1
|
Nealy ES, Reed SJ, Adelmund SM, Badeau BA, Shadish JA, Girard EJ, Pakiam FJ, Mhyre AJ, Price JP, Sarkar S, Kalia V, DeForest CA, Olson JM. Versatile Tissue-Injectable Hydrogels with Extended Hydrolytic Release of Bioactive Protein Therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.554391. [PMID: 37693598 PMCID: PMC10491173 DOI: 10.1101/2023.09.01.554391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Hydrogels generally have broad utilization in healthcare due to their tunable structures, high water content, and inherent biocompatibility. FDA-approved applications of hydrogels include spinal cord regeneration, skin fillers, and local therapeutic delivery. Drawbacks exist in the clinical hydrogel space, largely pertaining to inconsistent therapeutic exposure, short-lived release windows, and difficulties inserting the polymer into tissue. In this study, we engineered injectable, biocompatible hydrogels that function as a local protein therapeutic depot with a high degree of user-customizability. We showcase a PEG-based hydrogel functionalized with bioorthogonal strain-promoted azide-alkyne cycloaddition (SPAAC) handles for its polymerization and functionalization with a variety of payloads. Small-molecule and protein cargos, including chemokines and antibodies, were site-specifically modified with hydrolysable "azidoesters" of varying hydrophobicity via direct chemical conjugation or sortase-mediated transpeptidation. These hydrolysable esters afforded extended release of payloads linked to our hydrogels beyond diffusion; with timescales spanning days to months dependent on ester hydrophobicity. Injected hydrogels polymerize in situ and remain in tissue over extended periods of time. Hydrogel-delivered protein payloads elicit biological activity after being modified with SPAAC-compatible linkers, as demonstrated by the successful recruitment of murine T-cells to a mouse melanoma model by hydrolytically released murine CXCL10. These results highlight a highly versatile, customizable hydrogel-based delivery system for local delivery of protein therapeutics with payload release profiles appropriate for a variety of clinical needs.
Collapse
Affiliation(s)
- Eric S. Nealy
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | | | - Steve M. Adelmund
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Barry A. Badeau
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Jared A. Shadish
- Department of Chemical Engineering, University of Washington, Seattle WA
| | - Emily J. Girard
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | | | - Andrew J. Mhyre
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | - Jason P. Price
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
| | - Surojit Sarkar
- Seattle Children’s Research Institute, Seattle WA
- Department of Pathology, University of Washington, Seattle WA
- Department of Pediatrics, University of Washington, Seattle WA
| | - Vandana Kalia
- Seattle Children’s Research Institute, Seattle WA
- Department of Pediatrics, University of Washington, Seattle WA
| | - Cole A. DeForest
- Department of Chemical Engineering, University of Washington, Seattle WA
- Department of Bioengineering, University of Washington, Seattle WA
- Department of Biochemistry, University of Washington, Seattle WA
- Department of Biology, University of Washington, Seattle WA
- Department of Chemistry, University of Washington, Seattle WA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle WA
- Institute for Protein Design, University of Washington, Seattle WA
| | - James M. Olson
- Seattle Children’s Research Institute, Seattle WA
- Fred Hutch Cancer Center, Seattle WA
- Department of Pharmacology, University of Washington, Seattle WA
| |
Collapse
|
2
|
Tone M, Iwahori K, Shiroyama T, Futami S, Naito Y, Fukushima K, Miyake K, Koyama S, Hirata H, Nagatomo I, Wada H, Takeda Y, Kumanogoh A. Impact of minocycline on outcomes of EGFR-mutant non-small cell lung cancer patients treated with EGFR-TKIs. Sci Rep 2023; 13:8313. [PMID: 37221285 DOI: 10.1038/s41598-023-35519-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Minocycline is often administered prophylactically or therapeutically to non-small cell lung cancer (NSCLC) patients receiving epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) for skin rash as an adverse event. We examined the effects of minocycline on the outcomes of EGFR-mutant NSCLC treated with first-line EGFR-TKIs based on a single-center retrospective analysis. In this retrospective cohort study, data were collected on NSCLC patients treated with first-line EGFR-TKIs between January 2010 and June 2021. The treatment efficacy of first-line EGFR-TKIs was compared between patients who received minocycline and those who did not. Median progression-free survival (PFS) with first-line EGFR-TKIs was significantly longer in the minocycline group (N = 32) than in the control group (N = 106); 714 (95% confidence interval CI 411-1247) days vs. 420 (95% CI 343-626) days, p = 0.019. A multivariate analysis including skin rash as a variable confirmed that the administration of minocycline for 30 days or longer correlated with good PFS and overall survival (OS) with first-line EGFR-TKIs (HR 0.44 [95% CI 0.27-0.73], p = 0.0014 and HR 0.50 [95% CI 0.27-0.92], p = 0.027, respectively). The administration of minocycline influenced good treatment efficacy with first-line EGFR-TKIs independently of skin rash.
