Oliveira LA, Gratieri T. Novel technologies to improve the treatment of endodontic microbial infections: Inputs from a drug delivery perspective. Int J Pharm 2023; 635:122794. [PMID: 36870400 DOI: 10.1016/j.ijpharm.2023.122794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Endodontic microbial infections are still a challenge for an effective treatment for being biofilm-mediated and very refractory to conventional therapies. Biomechanical preparation and chemical irrigants cannot fully eradicate biofilms due to the anatomic structure of the root canal system. Instruments employed in biomechanical preparation and irrigants solution cannot reach the narrow and deepest portion of root canals, especially the apical thirds. In addition, aside from the dentin surface, biofilms can also infiltrate dentine tubules and periapical tissues, compromising treatment success. Therefore, different technologies have been investigated to achieve a more effective outcome in the control of endodontic infections. However, these technologies continue to face great difficulties in reaching the apical region and eradicating biofilms to avoid the recurrence of infection. Here, we present an overview of the fundamentals of endodontics infections and review technologies currently available for root canal treatment. We discuss them from a drug delivery perspective, highlighting each technology's strength to envision the best use of these technologies.
Collapse
Affiliation(s)
- Thamires C Miranda
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Jayanaraian F M Andrade
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Guilherme M Gelfuso
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Marcilio Cunha-Filho
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Laudimar A Oliveira
- Department of Dentistry, Faculty of Health Sciences, University of Brasilia, 70910-900, Brasília, DF, Brazil
| | - Tais Gratieri
- Laboratory of Food, Drugs, and Cosmetics (LTMAC), University of Brasilia, 70910-900, Brasília, DF, Brazil.
| |
Collapse
|
3
|
Ribeiro AV, Velásquez-Espedilla EG, de Barros MC, de Melo Simas LL, de Andrade FB. Influence of Gutta-Percha Surface on Enterococcus faecalis Initial Adhesion In Vitro: An Atomic Force Microscopy Study. Life (Basel) 2023; 13:life13020456. [PMID: 36836813 PMCID: PMC9958639 DOI: 10.3390/life13020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The aim of this study was to evaluate the influence of surface topography of gutta-percha (GP) cones and plasticized disks of GP on the initial adhesion of Enterococcus faecalis (E. faecalis). The GP cones (Tanari and Dentsply brands) were cut 3 mm from the apical portion and fixed on a glass slide. To make the disks, the cones were thermoplasticized in standardized molds. The specimens were divided into groups according to the shape of the GP and the presence or absence of the bacteria. For contamination, the strain of E. faecalis (ATCC 29212) was used. The surface topography was analyzed using an atomic force microscope (AFM). The surface, roughness, and waviness parameters were evaluated by the Kruskal-Wallis and Dunn test. The comparison between disks and cones showed significant differences, where the cones were rougher, with a higher value attributed to the Dentsply cone (DC group). The same was observed for the waviness. After contamination, there was greater bacterial accumulation in cones, especially in their valleys, but both the surface and the topography became more homogeneous and smoother, with no differences between disks and cones of both brands. The topographic surface of the GP, at the micro and nanoscale, influences the initial adhesion of E. faecalis, with a greater tendency for contamination in regions associated with the presence of roughness and waviness. In this context, plasticization of GP is indicated, as it reduces surface irregularities compared to cones, contributing to less retention of bacteria.
