1
|
Sun Y, Wang Y, Jiang M, Jia W, Chen H, Wang H, Ding Y, Wang X, Yang C, Sun B, Zhao P, Jiang W. Habitat-based MRI radiomics to predict the origin of brain metastasis. Med Phys 2025; 52:3075-3087. [PMID: 39762725 DOI: 10.1002/mp.17610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/11/2024] [Accepted: 12/19/2024] [Indexed: 05/10/2025] Open
Abstract
BACKGROUND This study aims to explore the value of habitat-based magnetic resonance imaging (MRI) radiomics for predicting the origin of brain metastasis (BM). PURPOSE To investigate whether habitat-based radiomics can identify the metastatic tumor type of BM and whether an imaging-based model that integrates the volume of peritumoral edema (VPE) can enhance predictive performance. METHODS A primary cohort was developed with 384 patients from two centers, which comprises 734 BM lesions. An independent cohort was developed with 28 patients from a third center, which comprises 70 BM lesions. All patients underwent T1-weighted contrast-enhanced (T1CE) and T2-weighted (T2W) MRI scans before treatment. Radiomics features were extracted from tumor active area (TAA) and peritumoral edema area (PEA) selected using the least absolute shrinkage and selection operator (LASSO) to construct radiomics signatures (Rads). The Rads were further integrated with VPE to build combined models for predicting the metastatic type of BM. Performance of the models were assessed through receiver operating characteristic (ROC) curve analysis. RESULTS Rads derived from TAA and PEA both showed predictive power for identifying the origin of BM. The developed combined models generated the best performance in the training (AUCs, lung cancer [LC]/non-lung cancer [NLC] vs. small cell lung cancer [SCLC]/non-small cell lung cancer [NSCLC] vs. breast cancer [BC]/gastrointestinal cancer [GIC], 0.870 vs. 0.946 vs. 0.886), internal validation (area under the receiver operating characteristic curves [AUCs], LC/NLC vs. SCLC/NSCLC vs. BC/GIC, 0.786 vs. 0.863 vs. 0.836) and external validation (AUCs, LC /NLC vs. SCLC/NSCLC vs. BC/GIC, 0.805 vs. 0.877 vs. 0.774) cohort. CONCLUSIONS The developed habitat-based radiomics models can effectively identify the metastatic tumor type of BM and may be considered as a potential preoperative basis for timely treatment planning.
Collapse
Affiliation(s)
- Yiyao Sun
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P. R. China
| | - Yan Wang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P. R. China
| | - Mingchen Jiang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P. R. China
| | - Wei Jia
- Department of Radiology, The People's Hospital of Liaoning Province, Shenyang, Liaoning, P. R. China
| | - Huanhuan Chen
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, P. R. China
| | - Huan Wang
- Radiation Oncology Department of Thoracic Cancer, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Yuqi Ding
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P. R. China
| | - Xiaoyu Wang
- Department of Radiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Chunna Yang
- School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, P. R. China
| | - Bo Sun
- Department of Radiology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, P. R. China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| | - Wenyan Jiang
- Department of Scientific Research and Academic, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, P. R. China
| |
Collapse
|
2
|
Huang W, Dai Z. Predicting brain tumor presence using machine learning models. MULTISCALE AND MULTIDISCIPLINARY MODELING, EXPERIMENTS AND DESIGN 2025; 8:64. [DOI: 10.1007/s41939-024-00663-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/03/2024] [Indexed: 01/04/2025]
|
3
|
Mohamed Y, Salih A, Suliman O, Hamad I, Hussein A. A Rare Case of Large-Cell Neuroendocrine Carcinoma Metastasizing to the Brain: A Case Report. Cureus 2024; 16:e70615. [PMID: 39483593 PMCID: PMC11526616 DOI: 10.7759/cureus.70615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Neuroendocrine tumors (NETs) encompass a diverse spectrum of neoplasms that can originate from various sites, including the gastrointestinal tract. Brain metastases from neuroendocrine tumors, while rare, present significant clinical challenges. In this case report, we present the unique instance of a 50-year-old female with a history of gastrointestinal neuroendocrine tumor who manifested left-sided weakness, tremors, and recurrent focal convulsions. Initial imaging scans revealed a lesion in the right parietal lobe, which was surgically excised and diagnosed as a metastatic large-cell neuroendocrine carcinoma. Post-surgery, the patient's condition stabilized, but she was subsequently advised to chemotherapy. This case underscores the infrequency of brain metastases in the context of gastrointestinal neuroendocrine tumors, underscoring the need for comprehensive screening in such scenarios. Given the aggressive nature of neuroendocrine carcinomas and their propensity to disseminate to the brain, early detection and intervention are crucial. Our rare case also underscores the importance of distinguishing high-grade neuroendocrine carcinomas, which necessitate intensive management, from less aggressive NETs and other metastatic neoplasms that have different treatment approaches.
Collapse
Affiliation(s)
| | - Aya Salih
- Internal Medicine, University of Khartoum, Khartoum, SDN
| | - Omer Suliman
- Internal Medicine, Harlem Hospital Center, New York, USA
| | - Ibrahim Hamad
- Pathology, El Imam El Mahdi University, Khartoum, SDN
| | - Ahmed Hussein
- Pathology and Laboratory Medicine, University of Texas at Houston, Houston, USA
| |
Collapse
|
4
|
Zander C, Diebold M, Shah MJ, Malzkorn B, Prinz M, Urbach H, Erny D, Taschner CA. Freiburg Neuropathology Case Conference: : 68-Year-Old Patient with Slurred Speech, Double Vision, and Increasing Gait Disturbance. Clin Neuroradiol 2024; 34:279-286. [PMID: 38345610 PMCID: PMC10881640 DOI: 10.1007/s00062-024-01385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Affiliation(s)
- C Zander
- Departments of Neuroradiology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - M Diebold
- Neuropathology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - M J Shah
- Neurosurgery, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - B Malzkorn
- Institute of Neuropathology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - M Prinz
- Neuropathology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - H Urbach
- Departments of Neuroradiology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - D Erny
- Neuropathology, University of Freiburg, Freiburg, Germany
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany
| | - C A Taschner
- Departments of Neuroradiology, University of Freiburg, Freiburg, Germany.
- Medical Centre-University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacherstraße 64, 79106, Freiburg, Germany.
| |
Collapse
|
5
|
Steinruecke M, Pronin S, Gherman AV, Emelifeonwu J, Liaquat I. Survival and complications following supra- and infratentorial brain metastasis resection. Surgeon 2023; 21:e279-e286. [PMID: 36805302 DOI: 10.1016/j.surge.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
OBJECTIVE 15-30% of primary cancers metastasise to the brain. Of these, 10-25% involve the posterior fossa. It remains unclear whether patients undergoing resection for infratentorial brain metastases experience poorer prognosis than those with supratentorial lesions. We compare the post-operative outcomes of these two groups. METHODS We searched the electronic health records of all patients undergoing brain metastases resection at our regional neurosurgical centre between February 2014 and August 2019. Clinical data was collected on 85 consecutive patients (61 supratentorial, 24 infratentorial metastases). Outcome measures included overall survival, post-operative complications, and performance status. Patients were followed up until 21/04/2020. RESULTS Median post-operative survival of patients with supratentorial metastases was 323 days (95% CI 235-411), compared to 277 days (95% CI 195-359) for those with infratentorial metastases. These two groups experienced comparable survival (log rank = 0.276, p = 0.60) on univariate analysis. Infratentorial metastasis location was not associated with a change in survival using a Cox proportional hazards model incorporating age, sex and extracranial disease activity (HR = 1.39, 95% CI 0.777-2.486) (p = 0.27). However, neurological and non-neurological post-operative complications were more frequent in patients with infratentorial metastases (neurological = 21% vs 13%, non-neurological = 25% vs 2%, p = 0.002). CONCLUSION Patients with supra- and infratentorial metastases experienced comparable post-operative survival but posterior fossa metastasis location was associated with a 2.5 times higher risk of neurological and/or non-neurological post-operative complications. A better understanding of the precise indications for safe and effective surgical intervention for posterior fossa metastases is required.
Collapse
Affiliation(s)
- Moritz Steinruecke
- Edinburgh Medical School, The University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK; University of Cambridge School of Clinical Medicine, Cambridge, CB2 0SP, UK.
| | - Savva Pronin
- Department of Clinical Neurosciences, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK.
| | - Anda-Veronica Gherman
- Edinburgh Medical School, The University of Edinburgh, Chancellor's Building, Edinburgh, EH16 4SB, UK.
| | - John Emelifeonwu
- Department of Clinical Neurosciences, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK.
| | - Imran Liaquat
- Department of Clinical Neurosciences, Edinburgh BioQuarter, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
6
|
Ung TH, Meola A, Chang SD. Metastatic Lesions of the Brain and Spine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1405:545-564. [PMID: 37452953 DOI: 10.1007/978-3-031-23705-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Brain and spinal metastases are common in cancer patients and are associated with significant morbidity and mortality. Continued advancement in the systemic care of cancer has increased the life expectancy of patients, and consequently, the incidence of brain and spine metastasis has increased. There has been an increase in the understanding of oncogenic mutations, and research has also demonstrated spatial and temporal mutations in patients that may drive overall treatment resistance and failure. Combinatory treatments with radiation, surgery, and newer systemic therapies have continued to increase the life expectancy of patients with brain and spine metastases. Given the overall complexity of brain and spine metastases, this chapter aims to give a comprehensive overview and cover important topics concerning brain and spine metastases. This will include the molecular, genetic, radiographic, surgical, and non-surgical treatments of brain and spinal metastases.
Collapse
Affiliation(s)
- Timothy H Ung
- Center for Academic Medicine, Department of Neurosurgery, MC: 5327, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| | - Antonio Meola
- Center for Academic Medicine, Department of Neurosurgery, MC: 5327, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | - Steven D Chang
- Center for Academic Medicine, Department of Neurosurgery, MC: 5327, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA
| |
Collapse
|
7
|
Würtemberger U, Rau A, Reisert M, Kellner E, Diebold M, Erny D, Reinacher PC, Hosp JA, Hohenhaus M, Urbach H, Demerath T. Differentiation of Perilesional Edema in Glioblastomas and Brain Metastases: Comparison of Diffusion Tensor Imaging, Neurite Orientation Dispersion and Density Imaging and Diffusion Microstructure Imaging. Cancers (Basel) 2022; 15:cancers15010129. [PMID: 36612127 PMCID: PMC9817519 DOI: 10.3390/cancers15010129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
Although the free water content within the perilesional T2 hyperintense region should differ between glioblastomas (GBM) and brain metastases based on histological differences, the application of classical MR diffusion models has led to inconsistent results regarding the differentiation between these two entities. Whereas diffusion tensor imaging (DTI) considers the voxel as a single compartment, multicompartment approaches such as neurite orientation dispersion and density imaging (NODDI) or the recently introduced diffusion microstructure imaging (DMI) allow for the calculation of the relative proportions of intra- and extra-axonal and also free water compartments in brain tissue. We investigate the potential of water-sensitive DTI, NODDI and DMI metrics to detect differences in free water content of the perilesional T2 hyperintense area between histopathologically confirmed GBM and brain metastases. Respective diffusion metrics most susceptible to alterations in the free water content (MD, V-ISO, V-CSF) were extracted from T2 hyperintense perilesional areas, normalized and compared in 24 patients with GBM and 25 with brain metastases. DTI MD was significantly increased in metastases (p = 0.006) compared to GBM, which was corroborated by an increased DMI V-CSF (p = 0.001), while the NODDI-derived ISO-VF showed only trend level increase in metastases not reaching significance (p = 0.060). In conclusion, diffusion MRI metrics are able to detect subtle differences in the free water content of perilesional T2 hyperintense areas in GBM and metastases, whereas DMI seems to be superior to DTI and NODDI.