Collapse
Affiliation(s)
- Mari Tone
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kota Iwahori
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.
- Department of Clinical Research in Tumor Immunology, Osaka University Graduate School of Medicine, Osaka, Japan.
| | - Takayuki Shiroyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinji Futami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yujiro Naito
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kiyoharu Fukushima
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kotaro Miyake
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shohei Koyama
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Izumi Nagatomo
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisashi Wada
- Department of Clinical Research in Tumor Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (IFReC), Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, Japan
- Center for Infectious Diseases for Education and Research (CiDER), Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS (CAMaD), Osaka University, Osaka, Japan
| |
Collapse
|
3
|
Hersh AM, Bhimreddy M, Weber-Levine C, Jiang K, Alomari S, Theodore N, Manbachi A, Tyler BM. Applications of Focused Ultrasound for the Treatment of Glioblastoma: A New Frontier. Cancers (Basel) 2022; 14:4920. [PMID: 36230843 PMCID: PMC9563027 DOI: 10.3390/cancers14194920] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/21/2022] Open
Abstract
Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.
Collapse
Affiliation(s)
- Andrew M. Hersh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Meghana Bhimreddy
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Carly Weber-Levine
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kelly Jiang
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Safwan Alomari
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nicholas Theodore
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amir Manbachi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Betty M. Tyler
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Graham-Gurysh EG, Murthy AB, Moore KM, Hingtgen SD, Bachelder EM, Ainslie KM. Synergistic drug combinations for a precision medicine approach to interstitial glioblastoma therapy. J Control Release 2020; 323:282-292. [PMID: 32335153 DOI: 10.1016/j.jconrel.2020.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 01/12/2023]
Abstract
Glioblastoma (GBM) is a highly aggressive and heterogeneous form of brain cancer. Genotypic and phenotypic heterogeneity drives drug resistance and tumor recurrence. Combination chemotherapy could overcome drug resistance; however, GBM's location behind the blood-brain barrier severely limits chemotherapeutic options. Interstitial therapy, delivery of chemotherapy locally to the tumor site, via a biodegradable polymer implant can overcome the blood-brain barrier and increase the range of drugs available for therapy. Ideal drug candidates for interstitial therapy are those that are potent against GBM and work in combination with both standard-of-care therapy and new precision medicine targets. Herein we evaluated paclitaxel for interstitial therapy, investigating the effect of combination with both temozolomide, a clinical standard-of-care chemotherapy for GBM, and everolimus, a mammalian target of rapamycin (mTOR) inhibitor that modulates aberrant signaling present in >80% of GBM patients. Tested against a panel of GBM cell lines in vitro, paclitaxel was found to be effective at nanomolar concentrations, complement therapy with temozolomide, and synergize strongly with everolimus. The strong synergism seen with paclitaxel and everolimus was then explored in vivo. Paclitaxel and everolimus were separately formulated into fibrous scaffolds composed of acetalated dextran, a biodegradable polymer with tunable degradation rates, for implantation in the brain. Acetalated dextran degradation rates were tailored to attain matching release kinetics (~3% per day) of both paclitaxel and everolimus to maintain a fixed combination ratio of the two drugs. Combination interstitial therapy of both paclitaxel and everolimus significantly reduced GBM growth and improved progression free survival in two clinically relevant orthotopic models of GBM resection and recurrence. This work illustrates the advantages of synchronized interstitial therapy of paclitaxel and everolimus for post-surgical tumor control of GBM.
