1
|
Rastogi A, Weir MR. Multimodal efforts to slow the progression of chronic kidney disease in patients with type 2 diabetes mellitus. J Diabetes Complications 2023; 37:108515. [PMID: 37356235 DOI: 10.1016/j.jdiacomp.2023.108515] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
In patients with chronic kidney disease (CKD) associated with type 2 diabetes mellitus (T2DM), slowing kidney disease progression is an important therapeutic goal. Many patients with T2DM and CKD also have cardiovascular (CV) comorbidities. Renin-angiotensin-aldosterone system inhibitors (RAASis), which include angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARBs), are drugs with known antihypertensive effects as well as CV and kidney protective effects in patients with CKD. Studies have shown that adding a sodium-glucose cotransporter-2 (SGLT2) inhibitor to ACEI or ARB therapy has additive benefits in terms of kidney and CV protection in patients with CKD (with/without T2DM). For patients with CKD associated with T2DM who have persistent albuminuria despite taking the maximum tolerated dose of a RAASi, adding a nonsteroidal mineralocorticoid receptor antagonist (finerenone) has demonstrated CV and kidney benefits in clinical trials. In this article, we review the use of ACEIs and ARBs for their kidney and CV protective effects when used alone or in combination with a drug with a different mechanism of action. From reviewing the available evidence, it seems clear that a multimodal drug effort is needed to achieve maximum kidney and CV protective effects for patients with CKD associated with T2DM.
Collapse
Affiliation(s)
- Anjay Rastogi
- David Geffen School of Medicine at UCLA, Los Angeles, CA, United States of America.
| | - Matthew R Weir
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
2
|
Kisacam MA, Kocamuftuoglu GO, Ufat H, Ozan ST. The evaluation of early stage oxidative status in streptozotocin induced diabetes in rats. Arch Physiol Biochem 2022; 128:1474-1478. [PMID: 32521173 DOI: 10.1080/13813455.2020.1776736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Early-stage diabetes can be defined as the stages before absolute insulin deficiency in patients. In this study, the early stage oxidative effect of streptozotocin(STZ) induced diabetes mellitus was evaluated. 28 male adult Sprague-Dawley rats were divided into four groups; control group and 7th, 14th, 21st days diabetic groups. Diabetic groups received single 65 mg/kg STZ injection intraperitoneally. Rats were decapitated at 7th, 14th and 21st days, liver tissues were taken. Nitric oxide(NO), malondialdehyde(MDA) levels and catalase, arginase activities were measured. MDA and NO levels were increased (respectively p < .001 and p < .01), mainly 14 and 21 days after STZ administration; moreover, while liver catalase activity was progressively decreased (p < .001), oppositely arginase was increased in the same time period (p < .01). Results show that MDA and nitric oxide together with catalase and arginase switch at an early stage of diabetes and they may contribute to subsequent complications related to diabetes via increased oxidative damage.
Collapse
Affiliation(s)
- Mehmet Ali Kisacam
- Department of Biochemistry, Faculty of Veterinary Medicine, Mustafa Kemal University, Hatay, Turkey
| | - Gonca Ozan Kocamuftuoglu
- Department of Biochemistry, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Hakan Ufat
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| | - Sema Temizer Ozan
- Department of Biochemistry, Faculty of Veterinary Medicine, Firat University, Elazig, Turkey
| |
Collapse
|
3
|
Dugbartey GJ, Alornyo KK, N'guessan BB, Atule S, Mensah SD, Adjei S. Supplementation of conventional anti-diabetic therapy with alpha-lipoic acid prevents early development and progression of diabetic nephropathy. Biomed Pharmacother 2022; 149:112818. [PMID: 35286963 DOI: 10.1016/j.biopha.2022.112818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is the leading cause of end-stage renal disease. Current pharmacological interventions only retard DN progression. Alpha-lipoic acid (ALA) is a potent antioxidant with beneficial effect in other diabetic complications. This study investigates whether ALA supplementation prevents early development and progression of DN. METHOD Fifty-eight male Sprague-Dawley rats were randomly assigned to healthy control and diabetic groups and subjected to overnight fasting. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). On day 3 after T2DM induction, diabetic rats received oral daily administration of ALA (60 mg/kg), gliclazide (15 mg/kg), ramipril (10 mg/kg) or drug combinations for 6 weeks. Untreated diabetic rats served as diabetic control. Blood, kidneys and pancreas were harvested for biochemical and histological analyses. RESULT Induction of T2DM resulted in hypoinsulinemia, hyperglycemia and renal pathology. ALA supplementation maintained β-cell function, normoinsulinemia and normoglycemia in diabetic rats, and prevented renal pathology (PAS, KIM-1, plasma creatinine, total protein, blood urea nitrogen, uric acid and urine albumin/creatinine ratio) and triglycerides level compared to diabetic control (p < 0.001). Additionally, ALA supplementation significantly prevented elevated serum and tissue malondialdehyde, collagen deposition, α-SMA expression, apoptosis and serum IL-1β and IL-6 levels while it markedly increased renal glutathione content and plasma HDL-C compared to diabetic control group (p < 0.001). CONCLUSION ALA supplementation prevents early development and progression of DN by exerting anti-hyperglycemic, antioxidant, anti-inflammatory, anti-fibrotic and anti-apoptotic effects. Our findings provide additional option for clinical treatment of DN in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana.