Collapse
Affiliation(s)
- Urs Würtemberger
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Correspondence:
| | - Alexander Rau
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Martin Diebold
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Berta-Ottenstein-Program for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
- Fraunhofer Institute for Laser Technology, 52074 Aachen, Germany
| | - Jonas A. Hosp
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Marc Hohenhaus
- Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Theo Demerath
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| |
Collapse
|
8
|
Lorusso G, Wyss CB, Kuonen F, Vannini N, Billottet C, Duffey N, Pineau R, Lan Q, Wirapati P, Barras D, Tancredi A, Lyck R, Lehr HA, Engelhardt B, Delorenzi M, Bikfalvi A, Rüegg C. Connexins orchestrate progression of breast cancer metastasis to the brain by promoting FAK activation. Sci Transl Med 2022; 14:eaax8933. [PMID: 36070364 DOI: 10.1126/scitranslmed.aax8933] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Brain metastasis is a complication of increasing incidence in patients with breast cancer at advanced disease stage. It is a severe condition characterized by a rapid decline in quality of life and poor prognosis. There is a critical clinical need to develop effective therapies to prevent and treat brain metastases. Here, we describe a unique and robust spontaneous preclinical model of breast cancer metastasis to the brain (4T1-BM2) in mice that has been instrumental in uncovering molecular mechanisms guiding metastatic dissemination and colonization of the brain. Key experimental findings were validated in the additional murine D2A1-BM2 model and in human MDA231-BrM2 model. Gene expression analyses and functional studies, coupled with clinical transcriptomic and histopathological investigations, identified connexins (Cxs) and focal adhesion kinase (FAK) as master molecules orchestrating breast cancer colonization of the brain. Cx31 promoted homotypic tumor cell adhesion, heterotypic tumor-astrocyte interaction, and FAK phosphorylation. FAK signaling prompted NF-κB activation inducing Lamc2 expression and laminin 332 (laminin 5) deposition, α6 integrin-mediated adhesion, and sustained survival and growth within brain parenchyma. In the MDA231-BrM2 model, the human homologous molecules CX43, LAMA4, and α3 integrin were involved. Systemic treatment with FAK inhibitors reduced brain metastasis progression. In conclusion, we report a spontaneous model of breast cancer metastasis to the brain and identified Cx-mediated FAK-NF-κB signaling as a mechanism promoting cell-autonomous and microenvironmentally controlled cell survival for brain colonization. Considering the limited therapeutic options for brain metastatic disease in cancer patients, we propose FAK as a therapeutic candidate to further pursue in the clinic.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Christof B Wyss
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - François Kuonen
- Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Nicola Vannini
- Ludwig Institute for Cancer Research (LICR), Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Epalinges 1066, Switzerland
| | | | - Nathalie Duffey
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Raphael Pineau
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Qiang Lan
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| | - Pratyaksha Wirapati
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - David Barras
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Alessandro Tancredi
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland
| | - Ruth Lyck
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Hans-Anton Lehr
- Institute of Pathology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Lausanne 1011, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern (UNIBE), Bern 3012, Switzerland
| | - Mauro Delorenzi
- Bioinformatics Core Facility, Swiss Institute for Bioinformatics (SIB), Lausanne 1015, Switzerland
| | - Andreas Bikfalvi
- INSERM U1029 and University of Bordeaux, Pessac Cedex 33615, France
| | - Curzio Rüegg
- Experimental and Translational Oncology, Pathology Unit, Department of Oncology Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg 1700, Switzerland.,Division of Experimental Oncology, Multidisciplinary Oncology Center (CePO), Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), Faculty of Biology and Medicine, Epalinges 1066, Switzerland.,National Center for Competence in Research (NCCR) Molecular Oncology, Swiss Institute of Experimental Cancer Research, Ecole Polytechnique Fédérale de Lausanne (ISREC-EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
9
|
Rangel JDB, Giglio AG, Cardozo CL, Bergmann A, Thuler LCS. Incidence and risk factors for the development of cerebral metastasis in cervical cancer patients. J Gynecol Oncol 2022; 33:e58. [PMID: 35712971 PMCID: PMC9428298 DOI: 10.3802/jgo.2022.33.e58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE Cerebral metastasis (CM) in cervical cancer (CC) cases, although rare, results in high lethality rates. The present study aimed to assess CM incidence in a Brazilian reference CC center and evaluate the risk factors for CM development. Retrospective observational study of patients diagnosed with CC between 2010 and 2017. METHODS Cumulative CM incidence and incidence density were evaluated. Characteristics associated to CM development risks were identified using crude (cOR) or adjusted (aOR) odds ratios. RESULTS A total of 3,397 patients were included in this study. Patient age ranged from 18 to 101 years, with a mean age of 48.8±14.0. After a mean follow-up time of 3.2±2.1 years, 51 CM cases were identified, resulting in a cumulative incidence of 1.5% (95% confidence intervals [CI]=1.12-1.97) and an incidence density at the end of the 6th year of 27.4 per 1,000 women/year. Advanced clinical stage (aOR=3.15; 95% CI=1.16-8.58; p=0.025), the presence of previous lung metastasis (aOR=4.04; 95% CI=1.82-8.94; p=0.001) and the adenocarcinoma (aOR=2.90; 95% CI=1.46-5.76; p=0.002), adenosquamous carcinoma (aOR=7.33; 95% CI=2.87-18.73; p<0.001), undifferentiated carcinoma (aOR=14.37; 95% CI=3.77-54.76; p<0.001) and neuroendocrine carcinoma (aOR=21.31; 95% CI=6.65-68.37, p<0.001) histological types were associated with a higher risk for CM development. CM risk was higher in the first years of follow-up, with no cases observed after the 6th year. CONCLUSION CC patients in advanced clinical stages, displaying previous lung metastasis and non-squamous histological types are at high risk of developing CM.
Collapse
Affiliation(s)
- Juliana de Brito Rangel
- Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Alessandra Grasso Giglio
- Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | | | - Anke Bergmann
- Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Luiz Claudio Santos Thuler
- Federal University of Rio de Janeiro State (UNIRIO), Rio de Janeiro, Brazil.,Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Würtemberger U, Diebold M, Erny D, Hosp JA, Schnell O, Reinacher PC, Rau A, Kellner E, Reisert M, Urbach H, Demerath T. Diffusion Microstructure Imaging to Analyze Perilesional T2 Signal Changes in Brain Metastases and Glioblastomas. Cancers (Basel) 2022; 14:cancers14051155. [PMID: 35267463 PMCID: PMC8908999 DOI: 10.3390/cancers14051155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose: Glioblastomas (GBM) and brain metastases are often difficult to differentiate in conventional MRI. Diffusion microstructure imaging (DMI) is a novel MR technique that allows the approximation of the distribution of the intra-axonal compartment, the extra-axonal cellular, and the compartment of interstitial/free water within the white matter. We hypothesize that alterations in the T2 hyperintense areas surrounding contrast-enhancing tumor components may be used to differentiate GBM from metastases. Methods: DMI was performed in 19 patients with glioblastomas and 17 with metastatic lesions. DMI metrics were obtained from the T2 hyperintense areas surrounding contrast-enhancing tumor components. Resected brain tissue was assessed in six patients in each group for features of an edema pattern and tumor infiltration in the perilesional interstitium. Results: Within the perimetastatic T2 hyperintensities, we observed a significant increase in free water (p < 0.001) and a decrease in both the intra-axonal (p = 0.006) and extra-axonal compartments (p = 0.024) compared to GBM. Perilesional free water fraction was discriminative regarding the presence of GBM vs. metastasis with a ROC AUC of 0.824. Histologically, features of perilesional edema were present in all assessed metastases and absent or marginal in GBM. Conclusion: Perilesional T2 hyperintensities in brain metastases and GBM differ significantly in DMI-values. The increased free water fraction in brain metastases suits the histopathologically based hypothesis of perimetastatic vasogenic edema, whereas in glioblastomas there is additional tumor infiltration.
Collapse
Affiliation(s)
- Urs Würtemberger
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
- Correspondence: urs.wü; Tel.: +49-761-270-51810; Fax: +49-761-270-51950
| | - Martin Diebold
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (D.E.)
- IMM-PACT Clinician Scientist Program, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Daniel Erny
- Institute of Neuropathology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (M.D.); (D.E.)
- Berta-Ottenstein-Program for Advanced Clinician Scientists, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jonas A. Hosp
- Department of Neurology and Neurophysiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Oliver Schnell
- Department of Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.C.R.); (M.R.)
- Fraunhofer Institute for Laser Technology, 52074 Aachen, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
- Department of Diagnostic and Interventional Radiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Elias Kellner
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (P.C.R.); (M.R.)
- Department of Medical Physics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Horst Urbach
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
| | - Theo Demerath
- Department of Neuroradiology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; (A.R.); (H.U.); (T.D.)
| |
Collapse
|
11
|
Tas ZA, Kulahci O. Histopathological Analysis of Central Nervous System Metastases: Six Years of Data From a Tertiary Center. Cureus 2022; 14:e22151. [PMID: 35308701 PMCID: PMC8920798 DOI: 10.7759/cureus.22151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction: The most common cause of neurological symptoms in patients with systemic malignant tumors is central nervous system (CNS) metastases, and CNS metastases are one of the important causes of morbidity and mortality in these patients. The most common metastatic tumors to the CNS are lung, breast, malignant melanoma, genitourinary, and gastrointestinal tumors. We aimed to analyze our data on patients with CNS metastases in our department, which belongs to a large archive in the field of neuropathology. Methods: The data of patients who had CNS metastases between January 2015 and August 2021 in our department were reviewed retrospectively. The patients were grouped in terms of demographic data, location, histopathological diagnosis, and primary origin characteristics, and their frequency and immunohistochemical staining characteristics were investigated. Results: There were 256 patients with CNS metastases in our study. The mean age was found to be 56.12. Of the patients, 30.5% were female and 69.5% were male. Astrocytic and oligodendral tumors (25.3%), followed by meningiomas (24.1%), and then CNS metastases (21.3%) were the most common CNS tumors. Among the CNS metastases, the most common primary sites were the lung (58%), breast (16%), tumors of unknown primary origin (TUP) (5%), colon (4%), and gynecologic tract (3.1%). Localization was found as cerebral (69.5%), cerebellar (28.1%), and spinal (2.3%). Conclusion: In CNS system metastases, an accurate histological diagnosis should be made by histomorphological evaluation supported by compatible immunohistochemical results in the presence of clinical history and radiological findings. Despite performing a larger immunohistochemical panel, it should be kept in mind that a primary site of origin cannot be found in a significant number of cases.
Collapse
|
12
|
Kalita-de Croft P, Joshi V, Saunus JM, Lakhani SR. Emerging Biomarkers for Diagnosis, Prevention and Treatment of Brain Metastases-From Biology to Clinical Utility. Diseases 2022; 10:11. [PMID: 35225863 PMCID: PMC8884016 DOI: 10.3390/diseases10010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/18/2022] [Accepted: 01/27/2022] [Indexed: 11/17/2022] Open
Abstract
Primary malignancies of the lung, skin (melanoma), and breast have higher propensity for metastatic spread to the brain. Advances in molecular tumour profiling have aided the development of targeted therapies, stereotactic radiotherapy, and immunotherapy, which have led to some improvement in patient outcomes; however, the overall prognosis remains poor. Continued research to identify new prognostic and predictive biomarkers is necessary to further impact patient outcomes, as this will enable better risk stratification at the point of primary cancer diagnosis, earlier detection of metastatic deposits (for example, through surveillance), and more effective systemic treatments. Brain metastases exhibit considerable inter- and intratumoural heterogeneity-apart from distinct histology, treatment history and other clinical factors, the metastatic brain tumour microenvironment is incredibly variable both in terms of subclonal diversity and cellular composition. This review discusses emerging biomarkers; specifically, the biological context and potential clinical utility of tumour tissue biomarkers, circulating tumour cells, extracellular vesicles, and circulating tumour DNA.
Collapse
Affiliation(s)
- Priyakshi Kalita-de Croft
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Vaibhavi Joshi
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Jodi M. Saunus
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
| | - Sunil R. Lakhani
- UQ Centre for Clinical Research, The University of Queensland Faculty of Medicine, Herston, QLD 4029, Australia; (V.J.); (J.M.S.)
- Pathology Queensland, The Royal Brisbane and Women’s Hospital Herston, Herston, QLD 4029, Australia
| |
Collapse
|
13
|
Pons-Escoda A, Garcia-Ruiz A, Naval-Baudin P, Grussu F, Fernandez JJS, Simo AC, Sarro NV, Fernandez-Coello A, Bruna J, Cos M, Perez-Lopez R, Majos C. Voxel-level analysis of normalized DSC-PWI time-intensity curves: a potential generalizable approach and its proof of concept in discriminating glioblastoma and metastasis. Eur Radiol 2022; 32:3705-3715. [PMID: 35103827 DOI: 10.1007/s00330-021-08498-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/22/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Standard DSC-PWI analyses are based on concrete parameters and values, but an approach that contemplates all points in the time-intensity curves and all voxels in the region-of-interest may provide improved information, and more generalizable models. Therefore, a method of DSC-PWI analysis by means of normalized time-intensity curves point-by-point and voxel-by-voxel is constructed, and its feasibility and performance are tested in presurgical discrimination of glioblastoma and metastasis. METHODS In this retrospective study, patients with histologically confirmed glioblastoma or solitary-brain-metastases and presurgical-MR with DSC-PWI (August 2007-March 2020) were retrieved. The enhancing tumor and immediate peritumoral region were segmented on CE-T1wi and coregistered to DSC-PWI. Time-intensity curves of the segmentations were normalized to normal-appearing white matter. For each participant, average and all-voxel-matrix of normalized-curves were obtained. The 10 best discriminatory time-points between each type of tumor were selected. Then, an intensity-histogram analysis on each of these 10 time-points allowed the selection of the best discriminatory voxel-percentile for each. Separate classifier models were trained for enhancing tumor and peritumoral region using binary logistic regressions. RESULTS A total of 428 patients (321 glioblastomas, 107 metastases) fulfilled the inclusion criteria (256 men; mean age, 60 years; range, 20-86 years). Satisfactory results were obtained to segregate glioblastoma and metastases in training and test sets with AUCs 0.71-0.83, independent accuracies 65-79%, and combined accuracies up to 81-88%. CONCLUSION This proof-of-concept study presents a different perspective on brain MR DSC-PWI evaluation by the inclusion of all time-points of the curves and all voxels of segmentations to generate robust diagnostic models of special interest in heterogeneous diseases and populations. The method allows satisfactory presurgical segregation of glioblastoma and metastases. KEY POINTS • An original approach to brain MR DSC-PWI analysis, based on a point-by-point and voxel-by-voxel assessment of normalized time-intensity curves, is presented. • The method intends to extract optimized information from MR DSC-PWI sequences by impeding the potential loss of information that may represent the standard evaluation of single concrete perfusion parameters (cerebral blood volume, percentage of signal recovery, or peak height) and values (mean, maximum, or minimum). • The presented approach may be of special interest in technically heterogeneous samples, and intrinsically heterogeneous diseases. Its application enables satisfactory presurgical differentiation of GB and metastases, a usual but difficult diagnostic challenge for neuroradiologist with vital implications in patient management.
