1
|
Zhao D, Jiang X, Meng X, Liu D, Du Y, Zhao L, Jiang H. Low-Dose Radiation Reduces Doxorubicin-Induced Myocardial Injury Through Mitochondrial Pathways. Dose Response 2023; 21:15593258231155789. [PMID: 36798636 PMCID: PMC9926390 DOI: 10.1177/15593258231155789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 01/22/2023] [Indexed: 02/13/2023] Open
Abstract
The use of doxorubicin (DOX) as an anthraquinone antineoplastic agent is limited due to its cardiotoxicity. Our previous study suggested that low-dose radiation (LDR) could mitigate the cardiotoxicity induced by DOX via suppressing oxidative stress and cell apoptosis. However, the molecular targets and protective mechanism of LDR are not understood. In the present study, we sought to investigate the mechanisms underlying LDR's cardioprotection. Balb/c mice were randomly divided into four groups: Control group (no treatment), DOX group, LDR group (75 mGy), and LDR-72 h-DOX group (LDR pretreatment followed by intraperitoneal injection of DOX). Electron microscopy, PCR, and Western blot analyses indicated that LDR pretreatment mitigated changes in mitochondrial morphology caused by DOX, upregulated activity of mitochondrial complexes, and restored ATP levels in cardiomyocytes that were decreased by DOX. Whole genome microarray and PCR analyses showed that mitochondrial-related genes were altered by LDR pretreatment. Thus, our study showed that LDR can protect cardiomyocytes against DOX through improving mitochondrial function and increasing ATP production. This research could inform DOX chemotherapy strategies and provide new insight into the molecule mechanisms underlying the cardioprotective effects of LDR.
Collapse
Affiliation(s)
- Di Zhao
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Xin Jiang
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Xinxin Meng
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Dandan Liu
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Changchun University of Chinese Medicine, Changchun, China
| | - Lijing Zhao
- The School of Basic Medicine, Jilin University, Changchun, China
| | - Hongyu Jiang
- Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, China,Hongyu Jiang, M.D., PhD. Department of Health Evaluation Center, First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
2
|
Zafonte RD, Wang L, Arbelaez CA, Dennison R, Teng YD. Medical Gas Therapy for Tissue, Organ, and CNS Protection: A Systematic Review of Effects, Mechanisms, and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104136. [PMID: 35243825 PMCID: PMC9069381 DOI: 10.1002/advs.202104136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/10/2022] [Indexed: 05/13/2023]
Abstract
Gaseous molecules have been increasingly explored for therapeutic development. Here, following an analytical background introduction, a systematic review of medical gas research is presented, focusing on tissue protections, mechanisms, data tangibility, and translational challenges. The pharmacological efficacies of carbon monoxide (CO) and xenon (Xe) are further examined with emphasis on intracellular messengers associated with cytoprotection and functional improvement for the CNS, heart, retina, liver, kidneys, lungs, etc. Overall, the outcome supports the hypothesis that readily deliverable "biological gas" (CO, H2 , H2 S, NO, O2 , O3 , and N2 O) or "noble gas" (He, Ar, and Xe) treatment may preserve cells against common pathologies by regulating oxidative, inflammatory, apoptotic, survival, and/or repair processes. Specifically, CO, in safe dosages, elicits neurorestoration via igniting sGC/cGMP/MAPK signaling and crosstalk between HO-CO, HIF-1α/VEGF, and NOS pathways. Xe rescues neurons through NMDA antagonism and PI3K/Akt/HIF-1α/ERK activation. Primary findings also reveal that the need to utilize cutting-edge molecular and genetic tactics to validate mechanistic targets and optimize outcome consistency remains urgent; the number of neurotherapeutic investigations is limited, without published results from large in vivo models. Lastly, the broad-spectrum, concurrent multimodal homeostatic actions of medical gases may represent a novel pharmaceutical approach to treating critical organ failure and neurotrauma.