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Benoit B N'guessan
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Stephen Atule
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel D Mensah
- Department of Pathology, University of Ghana Dental School, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Samuel Adjei
- Department of Animal Experimentation, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| |
Collapse
|
4
|
Mei M, Zhou Z, Zhang Q, Chen Y, Zhao H, Shen B. Dual Blockade of the Renin-Angiotensin System: A Strategy that Should Be Reconsidered in Cardiorenal Diseases? Nephron Clin Pract 2021; 145:99-106. [PMID: 33550292 DOI: 10.1159/000513119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/16/2020] [Indexed: 11/19/2022] Open
Abstract
Studies on pharmacological mechanisms demonstrated that a strategy of dual renin-angiotensin system (RAS) blockade may have a synergistic effect in the treatment of cardiorenal diseases and may reduce adverse reactions. However, some previous clinical studies reported that dual RAS blockade did not significantly benefit many patients with cardiorenal diseases and increased the risk of hyperkalemia, hypotension and renal function damage. Therefore, the current clinical guidelines suggest that the combined use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) should be used with caution in the clinic. However, these studies enrolled older patients with cardiovascular risk factors, and the results of these trials may not be generalized to the overall population. Some clinical evidence suggests that the combination of low-dose ACEIs and ARBs leads to more effective RAS blockade with few adverse effects. The advent of new RAS inhibitors with superior pharmacological effects provides a more suitable drug choice for individualized therapy for dual RAS blockade. Therefore, the choice of appropriate ARBs/ACEIs for individualized therapy based on patient condition may be a better way to improve the efficiency and safety of the dual RAS blockade strategy.
Collapse
Affiliation(s)
- Mei Mei
- Department of Nephrology, The People's Hospital of Shapingba District, Chongqing, China
| | - Zulian Zhou
- Department of Nephrology, Qianjiang Central Hospital, Chongqing, China
| | - Qian Zhang
- Department of Nephrology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Yi Chen
- College of Pharmaceutical Sciences & Chinese Medicine, Southwest University, Chongqing, China
| | - Hongwen Zhao
- Department of Nephrology, The First Hospital Affiliated to Army Medical University, Chongqing, China
| | - Bingbing Shen
- Department of Nephrology, The First Hospital Affiliated to Army Medical University, Chongqing, China, .,Department of Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China,
| |
Collapse
|
5
|
Rossino MG, Dal Monte M, Casini G. Relationships Between Neurodegeneration and Vascular Damage in Diabetic Retinopathy. Front Neurosci 2019; 13:1172. [PMID: 31787868 PMCID: PMC6856056 DOI: 10.3389/fnins.2019.01172] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/16/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a common complication of diabetes and constitutes a major cause of vision impairment and blindness in the world. DR has long been described exclusively as a microvascular disease of the eye. However, in recent years, a growing interest has been focused on the contribution of neuroretinal degeneration to the pathogenesis of the disease, and there are observations suggesting that neuronal death in the early phases of DR may favor the development of microvascular abnormalities, followed by the full manifestation of the disease. However, the mediators that are involved in the crosslink between neurodegeneration and vascular changes have not yet been identified. According to our hypothesis, vascular endothelial growth factor (VEGF) could probably be the most important connecting link between the death of retinal neurons and the occurrence of microvascular lesions. Indeed, VEGF is known to play important neuroprotective actions; therefore, in the early phases of DR, it may be released in response to neuronal suffering, and it would act as a double-edged weapon inducing both neuroprotective and vasoactive effects. If this hypothesis is correct, then any retinal stress causing neuronal damage should be accompanied by VEGF upregulation and by vascular changes. Similarly, any compound with neuroprotective properties should also induce VEGF downregulation and amelioration of the vascular lesions. In this review, we searched for a correlation between neurodegeneration and vasculopathy in animal models of retinal diseases, examining the effects of different neuroprotective substances, ranging from nutraceuticals to antioxidants to neuropeptides and others and showing that reducing neuronal suffering also prevents overexpression of VEGF and vascular complications. Taken together, the reviewed evidence highlights the crucial role played by mediators such as VEGF in the relationship between retinal neuronal damage and vascular alterations and suggests that the use of neuroprotective substances could be an efficient strategy to prevent the onset or to retard the development of DR.