Collapse
Affiliation(s)
- Albert Pons-Escoda
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain. .,Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Alonso Garcia-Ruiz
- Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain
| | - Pablo Naval-Baudin
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesco Grussu
- Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain
| | - Juan Jose Sanchez Fernandez
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Angels Camins Simo
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Noemi Vidal Sarro
- Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.,Pathology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Alejandro Fernandez-Coello
- Neurosurgery Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Pathology and Experimental Therapeutics Department, Anatomy Unit, University of Barcelona, Barcelona, Spain.,Biomedical Research Networking Centers of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jordi Bruna
- Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Monica Cos
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Raquel Perez-Lopez
- Radiomics Groups, Vall d'Hebron Institut d'Oncologia- VHIO, Barcelona, Spain.,Radiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Carles Majos
- Radiology Department, Institut de Diagnòstic per la Imatge- IDI, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain.,Neurooncology Unit, Institut d'Investigació Biomèdica de Bellvitge- IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
14
|
Diffusion tensor imaging derived metrics in high grade glioma and brain metastasis differentiation. ARCHIVE OF ONCOLOGY 2022. [DOI: 10.2298/aoo210828007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Pretreatment differentiation between glioblastoma and metastasis
is a frequently encountered dilemma in neurosurgical practice. Distinction
is required for precise planning of resection or radiotherapy, and also for
defining further diagnostic procedures. Morphology and spectroscopy imaging
features are not specific and frequently overlap. This limitation of
magnetic resonance imaging and magnetic resonance spectroscopy was the
reason to initiate this study. The aim of the present study was to determine
whether the dataset of diffusion tensor imaging metrics contains information
which may be used for the distinction between primary and secondary
intra-axial neoplasms. Methods: Two diffusion tensor imaging parameters were
measured in 81 patients with an expansive, ring-enhancing, intra-axial
lesion on standard magnetic resonance imaging (1.5 T system). All tumors
were histologically verified glioblastoma or secondary deposit. For
qualitative analysis, two regions of interest were defined: intratumoral and
immediate peritumoral region (locations 1 and 2, respectively). Fractional
anisotropy and mean difusivity values of both groups were compared.
Additional test was performed to determine if there was a significant
difference in mean values between two locations. Results: A statistically
significant difference was found in fractional anisotropy values among two
locations, with decreasing values in the direction of neoplastic
infiltration, although such difference was not observed in fractional
anisotropy values in the group with secondary tumors. Mean difusivity values
did not appear helpful in differentiation between these two entities. In
both groups there was no significant difference in mean difusivity values,
neither in intratumoral nor in peritumoral location. Conclusion: The results
of our study justify associating the diffusion tensor imaging technique to
conventional morphologic magnetic resonance imaging as an additional
diagnostic tool for the distinction between primary and secondary
intra-axial lesions. Quantitative analysis of diffusion tensor imaging
metric, in particular measurement of fractional anisotropy in peritumoral
edema facilitates accurate diagnosis.
Collapse
|
15
|
Assaf D, Mor E, Laks S, Zohar N, Benvenisti H, Hazzan D, Segev L, Akopyan OK, Shacham-Shmueli E, Margalit O, Halpern N, Boursi B, Ben-Yaacov A, Nissan A, Adileh M. The pattern of peritoneal colorectal metastasis predicts survival after cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy. Eur J Surg Oncol 2021; 48:197-203. [PMID: 34489120 DOI: 10.1016/j.ejso.2021.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/13/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022] Open
Abstract
BACKGROUND Peritoneal cancer index (PCI) has been used reliably to prognosticate patients with peritoneal metastasis, however, it fails to describe the patterns of peritoneal spread and to correlate these patterns to survival outcomes. We aim to define the scattered peritoneal spread (SPS) as a pattern associated with worse survival in colorectal peritoneal metastasis. METHODS A retrospective analysis of metastatic colorectal cancer patients from a prospectively maintained database of peritoneal surface malignances (n = 280) between 2015 and 2020. SPS was defined by the presence of at least two distant and non-contiguous PCI regions. We compared patients with SPS (n = 73) and clustered peritoneal spread (CPS) (n = 88) for demographics, perioperative and survival outcomes. RESULTS No difference in demographics or post-operative course was noted between the groups. The median follow-up was 15.4 months (0.4-70.8 months). Worse disease-free survival (DFS) in the SPS group with an estimated median of 8.2 months compared to 22.5 months in the CPS spread group, (p = 0.001). The estimated median overall survival (OS) for SPS group was 35.7 months whereas in the CPS group the median was not reached (p = 0.025). The same effect of SPS was preserved even after stratification of PCI. CONCLUSIONS We defined and described the association of the peritoneal spread pattern to survival outcomes. SPS patients exhibit worse DFS and OS independent of the PCI level. Integration of malignant spread pattern into prognostication models along with PCI may aid in predicting oncological outcomes.
Collapse
Affiliation(s)
- Dan Assaf
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel; The Sheba Talpiot Medical Leadership Program, Israel.
| | - Eyal Mor
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Shachar Laks
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Nitzan Zohar
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Haggai Benvenisti
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - David Hazzan
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Lior Segev
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Olga Klebanov Akopyan
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Einat Shacham-Shmueli
- The Department of Oncology Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Ofer Margalit
- The Department of Oncology Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Naama Halpern
- The Department of Oncology Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Ben Boursi
- The Department of Oncology Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Almog Ben-Yaacov
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Aviram Nissan
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| | - Mohammad Adileh
- The Department of General and Oncological Surgery - Surgery C Sheba Medical Center, Tel Hashomer, (Affyliated with the Sackler School of Medicine, Tel Aviv University), Israel
| |
Collapse
|
16
|
Scripcariu V, Ciobanu Apostol DG, Dumitrescu GF, Turliuc MD, Sava A. Clinical, histopathological and immunohistochemical features of brain metastases originating in colorectal cancer: a series of 27 consecutive cases. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY 2021; 61:81-93. [PMID: 32747898 PMCID: PMC7728123 DOI: 10.47162/rjme.61.1.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Brain metastases (BMs) originating in colorectal cancer (CRC) have a significant importance for patients’ survival. Because in literature there are only isolated case reports and only few series published on this issue, we aimed to assess the incidence of BMs from CRC, to identify patient’s characteristics and BMs clinical, histopathological (HP) and immunohistochemical (IHC) features, and to compare the data we obtained with those from literature. Patients, Materials and Methods: We present a retrospective study of 27 histologically confirmed cases of BMs from CRC among all 1040 patients who received metastasectomy in the Department of Neurosurgery, Prof. Dr. Nicolae Oblu Emergency Clinical Hospital, Iaşi, Romania, in an eight-year period (January 2011 to December 2018). Patients’ characteristics (gender, age), primary tumor location, time from primary tumor surgery to BMs surgery and BMs features (number, location and HP characteristics) were investigated. Histochemical [Alcian Blue (AB) and Periodic Acid–Schiff (PAS)] staining and IHC stainings for cytokeratin (CK) 7, CK20, caudal-type homeobox 2 (CDX2) and human epidermal growth factor receptor 2 (HER2)/neu were performed on all available BMs specimens. Results: There were 27 consecutive patients with BMs from CRC, corresponding to 2.59% of all patients with BMs during the eight-year period we have studied, most of them being diagnosed and treated in 2016. Male:female ratio was 1.45. The mean age for all patients at diagnosis of the BMs was 62.25 years (range: 40–79 years). The origin of the primary cancer was mainly the colon (62.96% of all cases). Of all 27 patients, only two (7.4%) presented neurological symptoms without a diagnosis of CRC. BMs were identified in a period ranging from six months to 70 months after the initial diagnosis. The average time between diagnosis of the primary tumor and of the BMs was 25.92 months. At the moment of the diagnosis of BMs, 17 (62.96%) patients also had other systemic metastases. Most of the cases (55.55%) were situated in the supratentorial compartment. IHC stainings were negative for CK7 and positive for CK20 and CDX2 in all BMs from colonic adenocarcinomas (ADCs), a profile consistent with a non-neuronal and gastric origin. AB and PAS stainings revealed pools of extracellular mucin, especially in cases of mucinous ADC. Ki67 labeling index ranged between 90% and 100%. IHC staining with anti-HER2/neu antibody showed in 25 (96.15%) cases a strong and diffuse aberrant nuclear staining. Conclusions: BMs originating in CRC represent a rare pathology and have particular clinical and IHC features that could vary from one series to another series. In a few cases, BMs may be diagnosed in the absence of a known CRC diagnosis and in these situations, the correct diagnosis is of interest. However, a panel of antibodies can help in establishing a correct diagnosis. Our study was among the first to analyze the HER2/neu expression pattern in BMs from CRC and we found a strong aberrant nuclear expression of this molecular marker on IHC investigation. Related to the data published so far in the literature, it is possible that HER2/neu aberrant expression in the tumor nuclei of the BMs from our series may express the metastatic tumor cell phenotype that was previously subjected to cytostatics and radiation therapies. As such, we suggest that HER2/neu aberrant expression in BMs originating in CRC could represent a proof for the worst prognosis of these patients.
Collapse
Affiliation(s)
- Viorel Scripcariu
- Department of Morpho-Functional Sciences I, Department of Surgery II, Grigore T. Popa University of Medicine and Pharmacy, Iaşi, Romania; ,
| | | | | | | | | |
Collapse
|
17
|
Tepe M, Saylisoy S, Toprak U, Inan I. The Potential Role of Peritumoral Apparent Diffusion Coefficient Evaluation in Differentiating Glioblastoma and Solitary Metastatic Lesions of the Brain. Curr Med Imaging 2021; 17:1200-1208. [PMID: 33726654 DOI: 10.2174/1573405617666210316120314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Differentiating glioblastoma (GBM) and solitary metastasis is not always possible using conventional magnetic resonance imaging (MRI) techniques. In conventional brain MRI, GBM and brain metastases are lesions with mostly similar imaging findings. In this study, we investigated whether apparent diffusion coefficient (ADC) ratios, ADC gradients, and minimum ADC values in the peritumoral edema tissue can be used to discriminate between these two tumors. METHODS This retrospective study was approved by the local institutional review board with a waiver of written informed consent. Prior to surgical and medical treatment, conventional brain MRI and diffusion-weighted MRI (b = 0 and b = 1000) images were taken from 43 patients (12 GBM and 31 solitary metastasis cases). Quantitative ADC measurements were performed on the peritumoral tissue from the nearest segment to the tumor (ADC1), the middle segment (ADC2), and the most distant segment (ADC3). The ratios of these three values were determined proportionally to calculate the peritumoral ADC ratios. In addition, these three values were subtracted from each other to obtain the peritumoral ADC gradients. Lastly, the minimum peritumoral and tumoral ADC values, and the quantitative ADC values from the normal appearing ipsilateral white matter, contralateral white matter and ADC values from cerebrospinal fluid (CSF) were recorded. RESULTS For the differentiation of GBM and solitary metastasis, ADC3 / ADC1 was the most powerful parameter with a sensitivity of 91.7% and specificity of 87.1% at the cut-off value of 1.105 (p < 0.001), followed by ADC3 / ADC2 with a cut-off value of 1.025 (p = 0.001), sensitivity of 91.7%, and specificity of 74.2%. The cut-off, sensitivity and specificity of ADC2 / ADC1 were 1.055 (p = 0.002), 83.3%, and 67.7%, respectively. For ADC3 - ADC1, the cut-off value, sensitivity and specificity were calculated as 150 (p < 0.001), 91.7% and 83.9%, respectively. ADC3 - ADC2 had a cut-off value of 55 (p = 0.001), sensitivity of 91.7%, and specificity of 77.4 whereas ADC2 - ADC1 had a cut-off value of 75 (p = 0.003), sensitivity of 91.7%, and specificity of 61.3%. Among the remaining parameters, only the ADC3 value successfully differentiated between GBM and metastasis (GBM 1802.50 ± 189.74 vs. metastasis 1634.52 ± 212.65, p = 0.022). CONCLUSION The integration of the evaluation of peritumoral ADC ratio and ADC gradient into conventional MR imaging may provide valuable information for differentiating GBM from solitary metastatic lesions.