Collapse
Affiliation(s)
- Ross D. Zafonte
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
| | - Lei Wang
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Christian A. Arbelaez
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Rachel Dennison
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| | - Yang D. Teng
- Department of Physical Medicine and RehabilitationHarvard Medical SchoolBostonMA02115USA
- Neurotrauma Recovery Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
- Spaulding Research InstituteSpaulding Rehabilitation Hospital NetworkBostonMA02129USA
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine and RehabilitationSpaulding Rehabilitation Hospital Network, Mass General Brigham, and Harvard Medical SchoolBostonMA02129USA
| |
Collapse
|
3
|
Roth S, Torregroza C, Feige K, Preckel B, Hollmann MW, Weber NC, Huhn R. Pharmacological Conditioning of the Heart: An Update on Experimental Developments and Clinical Implications. Int J Mol Sci 2021; 22:ijms22052519. [PMID: 33802308 PMCID: PMC7959135 DOI: 10.3390/ijms22052519] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022] Open
Abstract
The aim of pharmacological conditioning is to protect the heart against myocardial ischemia-reperfusion (I/R) injury and its consequences. There is extensive literature that reports a multitude of different cardioprotective signaling molecules and mechanisms in diverse experimental protocols. Several pharmacological agents have been evaluated in terms of myocardial I/R injury. While results from experimental studies are immensely encouraging, translation into the clinical setting remains unsatisfactory. This narrative review wants to focus on two aspects: (1) give a comprehensive update on new developments of pharmacological conditioning in the experimental setting concentrating on recent literature of the last two years and (2) briefly summarize clinical evidence of these cardioprotective substances in the perioperative setting highlighting their clinical implications. By directly opposing each pharmacological agent regarding its recent experimental knowledge and most important available clinical data, a clear overview is given demonstrating the remaining gap between basic research and clinical practice. Finally, future perspectives are given on how we might overcome the limited translatability in the field of pharmacological conditioning.
Collapse
Affiliation(s)
- Sebastian Roth
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| | - Carolin Torregroza
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
- Correspondence:
| | - Katharina Feige
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| | - Benedikt Preckel
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Markus W. Hollmann
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Nina C. Weber
- Department of Anesthesiology, Amsterdam University Medical Center (AUMC), Location AMC, Meibergdreef 9, 1100 DD Amsterdam, The Netherlands; (B.P.); (M.W.H.); (N.C.W.)
| | - Ragnar Huhn
- Department of Anesthesiology, Medical Faculty and University Hospital Duesseldorf, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany; (S.R.); (K.F.); (R.H.)
| |
Collapse
|
4
|
Deng RM, Li HY, Li X, Shen HT, Wu DG, Wang Z, Chen G. Neuroprotective effect of helium after neonatal hypoxic ischemia: a narrative review. Med Gas Res 2021; 11:121-123. [PMID: 33942783 PMCID: PMC8174408 DOI: 10.4103/2045-9912.314332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neonatal hypoxic ischemia is one of the leading causes of permanent morbidity and mortality in newborns, which is caused by difficulty in supplying blood and oxygen to brain tissue and is often associated with epilepsy, cerebral palsy, death, short-term or long-term neurological and cognitive impairment. In recent years, the clinical therapeutic effects of noble gases have been gradually discovered and recognized. Numerous studies have shown that noble gases have unique neuroprotective effects to restore damaged nerve and relieve symptoms in patients. Although research on the neuroprotective mechanisms of xenon and argon has yielded a lot of results, studies on helium have stalled. Helium is a colorless, odorless, monoatomic inert gas. The helium has no hemodynamic or neurocognitive side effects and can be used as an ideal pre-adaptor for future clinical applications. In recent years, studies have shown that heliox (a mixture of helium and oxygen) pretreatment can protect the heart, brain, liver and intestine from damage in several animal models, where a variety of signaling pathways have been proved to be involved. There are numerous studies on it even though the mechanism of helium for protecting newborns has not been fully elucidated. It is urgent to find an effective treatment due to the high death rate and disability rate of neonatal hypoxic ischemia. It is believed that helium will be approved safely and effectively for clinical use in the near future.
Collapse
Affiliation(s)
- Ru-Ming Deng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Ying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Hai-Tao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - De-Gang Wu
- Department of Neurosurgery, Yijishan Hospital of Wan-nan Medical College, Wuhu, Anhui Province, China
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
5
|
Torregroza C, Raupach A, Feige K, Weber NC, Hollmann MW, Huhn R. Perioperative Cardioprotection: General Mechanisms and Pharmacological Approaches. Anesth Analg 2020; 131:1765-1780. [PMID: 33186163 DOI: 10.1213/ane.0000000000005243] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardioprotection encompasses a variety of strategies protecting the heart against myocardial injury that occurs during and after inadequate blood supply to the heart during myocardial infarction. While restoring reperfusion is crucial for salvaging myocardium from further damage, paradoxically, it itself accounts for additional cell death-a phenomenon named ischemia/reperfusion injury. Therefore, therapeutic strategies are necessary to render the heart protected against myocardial infarction. Ischemic pre- and postconditioning, by short periods of sublethal cardiac ischemia and reperfusion, are still the strongest mechanisms to achieve cardioprotection. However, it is highly impractical and far too invasive for clinical use. Fortunately, it can be mimicked pharmacologically, for example, by volatile anesthetics, noble gases, opioids, propofol, dexmedetomidine, and phosphodiesterase inhibitors. These substances are all routinely used in the clinical setting and seem promising candidates for successful translation of cardioprotection from experimental protocols to clinical trials. This review presents the fundamental mechanisms of conditioning strategies and provides an overview of the most recent and relevant findings on different concepts achieving cardioprotection in the experimental setting, specifically emphasizing pharmacological approaches in the perioperative context.