Collapse
Affiliation(s)
| | - Massimo Dal Monte
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| | - Giovanni Casini
- Department of Biology, University of Pisa, Pisa, Italy.,Interdepartmental Research Center Nutrafood "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Neuroprotective Peptides in Retinal Disease. J Clin Med 2019; 8:jcm8081146. [PMID: 31374938 PMCID: PMC6722704 DOI: 10.3390/jcm8081146] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
In the pathogenesis of many disorders, neuronal death plays a key role. It is now assumed that neurodegeneration is caused by multiple and somewhat converging/overlapping death mechanisms, and that neurons are sensitive to unique death styles. In this respect, major advances in the knowledge of different types, mechanisms, and roles of neurodegeneration are crucial to restore the neuronal functions involved in neuroprotection. Several novel concepts have emerged recently, suggesting that the modulation of the neuropeptide system may provide an entirely new set of pharmacological approaches. Neuropeptides and their receptors are expressed widely in mammalian retinas, where they exert neuromodulatory functions including the processing of visual information. In multiple models of retinal diseases, different peptidergic substances play neuroprotective actions. Herein, we describe the novel advances on the protective roles of neuropeptides in the retina. In particular, we focus on the mechanisms by which peptides affect neuronal death/survival and the vascular lesions commonly associated with retinal neurodegenerative pathologies. The goal is to highlight the therapeutic potential of neuropeptide systems as neuroprotectants in retinal diseases.
Collapse
|
7
|
Duan Y, Beli E, Li Calzi S, Quigley JL, Miller RC, Moldovan L, Feng D, Salazar TE, Hazra S, Al-Sabah J, Chalam KV, Phuong Trinh TL, Meroueh M, Markel TA, Murray MC, Vyas RJ, Boulton ME, Parsons-Wingerter P, Oudit GY, Obukhov AG, Grant MB. Loss of Angiotensin-Converting Enzyme 2 Exacerbates Diabetic Retinopathy by Promoting Bone Marrow Dysfunction. Stem Cells 2018; 36:1430-1440. [PMID: 29761600 DOI: 10.1002/stem.2848] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/01/2018] [Accepted: 04/22/2018] [Indexed: 01/20/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.
Collapse
Affiliation(s)
- Yaqian Duan
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA.,Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Eleni Beli
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Sergio Li Calzi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Judith L Quigley
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Rehae C Miller
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Leni Moldovan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Dongni Feng
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Tatiana E Salazar
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Sugata Hazra
- Department of Biological Sciences and Bioengineering, IIT Kanpur, Kanpur, India
| | - Jude Al-Sabah
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Kakarla V Chalam
- Department of Ophthalmology, University of Florida, Jacksonville, Florida, USA
| | - Thao Le Phuong Trinh
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA.,Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA
| | - Marya Meroueh
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA
| | - Troy A Markel
- Riley Hospital for Children, Pediatric Surgery, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Matthew C Murray
- Space Life Sciences Research Branch, NASA Ames Research Center, Moffett Field, California, USA
| | - Ruchi J Vyas
- Carl Zeiss Meditec, Inc., Dublin, California, USA
| | - Michael E Boulton
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Gavin Y Oudit
- Department of Medicine, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, Canada
| | - Alexander G Obukhov
- Department of Cellular and Integrative Physiology, Jacksonville, Florida, USA
| | - Maria B Grant
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Jacksonville, Florida, USA.,Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
8
|
Wang Y, Qin S, Pen G, Chen D, Han C, Miao C, Lu B, Su C, Feng S, Li W, Han J, Cho NC, Si Y. Original Research: Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats' model. Exp Biol Med (Maywood) 2016; 242:92-101. [PMID: 27510582 DOI: 10.1177/1535370216663866] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023] Open
Abstract