Collapse
Affiliation(s)
- Murat Tepe
- Yunus Emre State Hospital, Department of Radiology, Tepebasi Eskisehir. Turkey
| | - Suzan Saylisoy
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Radiology, Eskisehir. Turkey
| | - Ugur Toprak
- Eskisehir Osmangazi University, Faculty of Medicine, Department of Radiology, Eskisehir. Turkey
| | - Ibrahim Inan
- Adiyaman University, Training and Research Hospital, Department of Radiology, Adiyaman. Turkey
| |
Collapse
|
18
|
Silveira LA, Adams D, DeWitt J, Skidd P, Tranmer B. Urothelial cell carcinoma presenting with rapid visual deterioration, a case of rare brain metastases with unique clinical presentation. Br J Neurosurg 2021; 37:1-4. [PMID: 33629613 DOI: 10.1080/02688697.2021.1887451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND Urothelial cell carcinoma (UCC), the most common cancer of the urinary system, rarely metastasizes to the brain. 1-3 More rare still is the subset of patients with urothelial carcinoma brain metastases whose UCC primary is first diagnosed at the same time as their CNS metastatic disease, with oncologic workup prompted by CNS clinical manifestations.4 Paraneoplastic optic neuropathy (PON) is likewise a rare clinical entity, which has not yet been described in association with UCC brain metastases. CASE DESCRIPTION Herein, we present the sentinel case of UCC believed to be of endometrial origin in an 81 year old woman initially presenting with symptoms of fatigue, nausea, vertigo, and rapidly deteriorating vision over the course of 1 month. Visual deterioration prompted neuro imaging remarkable for multiple supratentorial and infratentorial metastases as well as likely neoplastic inflammatory involvement of the bilateral optic nerves. The patient underwent a right temporal open brain biopsy, with pathology findings consistent with UCC. Subsequent PET scanning demonstrated a heavy burden of disease including an FDG-avid uterine mass with local and distal extension of disease including bilateral hydroureteronephrosis with obstruction of the distal ureters. The patient and her family elected to pursue home hospice without further workup or intervention. CONCLUSIONS While this is the first such case presented, it is possible that UCC of the uterine wall represents a particularly aggressive form of the disease more prone to presenting with CNS metastases and PON.
Collapse
Affiliation(s)
| | - Dylan Adams
- Neurosurgery, UVM Medical Center, Burlington, VT, USA
| | - John DeWitt
- Neuropathology, UVM Medical Center, Burlington, VT, USA
| | - Philip Skidd
- Neuro-ophthalmology, Neurology, UVM Medical Center, Burlington, VT, USA
| | - Bruce Tranmer
- Neurosurgery, UVM Medical Center, Burlington, VT, USA
| |
Collapse
|
19
|
Cepeda S, García-García S, Arrese I, Fernández-Pérez G, Velasco-Casares M, Fajardo-Puentes M, Zamora T, Sarabia R. Comparison of Intraoperative Ultrasound B-Mode and Strain Elastography for the Differentiation of Glioblastomas From Solitary Brain Metastases. An Automated Deep Learning Approach for Image Analysis. Front Oncol 2021; 10:590756. [PMID: 33604286 PMCID: PMC7884775 DOI: 10.3389/fonc.2020.590756] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/17/2020] [Indexed: 12/29/2022] Open
Abstract
Background The differential diagnosis of glioblastomas (GBM) from solitary brain metastases (SBM) is essential because the surgical strategy varies according to the histopathological diagnosis. Intraoperative ultrasound elastography (IOUS-E) is a relatively novel technique implemented in the surgical management of brain tumors that provides additional information about the elasticity of tissues. This study compares the discriminative capacity of intraoperative ultrasound B-mode and strain elastography to differentiate GBM from SBM. Methods We performed a retrospective analysis of patients who underwent craniotomy between March 2018 to June 2020 with glioblastoma (GBM) and solitary brain metastases (SBM) diagnoses. Cases with an intraoperative ultrasound study were included. Images were acquired before dural opening, first in B-mode, and then using the strain elastography module. After image pre-processing, an analysis based on deep learning was conducted using the open-source software Orange. We have trained an existing neural network to classify tumors into GBM and SBM via the transfer learning method using Inception V3. Then, logistic regression (LR) with LASSO (least absolute shrinkage and selection operator) regularization, support vector machine (SVM), random forest (RF), neural network (NN), and k-nearest neighbor (kNN) were used as classification algorithms. After the models’ training, ten-fold stratified cross-validation was performed. The models were evaluated using the area under the curve (AUC), classification accuracy, and precision. Results A total of 36 patients were included in the analysis, 26 GBM and 10 SBM. Models were built using a total of 812 ultrasound images, 435 of B-mode, 265 (60.92%) corresponded to GBM and 170 (39.8%) to metastases. In addition, 377 elastograms, 232 (61.54%) GBM and 145 (38.46%) metastases were analyzed. For B-mode, AUC and accuracy values of the classification algorithms ranged from 0.790 to 0.943 and from 72 to 89%, respectively. For elastography, AUC and accuracy values ranged from 0.847 to 0.985 and from 79% to 95%, respectively. Conclusion Automated processing of ultrasound images through deep learning can generate high-precision classification algorithms that differentiate glioblastomas from metastases using intraoperative ultrasound. The best performance regarding AUC was achieved by the elastography-based model supporting the additional diagnostic value that this technique provides.
Collapse
Affiliation(s)
- Santiago Cepeda
- Neurosurgery Department, University Hospital Río Hortega, Valladolid, Spain
| | | | - Ignacio Arrese
- Neurosurgery Department, University Hospital Río Hortega, Valladolid, Spain
| | | | | | | | - Tomás Zamora
- Pathology Department, University Hospital Río Hortega, Valladolid, Spain
| | - Rosario Sarabia
- Neurosurgery Department, University Hospital Río Hortega, Valladolid, Spain
| |
Collapse
|
20
|
Tang OY, Rivera Perla KM, Lim RK, Weil RJ, Toms SA. The impact of hospital safety-net status on inpatient outcomes for brain tumor craniotomy: a 10-year nationwide analysis. Neurooncol Adv 2021; 3:vdaa167. [PMID: 33506205 PMCID: PMC7813162 DOI: 10.1093/noajnl/vdaa167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Outcome disparities have been documented at safety-net hospitals (SNHs), which disproportionately serve vulnerable patient populations. Using a nationwide retrospective cohort, we assessed inpatient outcomes following brain tumor craniotomy at SNHs in the United States. Methods We identified all craniotomy procedures in the National Inpatient Sample from 2002–2011 for brain tumors: glioma, metastasis, meningioma, and vestibular schwannoma. Safety-net burden was calculated as the number of Medicaid plus uninsured admissions divided by total admissions. Hospitals in the top quartile of burden were defined as SNHs. The association between SNH status and in-hospital mortality, discharge disposition, complications, hospital-acquired conditions (HACs), length of stay (LOS), and costs were assessed. Multivariate regression adjusted for patient, hospital, and severity characteristics. Results 304,719 admissions were analyzed. The most common subtype was glioma (43.8%). Of 1,206 unique hospitals, 242 were SNHs. SNH admissions were more likely to be non-white (P < .001), low income (P < .001), and have higher severity scores (P = .034). Mortality rates were higher at SNHs for metastasis admissions (odds ratio [OR] = 1.48, P = .025), and SNHs had higher complication rates for meningioma (OR = 1.34, P = .003) and all tumor types combined (OR = 1.17, P = .034). However, there were no differences at SNHs for discharge disposition or HACs. LOS and hospital costs were elevated at SNHs for all subtypes, culminating in a 10% and 9% increase in LOS and costs for the overall population, respectively (all P < .001). Conclusions SNHs demonstrated poorer inpatient outcomes for brain tumor craniotomy. Further analyses of the differences observed and potential interventions to ameliorate interhospital disparities are warranted.
Collapse
Affiliation(s)
- Oliver Y Tang
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Krissia M Rivera Perla
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Rachel K Lim
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Robert J Weil
- Department of Neurosurgery, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Steven A Toms
- Department of Neurosurgery, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.,Department of Neurosurgery, Rhode Island Hospital, Providence, Rhode Island, USA
| |
Collapse
|
21
|
Habbous S, Forster K, Darling G, Jerzak K, Holloway CMB, Sahgal A, Das S. Incidence and real-world burden of brain metastases from solid tumors and hematologic malignancies in Ontario: a population-based study. Neurooncol Adv 2021; 3:vdaa178. [PMID: 33585818 PMCID: PMC7872008 DOI: 10.1093/noajnl/vdaa178] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Although intracranial metastatic disease (IMD) is a frequent complication of cancer, most cancer registries do not capture these cases. Consequently, a data-gap exists, which thwarts system-level quality improvement efforts. The purpose of this investigation was to determine the real-world burden of IMD. METHODS Patients diagnosed with a non-CNS cancer between 2010 and 2018 were identified from the Ontario Cancer Registry. IMD was identified by scanning hospital administrative databases for cranial irradiation or coding for a secondary brain malignancy (ICD-10 code C793). RESULTS 25,478 of 601,678 (4.2%) patients with a diagnosis of primary cancer were found to have IMD. The median time from primary cancer diagnosis to IMD was 5.2 (0.7, 15.4) months and varied across disease sites, for example, 2.1 months for lung, 7.3 months for kidney, and 22.8 months for breast. Median survival following diagnosis with IMD was 3.7 months. Lung cancer accounted for 60% of all brain metastases, followed by breast cancer (11%) and melanoma (6%). More advanced stage at diagnosis and younger age were associated with a higher likelihood of developing IMD (P < .0001). IMD was also associated with triple-negative breast cancers and ductal histology (P < .001), and with small-cell histology in patients with lung cancer (P < .0001). The annual incidence of IMD was 3,520, translating to 24.2 per 100,000 persons. CONCLUSION IMD represents a significant burden in patients with systemic cancers and is a significant cause of cancer mortality. Our findings support measures to actively capture incidents of brain metastasis in cancer registries.
Collapse
Affiliation(s)
- Steven Habbous
- Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada
| | | | - Gail Darling
- Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Thoracic Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Katarzyna Jerzak
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Medical Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Claire M B Holloway
- Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Sunit Das
- Ontario Health (Cancer Care Ontario), Toronto, Ontario, Canada
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Neurosurgery, St. Michael’s Hospital, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Meier R, Pahud de Mortanges A, Wiest R, Knecht U. Exploratory Analysis of Qualitative MR Imaging Features for the Differentiation of Glioblastoma and Brain Metastases. Front Oncol 2020; 10:581037. [PMID: 33425734 PMCID: PMC7793795 DOI: 10.3389/fonc.2020.581037] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To identify qualitative VASARI (Visually AcceSIble Rembrandt Images) Magnetic Resonance (MR) Imaging features for differentiation of glioblastoma (GBM) and brain metastasis (BM) of different primary tumors. MATERIALS AND METHODS T1-weighted pre- and post-contrast, T2-weighted, and T2-weighted, fluid attenuated inversion recovery (FLAIR) MR images of a total of 239 lesions from 109 patients with either GBM or BM (breast cancer, non-small cell (NSCLC) adenocarcinoma, NSCLC squamous cell carcinoma, small-cell lung cancer (SCLC)) were included. A set of adapted, qualitative VASARI MR features describing tumor appearance and location was scored (binary; 1 = presence of feature, 0 = absence of feature). Exploratory data analysis was performed on binary scores using a combination of descriptive statistics (proportions with 95% binomial confidence intervals), unsupervised methods and supervised methods including multivariate feature ranking using either repeated fitting or recursive feature elimination with Support Vector Machines (SVMs). RESULTS GBMs were found to involve all lobes of the cerebrum with a fronto-occipital gradient, often affected the corpus callosum (32.4%, 95% CI 19.1-49.2), and showed a strong preference for the right hemisphere (79.4%, 95% CI 63.2-89.7). BMs occurred most frequently in the frontal lobe (35.1%, 95% CI 28.9-41.9) and cerebellum (28.3%, 95% CI 22.6-34.8). The appearance of GBMs was characterized by preference for well-defined non-enhancing tumor margin (100%, 89.8-100), ependymal extension (52.9%, 36.7-68.5) and substantially less enhancing foci than BMs (44.1%, 28.9-60.6 vs. 75.1%, 68.8-80.5). Unsupervised and supervised analyses showed that GBMs are distinctively different from BMs and that this difference is driven by definition of non-enhancing tumor margin, ependymal extension and features describing laterality. Differentiation of histological subtypes of BMs was driven by the presence of well-defined enhancing and non-enhancing tumor margins and localization in the vision center. SVM models with optimal hyperparameters led to weighted F1-score of 0.865 for differentiation of GBMs from BMs and weighted F1-score of 0.326 for differentiation of BM subtypes. CONCLUSION VASARI MR imaging features related to definition of non-enhancing margin, ependymal extension, and tumor localization may serve as potential imaging biomarkers to differentiate GBMs from BMs.