Collapse
Affiliation(s)
- Carolin Torregroza
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany.,Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Annika Raupach
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Katharina Feige
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nina C Weber
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Markus W Hollmann
- Department of Anesthesiology, Amsterdam University Medical Centers (AUMC), Amsterdam, the Netherlands
| | - Ragnar Huhn
- From the Department of Anesthesiology, University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
6
|
Weber NC, Preckel B. Gaseous mediators: an updated review on the effects of helium beyond blowing up balloons. Intensive Care Med Exp 2019; 7:73. [PMID: 31858285 PMCID: PMC6923303 DOI: 10.1186/s40635-019-0288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Noble gases, although supposed to be chemically inert, mediate numerous physiological and cellular effects, leading to protection against ischaemia-reperfusion injury in different organs. Clinically, the noble gas helium is used in treatment of airway obstruction and ventilation disorders in children and adults. In addition, studies from recent years in cells, isolated tissues, animals and finally humans show that helium has profound biological effects: helium applied before, during or after an ischaemic event reduced cellular damage, known as "organ conditioning", in some tissue, e.g. the myocardium. Although extensive research has been performed, the exact molecular mechanisms behind these organ-protective effects of helium are yet not completely understood. In addition, there are significant differences of protective effects in different organs and animal models. A translation of experimental findings to the clinical situation has yet not been shown.
Collapse
Affiliation(s)
- Nina C Weber
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Benedikt Preckel
- Amsterdam University Medical Centers, location AMC, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands.
| |
Collapse
|
7
|
Weber NC, Schilling JM, Warmbrunn MV, Dhanani M, Kerindongo R, Siamwala J, Song Y, Zemljic-Harpf AE, Fannon MJ, Hollmann MW, Preckel B, Roth DM, Patel HH. Helium-Induced Changes in Circulating Caveolin in Mice Suggest a Novel Mechanism of Cardiac Protection. Int J Mol Sci 2019; 20:E2640. [PMID: 31146391 PMCID: PMC6600664 DOI: 10.3390/ijms20112640] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/26/2022] Open
Abstract
The noble gas helium (He) induces cardioprotection in vivo through unknown molecular mechanisms. He can interact with and modify cellular membranes. Caveolae are cholesterol and sphingolipid-enriched invaginations of the plasma-membrane-containing caveolin (Cav) proteins that are critical in protection of the heart. Mice (C57BL/6J) inhaled either He gas or adjusted room air. Functional measurements were performed in the isolated Langendorff perfused heart at 24 h post He inhalation. Electron paramagnetic resonance spectrometry (EPR) of samples was carried out at 24 h post He inhalation. Immunoblotting was used to detect Cav-1/3 expression in whole-heart tissue, exosomes isolated from platelet free plasma (PFP) and membrane fractions. Additionally, transmission electron microscopy analysis of cardiac tissue and serum function and metabolomic analysis were performed. In contrast to cardioprotection observed in in vivo models, the isolated Langendorff perfused heart revealed no protection after He inhalation. However, levels of Cav-1/3 were reduced 24 h after He inhalation in whole-heart tissue, and Cav-3 was increased in exosomes from PFP. Addition of serum to muscle cells in culture or naïve ventricular tissue increased mitochondrial metabolism without increasing reactive oxygen species generation. Primary and lipid metabolites determined potential changes in ceramide by He exposure. In addition to direct effects on myocardium, He likely induces the release of secreted membrane factors enriched in caveolae. Our results suggest a critical role for such circulating factors in He-induced organ protection.
Collapse
Affiliation(s)
- Nina C Weber
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Jan M Schilling
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Moritz V Warmbrunn
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Mehul Dhanani
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Raphaela Kerindongo
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Jamila Siamwala
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
- Brown University and VA Providence, 830 Chalkstone Avenue, Providence, RI 02908, USA.
| | - Young Song
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Alice E Zemljic-Harpf
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - McKenzie J Fannon
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Markus W Hollmann
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Benedikt Preckel
- Department of Anesthesiology, Laboratory of Experimental Intensive Care and Anesthesiology (L.E.I.C.A.), Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - David M Roth
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California, San Diego, #125, 3350 La Jolla Village Dr., San Diego, CA 92161, USA.
| |
Collapse
|