Collapse
Affiliation(s)
- Allan Victor Ribeiro
- Department of Physics, Federal Institute of São Paulo, Birigui CEP 16201-407, SP, Brazil
| | - Evelyn Giuliana Velásquez-Espedilla
- Department of Dentistry, Endodontic and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru CEP 17012-901, SP, Brazil
| | - Mirela Cesar de Barros
- Department of Dentistry, Endodontic and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru CEP 17012-901, SP, Brazil
| | - Letícia Lobo de Melo Simas
- Department of Dentistry, Endodontic and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru CEP 17012-901, SP, Brazil
| | - Flaviana Bombarda de Andrade
- Department of Dentistry, Endodontic and Dental Materials, Bauru School of Dentistry, University of São Paulo, Bauru CEP 17012-901, SP, Brazil
- Correspondence: ; Tel.: +55-143235-8344
| |
Collapse
|
4
|
El-Gar YHA, Etman WM, Genaid TM, Al-Madboly LA. Potent Antibacterial and Antibiofilm Activities of a Synthetic Remineralizing Preparation of Nano-Hydroxyapatite Against Cariogenic Streptococcus mutans Using an Ex-vivo Animal Model. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.738326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AimThe aim to this study is to evaluate the biocompatibility and antibiofilm actions of two nano-hydroxy apatite (NHA).MethodologyNano-hydroxy apatites are biomaterials use in direct contact with living tissues. Therefore, they should be tested for their safety beside assessment of their minimum inhibitory (MIC) and minimum bactericidal concentration (MBC) using broth microdilution method. One hundred and twenty extracted bovine incisors were collected and cleaned to ensure the absence of any defects. Enamel blocks with different size (2 × 2 × 3 mm) and (5 × 5 × 2 mm) were prepared from their labial surfaces using an isomet saw. Enamel blocks are used for detecting the suitable concentration will be used in the following experiments using energy dispersive X-ray analysis (EDX). The remaining enamel blocks divided into 5 equal groups to detect inhibitory effect against bacterial adhesion to the initial enamel caries like lesions using viable count technique beside the antibiofilm activity against mature biofilm of Streptococcus mutans (S. mutans) using confocal laser microscopy. The remaining enamel blocks were used as a representing data for detecting surface topography for each group by using the scanning electron microscopy (SEM).ResultThe data showed safety of NHA suspensions. Additionally, only NHA suspension of large nanoparticle size (NHA-LPS) had MIC of 1.25 mg/ml against S. mutans. Also, have the higher percentages of Ca and P in the enamel blocks. Furthermore, the lowest level of bacterial adhesion was recorded in (group III) treated by NHA-LPS which was non-significantly different with the positive control group V. Biofilm thickness in group IV treated with NHA-small particle size (SPS) recorded high biofilm thickness followed by group III. Interestingly, group III showed greater killing effect against mature biofilm which is slightly higher than the positive control group V. In group III, surface topography revealed very smooth enamel surface with closed pores. Accordingly, NHA-LPS suspension had antiadhesive, antibacterial, and antibiofilm effect against cariogenic S. mutans representing a promising possibility to be recommended for safe effective remineralization.
Collapse
|
5
|
Lin X, Chi D, Gong Q, Tong Z. An in vitro study on the effects of serum proteins on Enterococcus faecalis adhesion to three types of root sealers and gutta-percha. BMC Oral Health 2021; 21:622. [PMID: 34876112 PMCID: PMC8650416 DOI: 10.1186/s12903-021-01992-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 11/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The extrusion of overfilled materials that extend beyond the apical foramina into the periradicular tissue may serve as a reservoir for bacterial adhesion and further affect recovery from periapical diseases. The aim of this study was to evaluate the effects of serum proteins on Enterococcus faecalis adhesion and survival on the surface of a calcium hydroxide-based root canal sealer (Apexit Plus), an epoxy resin sealer (AH-Plus) and a bioceramic sealer (iRoot SP). METHODS Apexit Plus, AH-Plus and iRoot SP were evenly coated on gutta-percha, using gutta-percha alone as the control. After root canal sealer setting, the number of E. faecalis adhering to the root canal sealers and gutta-percha was counted in fetal bovine serum (FBS) or tryptic soy broth supplemented with 1% glucose (TSBG) by viable cell plate counts. The morphology of 7-day-old E. faecalis biofilms in FSB and TSBG was observed by scanning electron microscopy (SEM). Furthermore, E. faecalis biofilms on the three root canal sealers were labeled with a LIVE/DEAD BacLight™ Bacterial Viability Kit, and the ratios of viable to dead cells were analyzed using laser scanning microscopy operative software (Zen software). RESULTS In the assays, after 1 and 7 days, the number of E. faecalis adhering to the root canal sealers or gutta-percha in FBS were significantly lower than those in TSBG (P < 0.05). In FBS, E. faecalis adhesion to iRoot SP and gutta-percha was reduced to a greater extent than that adhered to Apexit Plus and AH-Plus. Few E. faecalis accumulated on iRoot SP in FBS, whereas many bacteria assembled on iRoot SP and formed biofilms in TSBG. The ratio of viable cells in the E. faecalis biofilm on iRoot SP was the lowest. CONCLUSIONS Calcium hydroxide-based root canal sealers, epoxy resin sealers and bioceramic sealers may provide a substrate for E. faecalis adhesion, and the bioceramic sealer in this study showed the least E. faecalis adhesion in the presence of serum proteins compared to the other two sealers.