Collapse
Affiliation(s)
- Raphael Meier
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Support Center for Advanced Neuroimaging, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Aurélie Pahud de Mortanges
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
- Support Center for Advanced Neuroimaging, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| | - Urspeter Knecht
- ARTORG Center for Biomedical Research, University of Bern, Bern, Switzerland
- Department of Diagnostic Radiology and Neuroradiology, Regional Hospital Emmental, Burgdorf, Switzerland
| |
Collapse
|
23
|
Ebright RY, Zachariah MA, Micalizzi DS, Wittner BS, Niederhoffer KL, Nieman LT, Chirn B, Wiley DF, Wesley B, Shaw B, Nieblas-Bedolla E, Atlas L, Szabolcs A, Iafrate AJ, Toner M, Ting DT, Brastianos PK, Haber DA, Maheswaran S. HIF1A signaling selectively supports proliferation of breast cancer in the brain. Nat Commun 2020; 11:6311. [PMID: 33298946 PMCID: PMC7725834 DOI: 10.1038/s41467-020-20144-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022] Open
Abstract
Blood-borne metastasis to the brain is a major complication of breast cancer, but cellular pathways that enable cancer cells to selectively grow in the brain microenvironment are poorly understood. We find that cultured circulating tumor cells (CTCs), derived from blood samples of women with advanced breast cancer and directly inoculated into the mouse frontal lobe, exhibit striking differences in proliferative potential in the brain. Derivative cell lines generated by serial intracranial injections acquire selectively increased proliferative competency in the brain, with reduced orthotopic tumor growth. Increased Hypoxia Inducible Factor 1A (HIF1A)-associated signaling correlates with enhanced proliferation in the brain, and shRNA-mediated suppression of HIF1A or drug inhibition of HIF-associated glycolytic pathways selectively impairs brain tumor growth while minimally impacting mammary tumor growth. In clinical specimens, brain metastases have elevated HIF1A protein expression, compared with matched primary breast tumors, and in patients with brain metastases, hypoxic signaling within CTCs predicts decreased overall survival. The selective activation of hypoxic signaling by metastatic breast cancer in the brain may have therapeutic implications.
Collapse
Affiliation(s)
- Richard Y Ebright
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Marcus A Zachariah
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Douglas S Micalizzi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Kira L Niederhoffer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian Chirn
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Devon F Wiley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Benjamin Wesley
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Brian Shaw
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Edwin Nieblas-Bedolla
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Lian Atlas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Annamaria Szabolcs
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anthony J Iafrate
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Mehmet Toner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Center for Bioengineering in Medicine, Massachusetts General Hospital and Harvard Medical School, and Shriners Hospital for Children, Boston, MA, 02114, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Priscilla K Brastianos
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, 02129, USA.
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
24
|
Trinh CT, Nguyen TTT, Van HAT, Hoang VT. A Rare Case of Diffuse Subependymal Periventricular Metastases from Small Cell Lung Carcinoma. Case Rep Oncol 2020; 13:1304-1310. [PMID: 33250746 PMCID: PMC7670344 DOI: 10.1159/000508828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022] Open
Abstract
Small cell lung cancer, whose essence is neuroendocrine tumors, makes up proximately 14-20% of all lung cancer circumstances. Compared to non-small cell lung cancer, its clinical manifestation seems more positive and has a tendency to disseminate earlier in the process of its natural past. About 10% of patients present with brain metastases at the time of provisional diagnosis and sometimes all along the course of their disease, there will be 40-50% of developed brain metastases in addition. Although metastases in the brain parenchyma are often found in patients with advanced lung cancer, periventricular metastases are rare. We report one case of diffuse subependymal periventricular metastases from small cell carcinoma of the lung.
Collapse
Affiliation(s)
| | | | | | - Van Trung Hoang
- Radiology Department, Thien Hanh Hospital, Buon Ma Thuot, Vietnam
| |
Collapse
|
25
|
Gogia P, Wallach J, Dhull AK, Bhasin S. Multiple cutaneous and haemorrhagic brain metastases as the sentinel presentation of lung adenocarcinoma. BMJ Case Rep 2020; 13:13/11/e235938. [PMID: 33229473 DOI: 10.1136/bcr-2020-235938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Skin is a relatively uncommon site of metastasis in lung cancer and is associated with a poor prognosis. Although, lung cancer does not uncommonly metastasise to the brain, haemorrhagic brain metastases are rarely reported. In this report, we present a dramatic presentation of a female smoker with a 3-week history of numerous cutaneous lesions over her body and two episodes of transient memory loss. Work-up demonstrated widely metastatic, poorly differentiated lung adenocarcinoma with haemorrhagic brain metastases. She proceeded with whole brain radiotherapy, but her performance status quickly declined afterwards; she succumbed to her malignancy within 6 weeks of presentation. This case presentation demonstrates that, for patients who present with cutaneous masses, especially those aged more than 60 years, and who have extensive smoking history, metastatic lung cancer should remain on the differential diagnosis. Also, the very poor prognosis of multiple metastases may influence medical and social decisions in the patient's treatment plan.
Collapse
Affiliation(s)
- Pooja Gogia
- Department of Internal Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| | - Jonathan Wallach
- Department of Radiation Oncology, Brooklyn VA Medical Center/SUNY-Downstate, Brooklyn, New York, USA
| | - Anil Kumar Dhull
- Department of Radiation Oncology, Pandit Bhagwat Dayal Sharma University of Health Sciences, Rohtak, Haryana, India
| | - Sidharth Bhasin
- Department of Internal Medicine, Saint Peter's University Hospital, New Brunswick, New Jersey, USA
| |
Collapse
|
26
|
Liu H, Chen J, Chen H, Xia J, Wang O, Xie J, Li M, Guo Z, Chen G, Yan H. Identification of the origin of brain metastases based on the relative methylation orderings of CpG sites. Epigenetics 2020; 16:908-916. [PMID: 32965167 DOI: 10.1080/15592294.2020.1827720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Accurate diagnosis of the origin of brain metastases (BMs) is crucial for tailoring an effective therapy to improve patients' prognosis. BMs of unknown origin account for approximately 2-14% of patients with BMs. Hence, the aim of this study was to identify the original cancer type of BMs based on their DNA methylation profiles. The DNA methylation profiles of glioma (GM), BM, and seven other types of primary cancers were collected. In comparison with GM, the reversal CpG site pairs were identified for each of the seven other types of primary cancers based on the within-sample relative methylation orderings (RMOs) of the CpG sites. Then, using the reversal CpG site pairs, GMs were distinguished from BMs and the seven other types of primary cancers. All 61 of the GM samples were correctly identified as GM. The cancer type was also identified for the non-GM samples. For the seven other types of primary cancers, greater than 93% of samples of each cancer type were correctly identified as their corresponding cancer type, except for breast cancer, which had an 88% accuracy. For 133 BM samples, 132 BM samples were identified as non-GM, and 95% of the 133 BM samples were correctly classified into their corresponding original cancer types. The RMO-based method can accurately identify the origin of BMs, which is important for precision treatment.
Collapse
Affiliation(s)
- Hui Liu
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jianming Chen
- Department of General Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Haifeng Chen
- Department of General Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Jie Xia
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Ouxi Wang
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Jiajing Xie
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Meifeng Li
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Zheng Guo
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Guoping Chen
- Department of General Surgery, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, 350007, China
| | - Haidan Yan
- Department of Bioinformatics, Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| |
Collapse
|
27
|
Thammaroj J, Wongwichit N, Boonrod A. Evaluation of Perienhancing Area in Differentiation between Glioblastoma and Solitary Brain Metastasis. Asian Pac J Cancer Prev 2020; 21:2525-2530. [PMID: 32986348 PMCID: PMC7779443 DOI: 10.31557/apjcp.2020.21.9.2525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Indexed: 11/25/2022] Open
Abstract
Purpose: Accurate differential diagnosis between glioblastoma and brain metastasis is important. We aimed to differentiate these tumors by evaluation of the perienhancing area. Materials and Methods: Thirty patients with glioblastoma and solitary brain metastasis were included. The diameters of perienhancing and enhancing areas were measured, and the percentage of enhancing area was calculated. We measured Apparent diffusion coefficient (ADC) of perienhancing and enhancing areas. Intratumoral necrotic areas were measured. Results: The enhancing area of glioblastoma was 56.61% and metastasis was 42.55% (p = 0.08). The ADC values of the perienhancing part of GBM was 0.7 and metastasis was 0.79 (p = 0.052). The ADC value of the enhancing part of the GBM was 0.82 and metastasis was 0.8 (p-value = 0.72). The intratumoral necrotic area of glioblastoma (152.25 mm3) was higher than in metastasis (0 mm3) (p-value = 0.003) with a cutoff area of 11.8 mm2. Conclusion: The ADC values of the perienhancing area were lower in glioblastoma with a near-significant p-value. Other perienhancing parameters demonstrated no significant difference between both tumors. The intratumoral necrotic area of glioblastoma is larger than metastasis.
Collapse
Affiliation(s)
- Jureerat Thammaroj
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nattha Wongwichit
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Arunnit Boonrod
- Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
28
|
Cindil E, Sendur HN, Cerit MN, Dag N, Erdogan N, Celebi FE, Oner Y, Tali T. Validation of combined use of DWI and percentage signal recovery-optimized protocol of DSC-MRI in differentiation of high-grade glioma, metastasis, and lymphoma. Neuroradiology 2020; 63:331-342. [PMID: 32821962 DOI: 10.1007/s00234-020-02522-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/13/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE With conventional MRI, it is often difficult to effectively differentiate between contrast-enhancing brain tumors, including primary central nervous system lymphoma (PCNSL), high-grade glioma (HGG), and metastasis. This study aimed to assess the discrimination ability of the parameters obtained from DWI and the percentage signal recovery- (PSR-) optimized protocol of DSC-MRI between these three tumor types at an initial step. METHODS DSC-MRI using a PSR-optimized protocol (TR/TE = 1500/30 ms, flip angle = 90°, no preload) and DWI of 99 solitary enhancing tumors (60 HGGs, 24 metastases, 15 PCNSLs) were retrospectively assessed before treatment. rCBV, PSR, ADC in the tumor core and rCBV, and ADC in peritumoral edema were measured. The differences were evaluated using one-way ANOVA, and the diagnostic performance was evaluated using ROC curve analysis. RESULTS PSR in the tumor core showed the best discriminating performance in differentiating these three tumor types with AUC values of 0.979 for PCNSL vs. others and 0.947 for HGG vs. metastasis. The ADC was only helpful in the tumor core and distinguishing PCNSLs from others (AUC = 0.897). CONCLUSION Different from CBV-optimized protocols (preload, intermediate FA), PSR derived from the PSR-optimized protocol seems to be the most important parameter in the differentiation of HGGs, metastases, and PCNSLs at initial diagnosis. This property makes PSR remarkable and carries the need for comprehensive DSC-MRI protocols, which provides PSR sensitivity and CBV accuracy together, such as the preload use of the PSR-optimized protocol before the CBV-optimized protocol.
Collapse
Affiliation(s)
- Emetullah Cindil
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey.
| | - Halit Nahit Sendur
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Mahi Nur Cerit
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Nurullah Dag
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Nesrin Erdogan
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Filiz Elbuken Celebi
- School of Medicine, Department of Radiology, Yeditepe University, Istanbul, Turkey
| | - Yusuf Oner
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| | - Turgut Tali
- School of Medicine, Department of Radiology, Gazi University, Ankara, Turkey
| |
Collapse
|
29
|
Salvati L, Mandalà M, Massi D. Melanoma brain metastases: review of histopathological features and immune-molecular aspects. Melanoma Manag 2020; 7:MMT44. [PMID: 32821376 PMCID: PMC7426753 DOI: 10.2217/mmt-2019-0021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Patients with melanoma brain metastases (MBM) have a dismal prognosis, but the unprecedented advances in systemic therapy alone or in combination with local therapy have now extended the 1-year overall survival rate from 20–25% to nearing 80–85%, mainly in asymptomatic patients. The histopathological and molecular characterization of MBM and the understanding of the microenvironment are critical to more effectively manage patients with advanced melanoma and to design biologically driven clinical trials. This review aims to give an overview of the main histopathological features and the immune-molecular aspects of MBM.
Collapse
Affiliation(s)
- Lorenzo Salvati
- Department of Experimental & Clinical Medicine, University of Florence, Florence, Italy
| | - Mario Mandalà
- Unit of Medical Oncology, Department of Oncology & Hematology, Pope John XXIII Cancer Center Hospital, Bergamo, Italy
| | - Daniela Massi
- Section of Pathological Anatomy, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
30
|
Chan J, Magaki S, Zhang XR, Chin C, Greenspan S, Linetsky M, Kattar M, Vinters HV. Intravascular carcinomatosis of the brain: a report of two cases. Brain Tumor Pathol 2020; 37:118-125. [PMID: 32488681 DOI: 10.1007/s10014-020-00367-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/24/2020] [Indexed: 12/19/2022]
Abstract
Although central nervous system (CNS) metastases are common in advanced cancer, CNS involvement solely by intravascular tumor cells, known as intravascular carcinomatosis, is extremely rare. We report two cases of brain metastasis in which tumor cells were restricted to the vascular lumina without parenchymal involvement, resulting in ischemic lesions. The first patient is a previously healthy young woman who presented with symptoms of community-acquired pneumonia and progressed to respiratory failure. Computed tomography of the brain showed infarcts of differing ages. At autopsy, she was found to have widely metastatic cervical squamous cell carcinoma and cerebral tumor emboli with multifocal infarcts, mainly microinfarcts. The second patient is an elderly man with cognitive impairment and mild Parkinsonism who presented with symptoms of a urinary tract infection. Magnetic resonance imaging of the brain showed atrophy and changes suggestive of chronic microvascular ischemic disease. Postmortem examination demonstrated prostatic adenocarcinoma and cerebral tumor emboli with multifocal infarcts. These cases illustrate that this pattern of intracranial metastasis may rarely be a cause of cerebral ischemic lesions and emphasize the importance of thorough pathologic examination of the brain.