Collapse
Affiliation(s)
- Elizabeth G Graham-Gurysh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Ananya B Murthy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kathryn M Moore
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA
| | - Shawn D Hingtgen
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, USA; Department of Microbiology and Immunology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Hersh DS, Harder BG, Roos A, Peng S, Heath JE, Legesse T, Kim AJ, Woodworth GF, Tran NL, Winkles JA. The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance. Neuro Oncol 2019; 20:1321-1330. [PMID: 29897522 DOI: 10.1093/neuonc/noy063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Background Glioblastoma (GBM) is a difficult to treat brain cancer that nearly uniformly recurs, and recurrent tumors are largely therapy resistant. Our prior work has demonstrated an important role for the tumor necrosis factor-like weak inducer of apoptosis (TWEAK) receptor fibroblast growth factor-inducible 14 (Fn14) in GBM pathobiology. In this study, we investigated Fn14 expression in recurrent GBM and in the setting of temozolomide (TMZ) resistance. Methods Fn14 mRNA expression levels in nonneoplastic brain, primary (newly diagnosed) GBM, and recurrent GBM (post-chemotherapy and radiation) specimens were obtained from The Cancer Genome Atlas data portal. Immunohistochemistry was performed using nonneoplastic brain, patient-matched primary and recurrent GBM, and gliosarcoma (GSM) specimens to examine Fn14 protein levels. Western blot analysis was used to compare Fn14 expression in parental TMZ-sensitive or matched TMZ-resistant patient-derived xenografts (PDXs) established from primary or recurrent tumor samples. The migratory capacity of control and Fn14-depleted TMZ-resistant GBM cells was assessed using the transwell migration assay. Results We found that Fn14 is more highly expressed in recurrent GBM tumors than their matched primary GBM counterparts. Fn14 expression is also significantly elevated in GSM tumors. GBM PDX cells with acquired TMZ resistance have higher Fn14 levels and greater migratory capacity than their corresponding parental TMZ-sensitive cells, and the migratory difference is due, at least in part, to Fn14 expression in the TMZ-resistant cells. Conclusions This study demonstrates that the Fn14 gene is highly expressed in recurrent GBM, GSM, and TMZ-resistant GBM PDX tumors. These findings suggest that Fn14 may be a valuable therapeutic target or drug delivery portal for treatment of recurrent GBM and GSM patients.
Collapse
Affiliation(s)
- David S Hersh
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Bryan G Harder
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Alison Roos
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Sen Peng
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona
| | - Jonathan E Heath
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Teklu Legesse
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland.,University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, Arizona
| | - Jeffrey A Winkles
- University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, Maryland.,Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland.,Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Kobrlova T, Korabecny J, Soukup O. Current approaches to enhancing oxime reactivator delivery into the brain. Toxicology 2019; 423:75-83. [PMID: 31112674 DOI: 10.1016/j.tox.2019.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
The misuse of organophosphate compounds still represents a current threat worldwide. Treatment of poisoning with organophosphates (OPs) remains unsatisfactorily resolved despite the extensive investment in research in academia. There are no universal, effective and centrally-active acetylcholinesterase (AChE) reactivators to countermeasure OP intoxication. One major obstacle is to overcome the blood-brain barrier (BBB). The central compartment is readily accessible by the OPs which are lipophilic bullets that can easily cross the BBB, whereas first-line therapeutics, namely oxime-based AChE reactivators and atropine, do not cross or do so rather slowly. The limitation of oxime-based AChE reactivators can be ascribed to their chemical nature, bearing a positive charge which is essential either for their AChE affinity or their reactivating potency. The aim of this article is to review the methods for targeting the brain by oxime reactivators that have been developed so far. Approaches using prodrugs, lipophilicity enhancement, or sugar-based oximes have been rather unsuccessful. However, other strategies have been more promising, such as the use of nanoparticles or co-administration of the reactivator with efflux transporter inhibitors. Encouraging results have also been associated with intranasal delivery, but research in this field is still at the beginning. Further research of auspicious approaches is inevitable.