Collapse
Affiliation(s)
- Xinwei Lin
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-Sen University, No 56, Lingyuan West Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Danlu Chi
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-Sen University, No 56, Lingyuan West Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-Sen University, No 56, Lingyuan West Road, Guangzhou, 510055, Guangdong, China.,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhongchun Tong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-Sen University, No 56, Lingyuan West Road, Guangzhou, 510055, Guangdong, China. .,Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Keleş A, Keskin C, Kalkan M, Yakupoğulları Y, Gül M, Aydemir H, Şahin F. Visualization and characterization of Enterococcus faecalis biofilm structure in bovine dentin using 2D and 3D microscopic techniques. Arch Microbiol 2020; 203:269-277. [PMID: 32918096 DOI: 10.1007/s00203-020-02031-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/11/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Bacterial biofilms are related to various dental and periodontal infectious diseases, and the characterization of this biological structure with micro-computed tomography (micro-CT) may offer valuable information for clinical and research applications. In this study, we aimed to develop a model to visualize three-dimensionally the biofilm structure on dentin using micro-CT. Dentin blocks were prepared and incubated in tryptic soy broth with Enterococcus faecalis (ATCC 29212). The control group did not receive any staining procedure, while groups 1 and 2 were stained with 100% and 50% barium sulfate, respectively. Transmission electron microscopy (TEM) and confocal laser scanning microscopy (CLSM) were used to detect biofilm formation, barium sulfate penetration, and microbial cell density in the biofilm. Micro-computed tomography (micro-CT) (SkyScan 1172, Bruker Co., Belgium) was used to visualize biofilm formation on the dentin blocks. Biofilm thicknesses were measured from 10 different locations on the specimen surfaces, using CTAn v.1.14.4 software. Obtained data were statistically analyzed using Kruskal-Wallis and Dunn's tests. TEM photomicrographs showed that barium sulfate could penetrate the biofilm structure. CLSM analysis showed that viable and total cell densities were similar between the control and barium sulfate-treated groups (P > 0.05), indicating barium sulfate had no significant influence on cell density. In barium sulfate-treated blocks, biofilm could be discriminated from the dentin, and its thickness could be measured with micro-CT. This study showed that bacterial biofilm on dentin could be characterized by micro-CT after barium sulfate staining without causing any significant side effect on viable and total cell densities.
Collapse
Affiliation(s)
- Ali Keleş
- Department of Endodontics, Faculty of Dentistry, Ondokuz Mayıs University Samsun, Samsun, Turkey
| | - Cangül Keskin
- Department of Endodontics, Faculty of Dentistry, Ondokuz Mayıs University Samsun, Samsun, Turkey.
| | - Melis Kalkan
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| | - Yusuf Yakupoğulları
- Department of Medical Microbiology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Mehmet Gül
- Department of Histology and Embryology, Faculty of Medicine, İnönü University, Malatya, Turkey
| | - Hikmet Aydemir
- Department of Endodontics, Faculty of Dentistry, Ondokuz Mayıs University Samsun, Samsun, Turkey
| | - Fikrettin Şahin
- Department of Genetic and Bioengineering, Faculty of Engineering and Architecture, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
7
|
Prieto-Borja L, Conde A, Arenas MA, de Damborenea JJ, Esteban J. Influence of exposure time on the release of bacteria from a biofilm on Ti6Al4V discs using sonication: An in vitro model. Diagn Microbiol Infect Dis 2017; 89:258-261. [PMID: 29037465 DOI: 10.1016/j.diagmicrobio.2017.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 07/25/2017] [Accepted: 08/22/2017] [Indexed: 01/05/2023]
Abstract
Implant sonication is considered a useful method for the diagnosis of implant-related infections. We designed an in vitro study using Ti6Al4V discs and 5 different bacteria to determine the optimal sonication time for recovery of most bacteria tested to enable use of sonication in clinical practice for microbiological diagnosis of implant-related infections. We carried out a specific protocol for the adherence and subsequent biofilm formation on the materials used. The discs were then sonicated and the retrieved bacteria were quantified. From minute 1 to 5, the amount of recovered organisms grew progressively for all bacteria. Between minute 6 and minute 10, the number was irregular for all strains except E. coli, though no pattern was evidenced. E. coli was the only microorganism with a progressive increase in liberation throughout the process. Significant differences were observed in each of the 10minutes analyzed as concerns the release of the 5 strains (P<0.021) as well as in the mean dislodgement (of the 10minutes) of all tested strains (P<0.00001). Considering that infections in which biofilms are involved could be polymicrobial, we concluded that 5minutes is the optimal time of sonication in order to recover the maximum amount of most bacteria attached to Ti6Al4V discs.
Collapse
Affiliation(s)
- Laura Prieto-Borja
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.
| | - Ana Conde
- Centro Nacional de Investigaciones Metalúrgicas CENIM/CSIC, Madrid, Spain
| | - María A Arenas
- Centro Nacional de Investigaciones Metalúrgicas CENIM/CSIC, Madrid, Spain
| | | | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| |
Collapse
|