Collapse
Affiliation(s)
- Jackie Chan
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, 90095, CA, USA.
| | - Xinhai R Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, 90095, CA, USA.,Department of Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Curtis Chin
- Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Stanley Greenspan
- Department of Radiology and Diagnostic Imaging, University of Alberta, Edmonton, AB, Canada
| | - Michael Linetsky
- Department of Radiologic Sciences, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Mireille Kattar
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Harry V Vinters
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.,Section of Neuropathology, Department of Pathology and Laboratory Medicine, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, 10833 Le Conte Ave, Los Angeles, 90095, CA, USA.,Department of Neurology, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA.,Brain Research Institute, Ronald Reagan UCLA Medical Center, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
31
|
Ahn SJ, Kwon H, Yang JJ, Park M, Cha YJ, Suh SH, Lee JM. Contrast-enhanced T1-weighted image radiomics of brain metastases may predict EGFR mutation status in primary lung cancer. Sci Rep 2020; 10:8905. [PMID: 32483122 PMCID: PMC7264319 DOI: 10.1038/s41598-020-65470-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 04/30/2020] [Indexed: 01/01/2023] Open
Abstract
Identification of EGFR mutations is critical to the treatment of primary lung cancer and brain metastases (BMs). Here, we explored whether radiomic features of contrast-enhanced T1-weighted images (T1WIs) of BMs predict EGFR mutation status in primary lung cancer cases. In total, 1209 features were extracted from the contrast-enhanced T1WIs of 61 patients with 210 measurable BMs. Feature selection and classification were optimized using several machine learning algorithms. Ten-fold cross-validation was applied to the T1WI BM dataset (189 BMs for training and 21 BMs for the test set). Area under receiver operating characteristic curves (AUC), accuracy, sensitivity, and specificity were calculated. Subgroup analyses were also performed according to metastasis size. For all measurable BMs, random forest (RF) classification with RF selection demonstrated the highest diagnostic performance for identifying EGFR mutation (AUC: 86.81). Support vector machine and AdaBoost were comparable to RF classification. Subgroup analyses revealed that small BMs had the highest AUC (89.09). The diagnostic performance for large BMs was lower than that for small BMs (the highest AUC: 78.22). Contrast-enhanced T1-weighted image radiomics of brain metastases predicted the EGFR mutation status of lung cancer BMs with good diagnostic performance. However, further study is necessary to apply this algorithm more widely and to larger BMs.
Collapse
Affiliation(s)
- Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea
| | - Hyeokjin Kwon
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Jin-Ju Yang
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University, College of Medicine, Seoul, Korea
| | - Jong-Min Lee
- Department of Biomedical Engineering, Hanyang University, Seoul, Korea.
| |
Collapse
|
32
|
Metastases to the central nervous system: Molecular basis and clinical considerations. J Neurol Sci 2020; 412:116755. [PMID: 32120132 DOI: 10.1016/j.jns.2020.116755] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metastatic tumors are the most common malignancies of the central nervous system (CNS) in adults. CNS metastases are associated with unfavorable prognosis, high morbidity and mortality. Lung cancer is the most common source of brain metastases, followed by breast cancer and melanoma. Rising incidence is primarily due to improvements in systemic control of primary malignancies, prolonged survival and advances in cancer detection. PURPOSE To provide an overview of the metastatic cascade and the role of angiogenesis, neuroinflammation, metabolic adaptations, and clinical details about brain metastases from different primary tumors. METHODS A review of the literature on brain metastases was conducted, focusing on the pathophysiology and clinical aspects of the disease. PubMed was used to search for relevant articles published from January 1975 through December 2019 using the keywords brain metabolism, brain metastasis, metastatic cascade, molecular mechanisms, incidence, risk factors, and prognosis. 146 articles met the criteria and were included in this review. DISCUSSION Some primary tumors have a higher tendency to metastasize to the CNS. Establishing a suitable metastatic microenvironment is important in maintaining tumor cell growth and survival. Magnetic resonance imaging (MRI) is a widely used tool for diagnosis and treatment monitoring. Available treatments include surgery, radiotherapy, stereotactic radiosurgery, chemotherapy, immunotherapy, and systemic targeted therapies. CONCLUSIONS Prevention of metastases to the CNS remains a difficult challenge. Advances in screening of high-risk patients and future development of novel treatments may improve patient outcomes.
Collapse
|
33
|
Partridge B, Rossmeisl JH. Companion animal models of neurological disease. J Neurosci Methods 2020; 331:108484. [PMID: 31733285 PMCID: PMC6942211 DOI: 10.1016/j.jneumeth.2019.108484] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/28/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Clinical translation of novel therapeutics that improve the survival and quality of life of patients with neurological disease remains a challenge, with many investigational drug and device candidates failing in advanced stage clinical trials. Naturally occurring inherited and acquired neurological diseases, such as epilepsy, inborn errors of metabolism, brain tumors, spinal cord injury, and stroke occur frequently in companion animals, and many of these share epidemiologic, pathophysiologic and clinical features with their human counterparts. As companion animals have a relatively abbreviated lifespan and genetic background, are immunocompetent, share their environment with human caregivers, and can be clinically managed using techniques and tools similar to those used in humans, they have tremendous potential for increasing the predictive value of preclinical drug and device studies. Here, we review comparative features of spontaneous neurological diseases in companion animals with an emphasis on neuroimaging methods and features, illustrate their historical use in translational studies, and discuss inherent limitations associated with each disease model. Integration of companion animals with naturally occurring disease into preclinical studies can complement and expand the knowledge gained from studies in other animal models, accelerate or improve the manner in which research is translated to the human clinic, and ultimately generate discoveries that will benefit the health of humans and animals.
Collapse
Affiliation(s)
- Brittanie Partridge
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA
| | - John H Rossmeisl
- Veterinary and Comparative Neuro-Oncology Laboratory, Department of Small Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA; Brain Tumor Center of Excellence, Wake Forest University Comprehensive Cancer Center, Medical Center Blvd, NRC 405, Winston Salem, NC, 27157, USA.
| |
Collapse
|
34
|
The role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases: an update on its pathological significance and therapeutic potential. Contemp Oncol (Pozn) 2019; 23:187-194. [PMID: 31992949 PMCID: PMC6978756 DOI: 10.5114/wo.2019.91543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Lung adenocarcinoma (LA) is the most common cause of cancer-related death worldwide. Despite the advances over last decade in new targeted therapies, cancer genetics, diagnostics, staging, and surgical techniques as well as new chemotherapy and radiotherapy protocols, the death rate from LA remains high. The tumour microenvironment is composed of several cytokines, one of which is transforming growth factor β1 (TGF-β1), which modulates and mediates the expression of epithelial-mesenchymal transition (EMT), correlated with invasive growth in LAs, and exhibits its pleiotropic effects through binding to transmembrane receptors TβR-1 (also termed activin receptor-like kinases – ALKs) and TβR-2. Accordingly, there is an urgent need to elucidate the molecular mechanisms associated with the tumoural spreading process and therapeutic resistance of this serious pathology. In this review, we briefly discuss the current role of contextual signal TGF-β1 inducer of epithelial mesenchymal transition in metastatic lung adenocarcinoma patients with brain metastases, and give an overview of our current mechanistic understanding of the TGF-β1-related pathways in brain metastases progression, TGF-β1 pathway inhibitors that could be used for clinical treatment, and examination of models used to study these processes. Finally, we summarise the current progress in the therapeutic approaches targeting TGF-β1.
Collapse
|
35
|
Galli R, Uckermann O, Sehm T, Leipnitz E, Hartmann C, Sahm F, Koch E, Schackert G, Steiner G, Kirsch M. Identification of distinctive features in human intracranial tumors by label-free nonlinear multimodal microscopy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800465. [PMID: 31194284 DOI: 10.1002/jbio.201800465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/08/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Nonlinear multimodal microscopy offers a series of label-free techniques with potential for intraoperative identification of tumor borders in situ using novel endoscopic devices. Here, we combined coherent anti-Stokes Raman scattering, two-photon excited fluorescence (TPEF) and second harmonic generation imaging to analyze biopsies of different human brain tumors, with the aim to understand whether the morphological information carried by single field of view images, similar to what delivered by present endoscopic systems, is sufficient for tumor recognition. We imaged 40 human biopsies of high and low grade glioma, meningioma, as well as brain metastases of melanoma, breast, lung and renal carcinoma, in comparison with normal brain parenchyma. Furthermore, five biopsies of schwannoma were analyzed and compared with nonpathological nerve tissue. Besides the high cellularity, the typical features of tumor, which were identified and quantified, are intracellular and extracellular lipid droplets, aberrant vessels, extracellular matrix collagen and diffuse TPEF. Each tumor type displayed a particular morphochemistry characterized by specific patterns of the above-mentioned features. Nonlinear multimodal microscopy performed on fresh unprocessed biopsies confirmed that the technique has the ability to visualize tumor structures and discern normal from neoplastic tissue likewise in conditions close to in situ.
Collapse
Affiliation(s)
- Roberta Galli
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ortrud Uckermann
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tina Sehm
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elke Leipnitz
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Christian Hartmann
- Department of Neuropathology, Institute of Pathology, Hannover Medical School (MHH), Hannover, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Hopp Children's Cancer Center Heidelberg, Heidelberg, Germany
| | - Edmund Koch
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Gerald Steiner
- Clinical Sensoring and Monitoring, Anesthesiology and Intensive Care Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Matthias Kirsch
- Neurosurgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
36
|
Zheng Y, Ding Y, Wang Q, Sun Y, Teng X, Gao Q, Zhong W, Lou X, Xiao C, Chen C, Xu Q, Xu N. 90-gene signature assay for tissue origin diagnosis of brain metastases. J Transl Med 2019; 17:331. [PMID: 31570099 PMCID: PMC6771090 DOI: 10.1186/s12967-019-2082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
Background Brain metastases (BM) are the most common intracranial tumors. 2–14% of BM patients present with unknown primary site despite intensive evaluations. This study aims to evaluate the performance of a 90-gene expression signature in determining the primary sites for BM samples. Methods The sequence-based gene expression profiles of 708 primary brain tumors (PBT) collected from The Cancer Genome Atlas (TCGA) database were analyzed by the 90-gene expression signature, with a similarity score for each of 21 common tumor types. We then used Optimal Binning algorithm to generate a threshold for separating PBT from BM. Eighteen PBT samples were analyzed to substantiate the reliability of the threshold. In addition, the performance of the 90-gene expression signature for molecular classification of metastatic brain tumors was validated in a cohort of 48 BM samples with the known origin. For each BM sample, the tumor type with the highest similarity score was considered tissue of origin. When a sample was diagnosed as PBT, but the similarity score below the threshold, the second prediction was considered as the primary site. Results A threshold of the similarity score, 70, was identified to discriminate PBT from BM (PBT: > 70, BM: ≤ 70) with an accuracy of 99% (703/708, 95% CI 98–100%). The 90-gene expression signature was further validated with 18 PBT and 44 BM samples. The results of 18 PBT samples matched reference diagnosis with a concordance rate of 100%, and all similarity scores were above the threshold. Of 44 BM samples, the 90-gene expression signature accurately predicted primary sites in 89% (39/44, 95% CI 75–96%) of the cases. Conclusions Our findings demonstrated the potential that the 90-gene expression signature could serve as a powerful tool for accurately identifying the primary sites of metastatic brain tumors.
Collapse
Affiliation(s)
- Yulong Zheng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qifeng Wang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yifeng Sun
- Canhelp Genomics Co., Ltd., Hangzhou, Zhejiang, China
| | - Xiaodong Teng
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiqi Gao
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaofeng Lou
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cheng Xiao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengshu Chen
- Canhelp Genomics Co., Ltd., Hangzhou, Zhejiang, China
| | - Qinghua Xu
- Canhelp Genomics Co., Ltd., Hangzhou, Zhejiang, China.
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Drosos E, Kalyvas A, Komaitis S, Skandalakis GP, Kalamatianos T, Liouta E, Neromyliotis E, Alexiou GA, Stranjalis G, Koutsarnakis C. Angiosarcoma-related cerebral metastases: a systematic review of the literature. Neurosurg Rev 2019; 43:1019-1038. [PMID: 31165296 DOI: 10.1007/s10143-019-01127-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/01/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Abstract
Angiosarcoma-related cerebral metastases have only been recorded in a few case reports and case series and have not been systematically reviewed to date. Our objective was therefore to perform a systematic literature review on cases of angiosarcomas metastasizing to the brain to inform current practice. All three major libraries-PubMed/MEDLINE, Embase, and Cochrane-were systematically searched, until January 2019. Articles in English reporting angiosarcoma-related cerebral metastases via hematogenous route were included. Our search yielded 45 articles (38 case reports, 5 retrospective studies, 1 case series and 1 letter to the editor), totaling 48 patients (mean age 47.9 years). The main primary site was the heart. The mean time of diagnosis of cerebral metastases following primary tumor identification was 4.9 months. In 15 cases, the brain was the only metastatic site. In cases of multiple extracerebral metastases, the most common sites were the lung and bone. Acute intracerebral supratentorial hemorrhage was the most common presenting radiological feature. Treatment strategies were almost equally divided between the surgical (with or without adjuvant treatment) and the medical arm. Mean overall survival was 7.2 months while progression-free survival was 1.5 months. To our knowledge, this is the first systematic literature review on angiosarcoma-related cerebral metastases. This pathology proves to be an extremely rare clinical entity and carries a poor prognosis, and no consensus has been reached regarding treatment.