Collapse
Affiliation(s)
- Tereza Kobrlova
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| | - Ondrej Soukup
- Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500 01, Hradec Kralove, Czech Republic; Biomedical Research Centre, University Hospital, Sokolska 581, 500 05, Hradec Kralove, Czech Republic.
| |
Collapse
|
7
|
Xuan F, Huang M, Zhao E, Cui H. MINA53 deficiency leads to glioblastoma cell apoptosis via inducing DNA replication stress and diminishing DNA damage response. Cell Death Dis 2018; 9:1062. [PMID: 30333481 PMCID: PMC6193027 DOI: 10.1038/s41419-018-1084-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/22/2022]
Abstract
MYC-induced nuclear antigen (MINA53) is a JmjC (jumonji C domain)-containing protein, which is highly expressed in many cancers including glioblastoma. We have revealed in our previous report that MINA53 is a poor prognostic indicator for glioblastoma patients, and knockdown of MINA53 could reduce glioblastoma malignancy. In this study, we found that MINA53 knockdown could decrease the DNA replication initiation in glioblastoma cells. Through further investigations, we revealed that MINA53 could regulate the expression of the CDC45-MCM-GINS (CMG) complex genes, which are vital for DNA replication initiation. Knockdown of MINA53 reduced the CMG genes expression and thus induced DNA replication stress and DNA damage. Furthermore, MINA53 knockdown diminished DNA damage response (DDR) by reducing the ATM/ATR-H2AX pathway activity and finally led glioblastoma cells to apoptosis and death. We further applied a genotoxic drug Doxorubicin and found that MINA53 deficiency sensitized glioblastoma cells to Doxorubicin. Our study reveals that MINA53 is involved in DNA replication initiation and DNA damage response, and provides support for MINA53 as a novel and potential therapeutic target for glioblastoma treatment.
Collapse
Affiliation(s)
- Fan Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Mengying Huang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
8
|
Doishita S, Shimono T, Yoneda T, Yamada E, Tsukamoto T, Takemori D, Kimura D, Tatekawa H, Sakamoto S, Miki Y. In vitro Study of Serial Changes to Carmustine Wafers (Gliadel) with MR Imaging and Computed Tomography. Magn Reson Med Sci 2017; 17:58-66. [PMID: 28867760 PMCID: PMC5760234 DOI: 10.2463/mrms.mp.2017-0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Implantation of carmustine wafers (Gliadel) in vivo is accompanied by characteristic serial changes on MRI and CT, such as transient hyperintensity of the wafers on T1-weighted images (T1WIs) and considerable gas accumulation in surgical resection cavities. The purpose of this study was to evaluate intrinsic imaging changes to carmustine wafers in vitro. METHODS Three phantoms simulating a surgical resection cavity were constructed. Each contained either a carmustine wafer fixed with oxidized regenerated cellulose and fibrin sealant, an unfixed carmustine wafer, or a fixed polyethylene control disk, immersed in phosphate-buffered saline. Image acquisition of the phantoms was performed on MRI and CT until 182 days after construction. The radiological appearances of the object in each phantom were assessed by visual evaluation and quantification of the region of interest. The volume of gas around the objects at 24 h after constructing the phantoms was also measured. RESULTS The carmustine wafers showed low signal intensities on T1WIs and T2-weighted images (T2WIs), and high densities on CT images at 24 h. The signal intensities and CT densities gradually approximated those of saline over a period of months. However, the carmustine wafers never showed hyperintensity on T1WIs in vitro. The fixed carmustine wafer showed slower radiological changes, as compared to the unfixed wafer. The gas volume around the fixed carmustine wafer was greater than that around the fixed control disk. CONCLUSION Changes to the carmustine wafers probably reflected penetration of fluid inside and degradation of the hydrophobic matrix. Reported transient hyperintensity of wafers on T1WIs in vivo is regarded as the result of biological reactions, whereas the initial production of gas is considered as an intrinsic characteristic of wafers.