Ocular complications associated with diabetes mellitus are progressive and becoming one of the most important causes of morbidity worldwide. The purpose of the study is to evaluate the protective effect of Polygonatum sibiricum polysaccharide, an important component of Polygonatum sibiricum, on ocular complications in streptozotocin-induced diabetes mellitus rats. Sprague Dawley rats were made diabetic with streptozotocin(60 mg/kg, i.v.) and then the rats were treated with Polygonatum sibiricum polysaccharide 200, 400 and 800 mg/kg.d by gavage for 12 weeks. Biochemical analysis indicated that Polygonatum sibiricum polysaccharide lowered the levels of fasting blood glucose and glycated hemoglobin in blood and elevated the levels of insulin and C-peptide in plasma of diabetes mellitus rats in a dose-dependent manner. Physical measurements revealed that Polygonatum sibiricum polysaccharide improved clinical symptoms of polydipsia, polyphagia, polyuria and weight loss in diabetes mellitus rats. The content of malondialdehyde and activity of superoxide dismutase in plasma were determined, and the data showed Polygonatum sibiricum polysaccharide suppressed oxidative stress reaction. Lens opacification was observed using slit lamp illumination, and the data showed Polygonatum sibiricum polysaccharide delayed cataract progression in a dose-dependent manner. Electroretinogram showed Polygonatum sibiricum polysaccharide treatment reversed the decrease of electroretinogram b and OPs2 waves' amplitudes. Flash-visual evoked potential test indicated that the peak time of P2 wave was prolonged, and the amplitude of N2-P2 was lowered in diabetes mellitus group, and Polygonatum sibiricum polysaccharide suppressed these changes. Fundus fluorescein angiography showed Polygonatum sibiricum polysaccharide alleviated the retinal vasculopathy in a dose-dependent manner. In conclusion, these results suggest that the administration of Polygonatum sibiricum polysaccharide slows the progression of diabetic retinopathy and cataract through alleviating hyperglycemia and reducing oxidative stress in streptozotocin-induced diabetes mellitus rats.
Collapse
Affiliation(s)
- Yi Wang
- Department of Ophthalmology, Chonbuk National University, Jeollabuk-do 561-756, Republic of Korea (past position).,Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Shucun Qin
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| | - Guoqing Pen
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Di Chen
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Chao Han
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Chunrun Miao
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Baojin Lu
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Chao Su
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Shanlong Feng
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Wen Li
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Jingjing Han
- Department of Ophthalmology, Affiliated Hospital of Taishan Medical University, Taian 271000, China
| | - Nam C Cho
- Department of Ophthalmology, Chonbuk National University, Jeollabuk-do 561-756, Republic of Korea (past position)
| | - Yanhong Si
- Key Laboratory of Atherosclerosis in Universities of Shandong and Institute of Atherosclerosis, Taishan Medical University, Taian 271000, China
| |
Collapse
|
9
|
Ding HH, Ni WJ, Tang LQ, Wei W. G protein-coupled receptors: potential therapeutic targets for diabetic nephropathy. J Recept Signal Transduct Res 2015; 36:411-421. [PMID: 26675443 DOI: 10.3109/10799893.2015.1122039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetic nephropathy, a lethal microvascular complication of diabetes mellitus, is characterized by progressive albuminuria, excessive deposition of extracellular matrix, thickened glomerular basement membrane, podocyte abnormalities, and podocyte loss. The G protein-coupled receptors (GPCRs) have attracted considerable attention in diabetic nephropathy, but the specific effects have not been elucidated yet. Likewise, abnormal signaling pathways are closely interrelated to the pathologic process of diabetic nephropathy, despite the fact that the mechanisms have not been explored clearly. Therefore, GPCRs and its mediated signaling pathways are essential for priority research, so that preventative strategies and potential targets might be developed for diabetic nephropathy. This article will give us comprehensive overview of predominant GPCR types, roles, and correlative signaling pathways in diabetic nephropathy.
Collapse
Affiliation(s)
- Hai-Hua Ding
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China.,b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei-Jian Ni
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Li-Qin Tang
- b Affiliated Anhui Provincial Hospital, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| | - Wei Wei
- a Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University , Hefei, Anhui Province , People's Republic of China
| |
Collapse
|