Collapse
Affiliation(s)
- Evangelos Drosos
- Athens Microneurosurgery Laboratory, Ploutarhou 3, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Ypsilantou 45-47, Athens, Greece
| | - Aristotelis Kalyvas
- Athens Microneurosurgery Laboratory, Ploutarhou 3, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Ypsilantou 45-47, Athens, Greece.,Hellenic Center for Neurosurgical Research "Petros Kokkalis", Ploutarxhou 3, Athens, Greece
| | - Spyridon Komaitis
- Athens Microneurosurgery Laboratory, Ploutarhou 3, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Ypsilantou 45-47, Athens, Greece.,Hellenic Center for Neurosurgical Research "Petros Kokkalis", Ploutarxhou 3, Athens, Greece
| | | | - Theodosis Kalamatianos
- Hellenic Center for Neurosurgical Research "Petros Kokkalis", Ploutarxhou 3, Athens, Greece
| | - Evangelia Liouta
- Hellenic Center for Neurosurgical Research "Petros Kokkalis", Ploutarxhou 3, Athens, Greece
| | - Eleftherios Neromyliotis
- Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Ypsilantou 45-47, Athens, Greece
| | - George A Alexiou
- Neurosurgery Department, University of Ioannina, Leof. Stavrou Niarchou, Ioannina, Greece
| | - George Stranjalis
- Athens Microneurosurgery Laboratory, Ploutarhou 3, Athens, Greece.,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Ypsilantou 45-47, Athens, Greece.,Hellenic Center for Neurosurgical Research "Petros Kokkalis", Ploutarxhou 3, Athens, Greece
| | - Christos Koutsarnakis
- Athens Microneurosurgery Laboratory, Ploutarhou 3, Athens, Greece. .,Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, Ypsilantou 45-47, Athens, Greece. .,Hellenic Center for Neurosurgical Research "Petros Kokkalis", Ploutarxhou 3, Athens, Greece.
| |
Collapse
|
38
|
Innovative Therapeutic Strategies for Effective Treatment of Brain Metastases. Int J Mol Sci 2019; 20:ijms20061280. [PMID: 30875730 PMCID: PMC6471202 DOI: 10.3390/ijms20061280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are the most prevalent of intracranial malignancies. They are associated with a very poor prognosis and near 100% mortality. This has been the case for decades, largely because we lack effective therapeutics to augment surgery and radiotherapy. Notwithstanding improvements in the precision and efficacy of these life-prolonging treatments, with no reliable options for adjunct systemic therapy, brain recurrences are virtually inevitable. The factors limiting intracranial efficacy of existing agents are both physiological and molecular in nature. For example, heterogeneous permeability, abnormal perfusion and high interstitial pressure oppose the conventional convective delivery of circulating drugs, thus new delivery strategies are needed to achieve uniform drug uptake at therapeutic concentrations. Brain metastases are also highly adapted to their microenvironment, with complex cross-talk between the tumor, the stroma and the neural compartments driving speciation and drug resistance. New strategies must account for resistance mechanisms that are frequently engaged in this milieu, such as HER3 and other receptor tyrosine kinases that become induced and activated in the brain microenvironment. Here, we discuss molecular and physiological factors that contribute to the recalcitrance of these tumors, and review emerging therapeutic strategies, including agents targeting the PI3K axis, immunotherapies, nanomedicines and MRI-guided focused ultrasound for externally controlling drug delivery.
Collapse
|
39
|
Orozco JIJ, Knijnenburg TA, Manughian-Peter AO, Salomon MP, Barkhoudarian G, Jalas JR, Wilmott JS, Hothi P, Wang X, Takasumi Y, Buckland ME, Thompson JF, Long GV, Cobbs CS, Shmulevich I, Kelly DF, Scolyer RA, Hoon DSB, Marzese DM. Epigenetic profiling for the molecular classification of metastatic brain tumors. Nat Commun 2018; 9:4627. [PMID: 30401823 PMCID: PMC6219520 DOI: 10.1038/s41467-018-06715-y] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 09/19/2018] [Indexed: 01/29/2023] Open
Abstract
Optimal treatment of brain metastases is often hindered by limitations in diagnostic capabilities. To meet this challenge, here we profile DNA methylomes of the three most frequent types of brain metastases: melanoma, breast, and lung cancers (n = 96). Using supervised machine learning and integration of DNA methylomes from normal, primary, and metastatic tumor specimens (n = 1860), we unravel epigenetic signatures specific to each type of metastatic brain tumor and constructed a three-step DNA methylation-based classifier (BrainMETH) that categorizes brain metastases according to the tissue of origin and therapeutically relevant subtypes. BrainMETH predictions are supported by routine histopathologic evaluation. We further characterize and validate the most predictive genomic regions in a large cohort of brain tumors (n = 165) using quantitative-methylation-specific PCR. Our study highlights the importance of brain tumor-defining epigenetic alterations, which can be utilized to further develop DNA methylation profiling as a critical tool in the histomolecular stratification of patients with brain metastases.
Collapse
Affiliation(s)
- Javier I J Orozco
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | | | - Ayla O Manughian-Peter
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Matthew P Salomon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Garni Barkhoudarian
- Pacific Neuroscience Institute, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - John R Jalas
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
| | - Parvinder Hothi
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | - Xiaowen Wang
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Yuki Takasumi
- Department of Pathology, Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Michael E Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, the Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - John F Thompson
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Royal North Shore Hospital, Sydney, NSW, 2065, Australia
| | - Charles S Cobbs
- Ben & Catherine Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, 98122, USA
| | | | - Daniel F Kelly
- Pacific Neuroscience Institute, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, 2065, Australia
- Sydney Medical School, The University of Sydney, Camperdown, NSW, 2006, Australia
- Royal Prince Alfred Hospital, Sydney, NSW, 2050, Australia
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
- Sequencing Center, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA
| | - Diego M Marzese
- Department of Translational Molecular Medicine, John Wayne Cancer Institute at Providence Saint John's Health Center, Santa Monica, CA, 90404, USA.
| |
Collapse
|
40
|
Xia Y, Mashouf LA, Maxwell R, Peng LC, Lipson EJ, Sharfman WH, Bettegowda C, Redmond KJ, Kleinberg LR, Lim M. Adjuvant radiotherapy and outcomes of presumed hemorrhagic melanoma brain metastases without malignant cells. Surg Neurol Int 2018; 9:146. [PMID: 30105140 PMCID: PMC6080145 DOI: 10.4103/sni.sni_140_18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/14/2018] [Indexed: 12/28/2022] Open
Abstract
Background Patients with melanoma can present with a hemorrhagic intracranial lesion. Upon resection, pathology reports may not detect any malignant cells. However, the hemorrhage may obscure their presence and so physicians may still decide whether adjuvant radiotherapy should be applied. Here, we report on the outcomes of a series of patients with melanoma with hemorrhagic brain lesions that returned with no tumor cells. Methods All melanoma patients who had craniotomies from 2008 to 2017 at a single institution for hemorrhagic brain lesions were identified through retrospective chart review. Those who had pathology reports with no malignant cells were analyzed. Recurrence at the former site of hemorrhage and resection was the primary outcome. Results Ten patients met inclusion criteria, and the median follow-up time was 8.5 (1.8-27.3) months. At the time of craniotomy, the median number of brain lesions was 3 (1-25). Two patients had prior craniotomies, eight had prior radiation, and six had prior immunotherapy to the lesion of interest. After surgery, one patient received stereotactic radiosurgery (SRS) to the resection bed. Only one patient developed subsequent melanoma at the resection site; this patient developed the lesion recurrence once and had not received postoperative SRS. Conclusion Although small foci of metastatic disease as a source of bleeding for some patients cannot be excluded, melanoma patients with a suspected hemorrhagic brain metastasis that shows no tumor cells on pathology may benefit from close observation. The local recurrence risk in such cases appears to be low, even without adjuvant radiation.
Collapse
Affiliation(s)
- Yuanxuan Xia
- Department of Neurosurgery, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Leila A Mashouf
- Department of Neurosurgery, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Russell Maxwell
- Department of Neurosurgery, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Luke C Peng
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Evan J Lipson
- Department of Oncology, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - William H Sharfman
- Department of Oncology, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Kristin J Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Lawrence R Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA.,Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA.,Department of Oncology, Johns Hopkins Medical Institutes, Baltimore, Maryland, USA
| |
Collapse
|
41
|
Franchino F, Rudà R, Soffietti R. Mechanisms and Therapy for Cancer Metastasis to the Brain. Front Oncol 2018; 8:161. [PMID: 29881714 PMCID: PMC5976742 DOI: 10.3389/fonc.2018.00161] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth factor receptor mutations develop BMs, which are targetable with different generations of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrangements of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
42
|
Ortiz-Ramón R, Larroza A, Ruiz-España S, Arana E, Moratal D. Classifying brain metastases by their primary site of origin using a radiomics approach based on texture analysis: a feasibility study. Eur Radiol 2018; 28:4514-4523. [PMID: 29761357 DOI: 10.1007/s00330-018-5463-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/07/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
Abstract
OBJECTIVE To examine the capability of MRI texture analysis to differentiate the primary site of origin of brain metastases following a radiomics approach. METHODS Sixty-seven untreated brain metastases (BM) were found in 3D T1-weighted MRI of 38 patients with cancer: 27 from lung cancer, 23 from melanoma and 17 from breast cancer. These lesions were segmented in 2D and 3D to compare the discriminative power of 2D and 3D texture features. The images were quantized using different number of gray-levels to test the influence of quantization. Forty-three rotation-invariant texture features were examined. Feature selection and random forest classification were implemented within a nested cross-validation structure. Classification was evaluated with the area under receiver operating characteristic curve (AUC) considering two strategies: multiclass and one-versus-one. RESULTS In the multiclass approach, 3D texture features were more discriminative than 2D features. The best results were achieved for images quantized with 32 gray-levels (AUC = 0.873 ± 0.064) using the top four features provided by the feature selection method based on the p-value. In the one-versus-one approach, high accuracy was obtained when differentiating lung cancer BM from breast cancer BM (four features, AUC = 0.963 ± 0.054) and melanoma BM (eight features, AUC = 0.936 ± 0.070) using the optimal dataset (3D features, 32 gray-levels). Classification of breast cancer and melanoma BM was unsatisfactory (AUC = 0.607 ± 0.180). CONCLUSION Volumetric MRI texture features can be useful to differentiate brain metastases from different primary cancers after quantizing the images with the proper number of gray-levels. KEY POINTS • Texture analysis is a promising source of biomarkers for classifying brain neoplasms. • MRI texture features of brain metastases could help identifying the primary cancer. • Volumetric texture features are more discriminative than traditional 2D texture features.
Collapse
Affiliation(s)
- Rafael Ortiz-Ramón
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | - Andrés Larroza
- Department of Medicine, Universitat de València, Av. Blasco Ibáñez 15, 46010, Valencia, Spain
| | - Silvia Ruiz-España
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain
| | - Estanislao Arana
- Department of Radiology, Fundación Instituto Valenciano de Oncología, Calle Beltrán Báguena 8, 46009, Valencia, Spain
| | - David Moratal
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Camí de Vera s/n, 46022, Valencia, Spain.
| |
Collapse
|
43
|
Ljubimova JY, Sun T, Mashouf L, Ljubimov AV, Israel LL, Ljubimov VA, Falahatian V, Holler E. Covalent nano delivery systems for selective imaging and treatment of brain tumors. Adv Drug Deliv Rev 2017; 113:177-200. [PMID: 28606739 PMCID: PMC5578712 DOI: 10.1016/j.addr.2017.06.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023]
Abstract
Nanomedicine is a rapidly evolving form of therapy that holds a great promise for superior drug delivery efficiency and therapeutic efficacy than conventional cancer treatment. In this review, we attempt to cover the benefits and the limitations of current nanomedicines with special attention to covalent nano conjugates for imaging and drug delivery in the brain. The improvement in brain tumor treatment remains dismal despite decades of efforts in drug development and patient care. One of the major obstacles in brain cancer treatment is the poor drug delivery efficiency owing to the unique blood-brain barrier (BBB) in the CNS. Although various anti-cancer agents are available to treat tumors outside of the CNS, the majority fails to cross the BBB. In this regard, nanomedicines have increasingly drawn attention due to their multi-functionality and versatility. Nano drugs can penetrate BBB and other biological barriers, and selectively accumulate in tumor cells, while concurrently decreasing systemic toxicity.