Collapse
Affiliation(s)
- Satoshi Doishita
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine
| | - Taro Shimono
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine
| | - Tetsuya Yoneda
- Department of Medical Physics in Advanced Biomedical Sciences, Faculty of Life Sciences, Kumamoto University
| | - Eiji Yamada
- Department of Radiological Technology, Osaka City University Hospital
| | - Taro Tsukamoto
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine
| | - Daichi Takemori
- Department of Radiological Technology, Osaka City University Hospital
| | - Daisuke Kimura
- Department of Radiological Technology, Osaka City University Hospital
| | - Hiroyuki Tatekawa
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine
| | - Shinichi Sakamoto
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine
| | - Yukio Miki
- Department of Diagnostic and Interventional Radiology, Osaka City University Graduate School of Medicine
| |
Collapse
|
9
|
Chakroun RW, Zhang P, Lin R, Schiapparelli P, Quinones-Hinojosa A, Cui H. Nanotherapeutic systems for local treatment of brain tumors. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28544801 DOI: 10.1002/wnan.1479] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022]
Abstract
Malignant brain tumor, including the most common type glioblastoma, are histologically heterogeneous and invasive tumors known as the most devastating neoplasms with high morbidity and mortality. Despite multimodal treatment including surgery, radiotherapy, chemotherapy, and immunotherapy, the disease inevitably recurs and is fatal. This lack of curative options has motivated researchers to explore new treatment strategies and to develop new drug delivery systems (DDSs); however, the unique anatomical, physiological, and pathological features of brain tumors greatly limit the effectiveness of conventional chemotherapy. In this context, we review the recent progress in the development of nanoparticle-based DDSs aiming to address the key challenges in transporting sufficient amount of therapeutic agents into the brain tumor areas while minimizing the potential side effects. We first provide an overview of the standard treatments currently used in the clinic for the management of brain cancers, discussing the effectiveness and limitations of each therapy. We then provide an in-depth review of nanotherapeutic systems that are intended to bypass the blood-brain barrier, overcome multidrug resistance, infiltrate larger tumorous tissue areas, and/or release therapeutic agents in a controlled manner. WIREs Nanomed Nanobiotechnol 2018, 10:e1479. doi: 10.1002/wnan.1479 This article is categorized under: Implantable Materials and Surgical Technologies > Nanomaterials and Implants Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Rami Walid Chakroun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Pengcheng Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ran Lin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
10
|
Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. J Control Release 2016; 243:29-42. [DOI: 10.1016/j.jconrel.2016.09.034] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 09/15/2016] [Accepted: 09/25/2016] [Indexed: 12/16/2022]
|
11
|
Mangraviti A, Gullotti D, Tyler B, Brem H. Nanobiotechnology-based delivery strategies: New frontiers in brain tumor targeted therapies. J Control Release 2016; 240:443-453. [DOI: 10.1016/j.jconrel.2016.03.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/05/2016] [Accepted: 03/18/2016] [Indexed: 02/06/2023]
|
12
|
Patterns of Recurrence After Resection of Malignant Gliomas With BCNU Wafer Implants: Retrospective Review in a Single Institution. World Neurosurg 2016; 90:340-347. [DOI: 10.1016/j.wneu.2016.02.102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 11/22/2022]
|
13
|
The TWEAK receptor Fn14 is a potential cell surface portal for targeted delivery of glioblastoma therapeutics. Oncogene 2015; 35:2145-55. [PMID: 26300004 DOI: 10.1038/onc.2015.310] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 07/14/2015] [Accepted: 07/14/2015] [Indexed: 12/11/2022]
Abstract
UNLABELLED Fibroblast growth factor-inducible 14 (Fn14; TNFRSF12A) is the cell surface receptor for the tumor necrosis factor (TNF) family member TNF-like weak inducer of apoptosis (TWEAK). The Fn14 gene is normally expressed at low levels in healthy tissues but expression is significantly increased after tissue injury and in many solid tumor types, including glioblastoma (GB; formerly referred to as 'GB multiforme'). GB is the most common and aggressive primary malignant brain tumor and the current standard-of-care therapeutic regimen has a relatively small impact on patient survival, primarily because glioma cells have an inherent propensity to invade into normal brain parenchyma, which invariably leads to tumor recurrence and patient death. Despite major, concerted efforts to find new treatments, a new GB therapeutic that improves survival has not been introduced since 2005. In this review article, we summarize studies indicating that (i) Fn14 gene expression is low in normal brain tissue but is upregulated in advanced brain cancers and, in particular, in GB tumors exhibiting the mesenchymal molecular subtype; (ii) Fn14 expression can be detected in glioma cells residing in both the tumor core and invasive rim regions, with the maximal levels found in the invading glioma cells located within normal brain tissue; and (iii) TWEAK Fn14 engagement as well as Fn14 overexpression can stimulate glioma cell migration, invasion and resistance to chemotherapeutic agents in vitro. We also discuss two new therapeutic platforms that are currently in development that leverage Fn14 overexpression in GB tumors as a way to deliver cytotoxic agents to the glioma cells remaining after surgical resection while sparing normal healthy brain cells.
Collapse
|