Collapse
Affiliation(s)
- Julia Y Ljubimova
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA.
| | - Tao Sun
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Leila Mashouf
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Alexander V Ljubimov
- Department of Biomedical Sciences, Board of Governors Regenerative Medicine Institute, Los Angeles, CA 90048, USA
| | - Liron L Israel
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA
| | - Vladimir A Ljubimov
- Department of Neurosurgery and Brain Repair, University of South Florida, 2 Tampa General Circle, Tampa, FL 33606, USA
| | - Vida Falahatian
- Duke University School of Medicine, Department of Biostatistics and Bioinformatics, Clinical Research Training Program (CRTP), 2424 Erwin Road, Suite 1102, Hock Plaza Box 2721, Durham, NC 27710, USA
| | - Eggehard Holler
- Nanomedicine Research Center, Department of Neurosurgery, Cedars-Sinai Medical Center, 8700 Beverly Blvd., AHSP, Los Angeles, CA 90048, USA; Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
44
|
Patel PD, Patel NV, Davidson C, Danish SF. The Role of MRgLITT in Overcoming the Challenges in Managing Infield Recurrence After Radiation for Brain Metastasis. Neurosurgery 2016; 79 Suppl 1:S40-S58. [DOI: 10.1227/neu.0000000000001436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Abstract
Radiation necrosis and tumor recurrence are common sequelae after radiation therapy for brain metastasis. The differentiation of radiation necrosis and recurrent brain metastases continues to remain a difficult task despite a number of diagnostic methods. Techniques including magnetic resonance imaging, diffusion-weighted imaging, nuclear studies, and the gold standard of biopsy have all been studied for their effectiveness in accurately diagnosing the postradiation condition. Various specific treatment options of the distinct pathologies are available with the general theory that recurrences require more immediate treatment whereas radiation necrosis can be observed until symptomatic before intervention. This further emphasizes the necessity to accurately diagnose the condition to start appropriate and effective treatment. Despite both pathologies being pathophysiologically distinct, controversies exist as to whether there should be a distinction made at all or if the two can be perceived as a single condition if treatment and presentation are similar enough. Furthermore, a single treatment option such as magnetic resonance–guided, laser-induced thermal therapy (MRgLITT) can be used, potentially eliminating the need to differentiate the 2 entities because it successfully treats both conditions while being minimally invasive.
Collapse
Affiliation(s)
- Purvee D. Patel
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| | - Nitesh V. Patel
- Department of Neurological Surgery, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - Christian Davidson
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
- Department of Pathology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Shabbar F. Danish
- Section of Neurosurgery, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey
| |
Collapse
|
45
|
Hendrix P, Senger S, Griessenauer CJ, Simgen A, Schwerdtfeger K, Oertel J. Preoperative navigated transcranial magnetic stimulation in patients with motor eloquent lesions with emphasis on metastasis. Clin Anat 2016; 29:925-31. [DOI: 10.1002/ca.22765] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/03/2016] [Accepted: 08/04/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Philipp Hendrix
- Department of Neurosurgery; Saarland University Medical Center and Saarland University Faculty of Medicine; Homburg/Saar Germany
| | - Sebastian Senger
- Department of Neurosurgery; Saarland University Medical Center and Saarland University Faculty of Medicine; Homburg/Saar Germany
| | | | - Andreas Simgen
- Department of Neuroradiology; Saarland Saarland University Medical Center and Saarland University Faculty of Medicine; Homburg/Saar Germany
| | - Karsten Schwerdtfeger
- Department of Neurosurgery; Saarland University Medical Center and Saarland University Faculty of Medicine; Homburg/Saar Germany
| | - Joachim Oertel
- Department of Neurosurgery; Saarland University Medical Center and Saarland University Faculty of Medicine; Homburg/Saar Germany
| |
Collapse
|
46
|
Drusco A, Bottoni A, Laganà A, Acunzo M, Fassan M, Cascione L, Antenucci A, Kumchala P, Vicentini C, Gardiman MP, Alder H, Carosi MA, Ammirati M, Gherardi S, Luscrì M, Carapella C, Zanesi N, Croce CM. A differentially expressed set of microRNAs in cerebro-spinal fluid (CSF) can diagnose CNS malignancies. Oncotarget 2015; 6:20829-20839. [PMID: 26246487 PMCID: PMC4673232 DOI: 10.18632/oncotarget.4096] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 05/14/2015] [Indexed: 12/12/2022] Open
Abstract
Central Nervous System malignancies often require stereotactic biopsy or biopsy for differential diagnosis, and for tumor staging and grading. Furthermore, stereotactic biopsy can be non-diagnostic or underestimate grading. Hence, there is a compelling need of new diagnostic biomarkers to avoid such invasive procedures. Several biological markers have been proposed, but they can only identify specific prognostic subtype of Central Nervous System tumors, and none of them has found a standardized clinical application.The aim of the study was to identify a Cerebro-Spinal Fluid microRNA signature that could differentiate among Central Nervous System malignancies.CSF total RNA of 34 neoplastic and of 14 non-diseased patients was processed by NanoString. Comparison among groups (Normal, Benign, Glioblastoma, Medulloblastoma, Metastasis and Lymphoma) lead to the identification of a microRNA profile that was further confirmed by RT-PCR and in situ hybridization.Hsa-miR-451, -711, 935, -223 and -125b were significantly differentially expressed among the above mentioned groups, allowing us to draw an hypothetical diagnostic chart for Central Nervous System malignancies.This is the first study to employ the NanoString technique for Cerebro-Spinal Fluid microRNA profiling. In this article, we demonstrated that Cerebro-Spinal Fluid microRNA profiling mirrors Central Nervous System physiologic or pathologic conditions. Although more cases need to be tested, we identified a diagnostic Cerebro-Spinal Fluid microRNA signature with good perspectives for future diagnostic clinical applications.
Collapse
Affiliation(s)
| | | | - Alessandro Laganà
- Dept. of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mario Acunzo
- MVIMG, The Ohio State University, Columbus, OH, USA
| | - Matteo Fassan
- Dept. of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | - Luciano Cascione
- Lymphoma & Genomics Research Program, IOR Institute of Oncology Research, Bellinzona, Switzerland
- IOSI Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
| | - Anna Antenucci
- UOSD of Clinical pathology, Regina Elena Institute, Rome, Italy
| | | | - Caterina Vicentini
- ARC-NET Research Centre, University and Hospital Trust of Verona, Verona, Italy
| | - Marina P. Gardiman
- Dept. of Medicine (DIMED), Surgical Pathology & Cytopathology Unit, University of Padua, Padua, Italy
| | | | | | - Mario Ammirati
- Dept. of Neurological Surgery, The Ohio State University, OH, USA
| | | | - Marilena Luscrì
- Dept. of Anesthesiology, Sandro Pertini Hospital, Rome, Italy
| | | | | | | |
Collapse
|
47
|
Wirth D, Smith TW, Moser R, Yaroslavsky AN. Demeclocycline as a contrast agent for detecting brain neoplasms using confocal microscopy. Phys Med Biol 2015; 60:3003-11. [PMID: 25790138 DOI: 10.1088/0031-9155/60/7/3003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Complete resection of brain tumors improves life expectancy and quality. Thus, there is a strong need for high-resolution detection and microscopically controlled removal of brain neoplasms. The goal of this study was to test demeclocycline as a contrast enhancer for the intraoperative detection of brain tumors. We have imaged benign and cancerous brain tumors using multimodal confocal microscopy. The tumors investigated included pituitary adenoma, meningiomas, glioblastomas, and metastatic brain cancers. Freshly excised brain tissues were stained in 0.75 mg ml(-1) aqueous solution of demeclocyline. Reflectance images were acquired at 402 nm. Fluorescence signals were excited at 402 nm and registered between 500 and 540 nm. After imaging, histological sections were processed from the imaged specimens and compared to the optical images. Fluorescence images highlighted normal and cancerous brain cells, while reflectance images emphasized the morphology of connective tissue. The optical and histological images were in accordance with each other for all types of tumors investigated. Demeclocyline shows promise as a contrast agent for intraoperative detection of brain tumors.
Collapse
Affiliation(s)
- Dennis Wirth
- Department of Physics and Applied Physics, University of Massachusetts, Lowell 1 University Ave. Lowell, MA 01854, USA
| | | | | | | |
Collapse
|
48
|
Nafisi H, Cesari M, Karamchandani J, Balasubramaniam G, Keith JL. Metastatic ovarian carcinoma to the brain: an approach to identification and classification for neuropathologists. Neuropathology 2014; 35:122-9. [PMID: 25377896 DOI: 10.1111/neup.12172] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/09/2014] [Indexed: 12/18/2022]
Abstract
Brain metastasis is an uncommon but increasing manifestation of ovarian epithelial carcinoma and neuropathologists' collective experience with these tumors is limited. We present clinicopathological characteristics of 13 cases of brain metastases from ovarian epithelial carcinoma diagnosed at two academic institutions. The mean ages at diagnosis of the ovarian carcinoma and their subsequent brain metastases were 58.7 and 62.8 years, respectively. At the time of initial diagnosis of ovarian carcinoma the majority of patients had an advanced stage and none had brain metastases as their first manifestation of malignancy. Brain metastases tended to be multiple with ring-enhancing features on neuroimaging. Primary tumors and their brain metastases were all high-grade histologically and the histologic subtypes were: nine high-grade serous carcinoma (HGSC) cases, two clear cell carcinoma (CCC) cases and a single case each of carcinosarcoma and high-grade adenocarcinoma. A recommended histo- and immunopathological approach to these tumours are provided to aid neuropathologists in the recognition and classification of metastatic ovarian carcinoma to the brain.
Collapse
Affiliation(s)
- Houman Nafisi
- Department of Anatomic Pathology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
49
|
Meisen WH, Dubin S, Sizemore ST, Mathsyaraja H, Thies K, Lehman NL, Boyer P, Jaime-Ramirez AC, Elder JB, Powell K, Chakravarti A, Ostrowski MC, Kaur B. Changes in BAI1 and nestin expression are prognostic indicators for survival and metastases in breast cancer and provide opportunities for dual targeted therapies. Mol Cancer Ther 2014; 14:307-14. [PMID: 25376607 DOI: 10.1158/1535-7163.mct-14-0659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The 2-year survival rate of patients with breast cancer brain metastases is less than 2%. Treatment options for breast cancer brain metastases are limited, and there is an unmet need to identify novel therapies for this disease. Brain angiogenesis inhibitor 1 (BAI1) is a GPCR involved in tumor angiogenesis, invasion, phagocytosis, and synaptogenesis. For the first time, we identify that BAI1 expression is significantly reduced in breast cancer and higher expression is associated with better patient survival. Nestin is an intermediate filament whose expression is upregulated in several cancers. We found that higher Nestin expression significantly correlated with breast cancer lung and brain metastases, suggesting both BAI1 and Nestin can be therapeutic targets for this disease. Here, we demonstrate the ability of an oncolytic virus, 34.5ENVE, to target and kill high Nestin-expressing cells and deliver Vstat120 (extracellular fragment of BAI1). Finally, we created two orthotopic immune-competent murine models of breast cancer brain metastases and demonstrated 34.5ENVE extended the survival of immune-competent mice bearing intracranial breast cancer tumors.
Collapse
Affiliation(s)
- Walter Hans Meisen
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Samuel Dubin
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Steven T Sizemore
- Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Haritha Mathsyaraja
- Department of Molecular and Cellular Biochemistry, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Katie Thies
- Department of Molecular and Cellular Biochemistry, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Norman L Lehman
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio. Department of Pathology, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Peter Boyer
- Small Animal Imaging Shared Resources, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio. Department of Biomedical Informatics, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Alena Cristina Jaime-Ramirez
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - J Bradley Elder
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Kimerly Powell
- Small Animal Imaging Shared Resources, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio. Department of Biomedical Informatics, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Arnab Chakravarti
- Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Michael C Ostrowski
- Department of Molecular and Cellular Biochemistry, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio
| | - Balveen Kaur
- Department of Neurological Surgery, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio. Department of Radiation Oncology, James Comprehensive Cancer Center, The Ohio State University Medical Center, Columbus, Ohio.
| |
Collapse
|
50
|
Kowa XY, Hyams C, Farrugia M, Lightowlers S. An unusual cause of a fall: an unusual presentation of lung carcinoma. BMJ Case Rep 2014; 2014:bcr-2013-203019. [PMID: 24811107 DOI: 10.1136/bcr-2013-203019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
An 80-year-old gentleman presented with a fall and subtle symptoms suggestive of a cerebellar lesion, on a background of hemiparesis due to a previous cerebral vascular accident. On admission it was thought that changes on a chest radiograph were consistent with a community-acquired pneumonia. A CT of the head showed a space-occupying lesion in the right cerebellum with surrounding oedema. A previous MRI of the brain performed 8 months earlier for investigation of dementia showed evidence of this lesion although it was significantly smaller and without midline shift; however, this had not been discussed on the MRI report. A subsequent CT of the thorax confirmed a thick-walled cavitating mass in the left upper lobe, with biopsy of this lesion and bronchial washings showing metaplastic and atypical cells suggestive of adenocarcinoma. This report highlights both the importance of accurate imaging reporting, even of incidental findings, and the insidious nature of lung malignancy and its broad clinical presentation.
Collapse
Affiliation(s)
- Xin-Ying Kowa
- Care of the Elderly, Newham University Hospital, London, UK
| | | | | | | |
Collapse
|